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Abstract Chip Multiprocessors (CMPs) have different technological parameters and
physical constraints than earlier multi-processor systems, which should be taken into
consideration when designing cache coherence protocols. Also, contemporary cache
coherence protocols use invalidate schemes that are known to generate a high number
of coherence misses. This is especially true under producer-consumer sharing pat-
terns that can become a performance bottleneck as the number of cores increases.
This paper presents two mechanisms to design efficient and scalable cache coherence
protocols for CMPs. First, we propose an adaptive hybrid protocol to reduce coher-
ence misses observed in write-invalidate based protocols. The proposed protocol is
based on a write-invalidate scheme. However, adaptively, it can push updates to poten-
tial consumers based on observed producer-consumer sharing patterns. Secondly, we
extend this adaptive protocol with an interconnection resource aware mechanism.
Experimental evaluations, conducted on a tiled-CMP via full-system simulation, were
used to assess the performance from our proposed dynamic hybrid protocols. Perfor-
mance analysis is presented on a set of scientific applications from the SPLASH-2 and
NAS parallel benchmark suites. Results showed that the proposed mechanisms reduce
cache-to-cache sharing misses up to 48 % and speed up application performance up to
34 %. In addition, the proposed interconnection resource aware mechanism is proven
to perform well under varying interconnection utilizations.
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1 Introduction

The density of transistors inside a single chip has continued to increase exponentially
as stated in Moore’s law [30]. However due to power dissipation, thermal constraints
and limited instruction-level parallelism (ILP), major microprocessor vendors have
shifted their designs into utilizing the available number of transistors inside a single
chip by using multiple homogeneous cores resulting in multi-core architectures or
also known as Chip Multiprocessors (CMPs) [4,15]. CMPs provide a solution to
increase the performance capability on a single chip without requiring a complex
system which increases power requirements [7,17]. Hence, CMPs have become the
de facto architecture choice for processor design.

This trend will likely continue with more and more cores being put on a single
chip [17]. This transition to multi-core processors provides new ways of reaching
performance gains mainly through Thread-Level Parallelism (TLP). TLP requires
parallel programming, and accordingly most CMPs have adapted the shared-memory
model for ease of use. Albeit the ease of use in programmability, shared memory view
brings the overhead of memory consistency and coherency problems. Recent research
has demonstrated the implications of the cache coherence overhead on application
performance including large high-performance clusters with multi-socket CMP based
shared memory nodes [22]. With the increasing number of cores inside a single chip,
cache coherence mechanism becomes even more important for performance growth
in CMP based systems.

Although cache coherence protocols were extensively studied for earlier shared-
memory systems, with the advent of CMPs cache coherence protocol has become a
first-order design issue at the chip level. In addition, CMPs have different technological
parameters and physical constraints which should be considered for cache coherence
protocol design to achieve better performance and scalability. On-chip resource uti-
lization is crucial for CMPs, a remote but on-chip cache-to-cache access is less costly
than off-chip memory access which is in contrast to the earlier multiprocessors [13].
This calls for a cache coherence protocol design which puts more emphasis on avoiding
off-chip accesses as much as possible.

Thereby, cache coherence overhead can still be amortized while facilitating many-
cores on a single chip. In accordance with these technological changes, this paper
proposes cache coherence mechanisms optimized by taking into account the afore-
mentioned CMP specific parameters and constraints.

There are two broad sets of cache coherence protocols based on the underlying
mechanism to satisfy coherency: broadcast-based snooping protocols and directory-
based protocols. Snooping protocols are known to have scalability issues due to high
bandwidth usage and also, most of the time, they rely on ordered interconnects [28].
Therefore, our proposed cache coherence protocol is based on a directory scheme
for better scalability. Cache coherence protocols can also be divided into two main
categories based on their write policies on shared data: write-invalidate (WI) and write-
update (WU) protocols. In a write-invalidate protocol, the processor that is about to
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write to a shared data block first invalidates the other copies of the same block and then
can update its own local copy. Having the other copies invalidated, further modifica-
tions to that block does not require global traffic between processors. The advantage
of the write-invalidate strategy is the fact that subsequent write operations can be
completed locally until the same data block is accessed by another processor. In con-
trast, write-update protocols maintain cache coherency by sending the updates to all
other sharing processors for each and every modification. This eliminates cache-to-
cache misses for those data blocks that observe producer-consumer sharing pattern.
Producer-consumer sharing pattern is defined in which one processor modifies a data
block (producer) and a set of other processors read the block (consumers) [6]. How-
ever, write-update strategy results in extra traffic especially for those cases when the
updated block will not be used by the receiving processors before the modifying proces-
sor is done with its updates (e.g. migratory-sharing data) [5,8,36]. On the other hand,
write-invalidate based protocols tend to generate high cache-to-cache misses. Besides,
previous studies have illustrated that these cache-to-cache misses comprise a big por-
tion of overall cache misses in shared memory systems [2,12,29] and write-update
protocols can degrade these coherence misses [6,18,35]. Hence, there is no single
cache coherence solution that can perform well under varying workload characteris-
tics, different cache configurations, and interconnect parameters [28]. As a solution,
this work proposes an adaptive, hybrid protocol which switches between write-updates
and write-invalidates based on the underlying producer-consumer sharing patterns.
For clarity, this protocol will be referred as Producer-Consumer Adaptive (PCA). This
approach requires only a minimalistic hardware extension to benefit from such adap-
tive protocols. Also, the proposed mechanisms do not change the memory model seen
by the programmer or by the compiler. Proposed adaptive protocol can be implemented
on top of any write-invalidate protocol and can work with existing language, compiler,
and processor designs. Since most of the contemporary systems use write-invalidate
based protocols, this paper provides an adaptive protocol based on a write-invalidate
directory protocol that triggers write-updates based on producer-consumer sharing
pattern detection. In addition, PCA is designed and optimized considering CMP
specific topological constraints in which on-chip communication is prioritized com-
pared to off-chip memory accesses in order to satisfy any data request.

Cache coherence protocols can be divided into two main categories based on their
write policies on shared data: write-invalidate (WI) and write-update (WU) protocols.
In a write-invalidate protocol, the processor that is about to write to a shared data
block first invalidates the other copies of the same block and then can update its own
local copy. In contrast, write-update protocols maintain cache coherency by sending
the updates to all other sharing processors for each and every modification. This elim-
inates cache-to-cache misses for those data blocks that observe producer-consumer
sharing pattern. Producer-consumer sharing pattern is defined in which one processor
modifies a data block (producer) and a set of other processors read the block (con-
sumers) [6]. However, write-update strategy results in extra traffic especially for those
cases when the updated block will not be used by the receiving processors before the
modifying processor is done with its updates (e.g. migratory-sharing data) [8]. On
the other hand, write-invalidate based protocols tend to generate a high number of
cache-to-cache misses. Besides, previous studies have illustrated that these cache-to-
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cache misses comprise a big portion of the overall cache misses in shared memory
systems [2,12,29] and write-update protocols can degrade these coherence misses
[18,35]. Hence, there is no single cache coherence solution that can perform well
under varying workload characteristics, different cache configurations, and intercon-
nect parameters [28]. As a solution, this work proposes an adaptive, hybrid protocol
which switches between write-updates and write-invalidates based on the underly-
ing producer-consumer sharing patterns. For clarity, this protocol will be referred to
as PCA. This approach requires only a minimalistic hardware extension. Also, the
proposed mechanisms do not change the memory model seen by the programmer or
by the compiler. The proposed adaptive protocol can be implemented on top of any
write-invalidate protocol. Since most of the contemporary systems use write-invalidate
based protocols, this paper proposes an adaptive protocol based on a write-invalidate
directory protocol that triggers write-updates based on producer-consumer sharing
pattern detection. In addition, PCA is designed and optimized considering CMP spe-
cific topological constraints in which on-chip communication is prioritized compared
to off-chip memory accesses.

PCA generates less network traffic compared to a typical write-update protocol as
updates only happen for established producer-consumer sharing data blocks to prevent
coherence misses. The rest of the blocks are kept coherent via a write-invalidate scheme
which, in nature, entails less bandwidth. However, PCA might still yield to hot spots are
still possible for applications observing large amount of producer-consumer sharing
data blocks during some execution phases. Therefore, we also propose a bandwidth-
adaptive scheme to further extend our adaptive, hybrid cache coherence protocol to
prevent possible network congestions and the associated performance losses due to
updates. This protocol will be referred to as Producer-Consumer Bandwidth-Adaptive
(PCBA).

The PCBA protocol utilizes a dynamic feedback control mechanism to monitor and
estimate the underlying interconnect utilization. Based on the recent bandwidth utiliza-
tion information, it makes intelligent decisions whether to trigger the update optimiza-
tions or not. As such, PCBA can eliminate potential hot spots and on-chip interconnect
congestion due to write-update policy on producer-consumer sharing data blocks.

To summarize, this paper makes the following contributions:

– An adaptive, hybrid directory-based cache coherence protocol that switches from a
write-invalidate protocol to a write-update protocol for producer-consumer sharing
data blocks to reduce coherence misses. Our work mainly differs from previous
work in the CMP specific optimizations that observes the importance of on-chip
communication for performance. Also, our proposed protocols have a modest
hardware cost which is desirable for CMPs. More information on how our work
differs from the other adaptive, hybrid protocol studies can be found in Sects. 2
and 4.3.

– To the best of our knowledge, this is the first cache coherence protocol that utilizes
a bandwidth-adaptive mechanism to implement a hybrid protocol that switches
between write-invalidate and write-update policies.

– A novel trigger update mechanism to push updates to potential consumers
(Sect. 4.4).
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– Experimental evaluation of proposed protocols under various workloads and con-
figurations. This includes 16- and 256-core tiled CMP based results.

The rest of this paper is organized as follows: Sect. 2 gives an overview of the related
work; Sect. 3 discusses some background information on the experimented tiled-CMP
architecture and the base directory cache coherence protocol. Sect. 4 describes the
implementation details for the proposed cache coherence protocols along with the
producer consumer sharing pattern detection and bandwidth adaptive mechanisms.
Also, this section covers the verification of the adaptive protocol. The simulator envi-
ronment as well as the simulation workloads are explained in Sect. 5. Also, Sect. 5
presents and analyses the experimental results; and Sect. 6 concludes the study and
highlights future work.

2 Related Work

Although cache coherence protocols have been the main focus of many earlier research
efforts, the burst of CMPs calls for a cache coherence re-design to satisfy the CMP
specific technological constraints. These previous studies targeted Multi-Processor
(MP) systems comprised of multiple separate single-core processors. The topological
constraints differ in MP and CMP designs. Thus, in this paper we propose cache
coherence mechanisms that are designed and optimized considering CMP specific
constraints.

There have been various research efforts on adaptive and hybrid cache coherence
protocols. Write-invalidate versus write-update protocol design has been investigated
in many earlier studies [5,6,8–11,19,32,35,36]. All of these studies except [6,18,32]
utilized bus interconnect to establish a total order required by cache coherence pro-
tocols. Our work is based on a directory protocol and does not require an ordered
interconnect to satisfy coherency. We believe that future CMP based systems will
have to use a directory like structure to provide coherence and scale to large on-chip
core numbers. On the other hand, Nilsson et al. [32] and Grahn et al. [18] studied the
performance of a directory-based hybrid protocol, called competitive-update, that uses
a relaxed memory model to overlap write latency with local processing. Performance
study showed lower miss rates for all applications tested, but some applications could
not translate this into a performance improvement in the execution time because of
an increased network traffic under competitive update. Accordingly, they proposed to
extend the competitive-update protocol with a migratory data detection mechanism
to reduce the network traffic. Our proposed protocol triggers write-updates only for
producer-consumer sharing blocks as also studied in [6]. Cheng et al. [6] studied such
a sharing pattern and corresponding prediction mechanisms in the context of cache-
coherent Non-Uniform Memory Access (ccNUMA) shared memory multiprocessors.
This proposed cache coherence protocol entails off-chip memory access for each write-
update which is a big performance bottleneck in CMPs. Hence, we develop a cache
coherence protocol that can trigger updates to potential consumers without accessing
off-chip memory and avoid unnecessary invalidations. Furthermore, to control net-
work traffic we propose a novel bandwidth-adaptive cache coherence mechanism that
dynamically shuts down the updates under limited available bandwidth. As such, not
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only we propose an adaptive, hybrid protocol optimized for producer-consumer shar-
ing pattern to reduce coherence misses but also an enhanced cache coherence protocol
with bandwidth awareness to avoid performance losses due to network congestion. In
addition, our work does not require Remote Access Cache (RAC) to push the updates
which lowers the hardware cost significantly compared to [6].

Bandwidth-adaptive cache coherence protocol was studied earlier by Martin et al.
[28] to dynamically adapt to the available bandwidth. However, their work utilized such
bandwidth mechanism to switch between a broadcast-based protocol to a directory like
protocol. We utilize the bandwidth-adaptive framework to help our hybrid/adaptive
protocol to intelligently trigger write-update optimizations based on the available
bandwidth. This mechanism is proven to be crucial under limited bandwidth to avoid
possible network congestions and corresponding performance losses.

Another approach to deal with cache coherence overheads is based on coherence
predictors. Mukherjee and Hill [31] proposed the Cosmos coherence message predictor
with an extended study on Yeh and Patt’s two-level PAp branch predictor [38]. Kaxiras
et al. [20,21] proposed instruction-based predictors as an alternative to address-based
predictors to move the shared data close to the consumers as soon as possible. Lai et al.
[23] proposed pattern-based memory sharing predictors which reduces the memory
requirements of the previous proposed predictors. Acacio et al. [2] devised a pre-
diction scheme for owner prediction to convert 3-hop cache-to-cache misses to 2-hop
misses and they utilized prediction schemes to tackle upgrade misses in [3]. Coherence
predictor cache was designed and evaluated in [33] as a resource-efficient coherence
predictor. Nilsson et al. [33] made an observation based on SPLASH-2 kernels that
coherence activity footprint is confined to a small fraction of the whole data set. Fur-
ther, they utilized address filtering to avoid unnecessary caching to the Coherence
Predictor Cache. Martin et al. [27] analyzed commercial workloads and according to
the sharing patterns of the observed workloads they proposed destination-set predic-
tion to reduce indirections caused by directory protocols. Perceptron-based coherence
predictors were suggested and experimented within [16,24]. Most of these extensions
require major modifications and are relatively costly for a CMP design. Our prediction
mechanism has relatively a modest overhead with only 19 KB per core as described
in Sect. 4.

3 Baseline Architecture

This section provides details about the architecture used and the baseline write-
invalidate cache coherence protocol.

3.1 Tiled-CMP Architecture

Tiled-CMP architectures provide a scalable and efficient solution for CMP designs
[14]. Accordingly for the experiments, we utilized a tiled-CMP with 16 cores designed
via 4× 4 2D-MESH interconnect topology as can be seen in Fig. 1. Each tile contains
an in-order, dual-issue UltraSPARC-III Cu processor with 2 GHz clock frequency.
The first level cache is a split-cache with 4-way set-associative 64 KB instruction
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Fig. 1 Target architecture; 16-core on a 4× 4 MESH topology

and data caches. Second level caches are private, unified 4-way set-associative 2 MB
caches with 10-cycle hit latency. A directory is distributed among the tiles where
each tile contains the blocks that are homed by that processor by utilizing a directory
cache. The on-chip directory lookup latency is 20 cycles. Cores are connected with
an unordered 2D-MESH with 1-cycle hop latency. If not otherwise specified, link
bandwidth between tiles is assumed to be 8 bytes per cycle. Also, the network is
assumed to operate at a frequency of one fourth of the CPU due to power and energy
constraints.

3.2 Baseline Cache Coherence Protocol

In this work, we present two adaptive cache coherence protocols: PCA and PCBA.
Both of these adaptive, hybrid protocols are based on a write-invalidate directory
protocol with MOESI states. The Exclusive-clean (E) state obviates upgrade misses to
non-shared data. Race conditions are resolved at the home node by using a busy/active
state for each request. Order of arrivals at the home node establishes the order in which
the racing requests are serviced [34]. Directory induced latency is a bottleneck in such a
protocol. In addition, write-invalidate protocols tend to generate high cache-to-cache
misses which can also further become a performance issue as the number of cores
increases on a single-chip. Also, the same problem applies to multi-CMP systems.
As such, the goal of the PCA protocol is to mitigate the latency burden driven by the
cache-to-cache misses. The following section describes the implementation details of
PCA and PCBA protocols.

4 Implementation Details

This section describes the details about the proposed cache coherence protocols (PCA
and PCBA). To do so, producer-consumer sharing pattern detection and bandwidth-
adaptive mechanisms are illustrated. In addition, implementation details are given to
integrate such mechanisms into the proposed cache coherence protocols.
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4.1 Producer-Consumer Sharing Pattern Detection

Producer-consumer sharing pattern can be defined via the following regular expres-
sion:

(Wa)(R∀b:b �=a)m : a, b ∈ S, m ≥ 1 (1)

Wi and Ri refer to write and read operations by processor i . S refers to the complete
list of processors in the system.

Algorithm 1 Algorithm to detect Producer-consumer Sharing
1: pred_cnt ← 0
2: for all shared access to cache line A do
3: if request is exclusive then
4: sharers ← requester � Sharing Vector is reset
5: end if
6: if request is shared then
7: sharers ← sharers ∪ requester
8: end if
9: if request is shared or exclusive then
10: if requester ∈ recent_sharers then
11: pred_cnt ← min(pred_cnt + 1, 7)

12: else
13: recent_sharers ← recent_sharers ∪ requester
14: end if
15: end if
16: if pred_cnt = 7 then
17: Mark cache line A as a producer/consumer
18: end if
19: end for
20: �pred_cnt is referring to the Prediction Counter field in the directory cache
21: �pred_cnt and recent_sharers are reset when the line is evicted from the directory cache

As illustrated in Expression 1, producer-consumer sharing pattern is defined in
which one processor modifies a data block (producer) and a set of processors read
the block (consumers). To detect cache lines that exhibit a producer-consumer shar-
ing pattern, we extended each directory cache entry with a recent_sharers field to
track the potential consumers as also suggested in [6]. In addition, a 3-bit saturating
counter prediction_counter is used to track stable producer-consumer sharing pattern
for a cache line. Figure 2 shows the directory cache entries extended with the predic-
tion_counter and the recent_sharers fields. Since we experimented a directory-cache
with 8K entries, this results in just 19 KB extra hardware cost per core to imple-
ment PCA. The recent_sharers field is analogous to the sharing vector (the sharers

Fig. 2 Extended directory-cache fields
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field) used by the directory and it includes a superset of the sharing processors with
the addition of some other processors that recently accessed the same cache line.
For each activity generated from the recent_sharers list, a 3-bit saturating predic-
tion_counter is incremented. Also during each cache line replacement, the prediction
history will be reset for that specific cache block. Tracking is only conducted for those
lines cached by that specific core to minimize hardware requirements. Algorithm 1
demonstrates how we keep track of the recent history of sharers to predict potential
consumers in the future. To simplify the pseudo-code for clarity, operations on sharers
and recent_sharers fields are separated. As such, lines 2–8 show the operations on the
sharers field and lines 9–15 show the operations on the recent_sharers field. Accord-
ingly, for an exclusive access to a cache line, the sharers is reset as in a typical directory
(as shown in line 4). However, an exclusive access does not result in a reset for the
“Recent Sharers field (as shown in lines 9–15) in order to keep a history of sharers
for this cache line. When the prediction_counter is saturated, the corresponding cache
line is marked as a producer/consumer line. Thereby, future modifications to this line
generate updates to the potential consumers identified by the Recent Sharers field.

4.2 Bandwidth Adaptive Mechanism

Write-update based protocols tend to generate heavy network traffic as each modi-
fication to a shared cache line will cause data updates to all sharers. Having this is
mind, our proposed protocols trigger updates only for those lines that are exhibiting
a producer-consumer sharing pattern. Thereby, in our proposed protocols, not only
corresponding coherence misses are reduced but also the network traffic is kept low.
However, there might be situations where either the network bandwidth is limited or a
congestion is caused by a hot-spot in the network. Therefore, we propose a bandwidth-
adaptive mechanism to alleviate the burden of potential updates in such scenarios. This
bandwidth-adaptive mechanism is implemented on top of the PCA protocol resulting
in the PCBA protocol.

A flowchart of how PCA and PCBA protocols are interrelated to each other and
an overview of the underlying adaptive decision mechanisms can be seen in Fig. 3.
To summarize, two important adaptive decision mechanisms are required: a producer-
consumer (PC) detection mechanism and the bandwidth adaptive mechanism which
is how PCBA extends PCA. PCBA is designed to control network traffic generated
by the write-updates in PCA when the network has a limited bandwidth. PCBA uti-
lizes a bandwidth adaptive mechanism that is inspired from an earlier study by Martin
et al. [28], BASH, which dynamically adapts to the available bandwidth to switch
between a broadcast-based protocol to a directory like protocol. However, we uti-
lize bandwidth-adaptive framework as augmented to the PCA protocol to intelligently
trigger write-update optimizations based on the available bandwidth. BASH uses a
utilization counter in each core to calculate the link utilization and a policy counter
to probabilistically decide whether to unicast or broadcast. The policy counter was
mainly used to avoid oscillations in the system as BASH continuously needs to make
decisions. However, our bandwidth adaptive policy comes only active for those cache
blocks exhibiting producer-consumer sharing. Hence, we only implemented a signed
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(a) (b)

Fig. 3 Flowcharts comparing the PCA and PCBA protocols. a PCA ptotocol flowchart. b PCBA protocol
flowchart

utilization counter over a sampling interval of 256 cycles to identify if the link uti-
lization is above or below a cut-off threshold (75 %) as suggested in [28]. We also
conducted a sensitivity analysis with varying static values between 25 and 95 %, and it
was concluded that 75 % performs well in most cases as a threshold value. Experimen-
tal analysis which shows the importance of such a mechanism under high bandwidth
utilization periods can be seen in Fig. 10.

4.3 Protocol Implementation

In order to sustain correctness and differentiate different scenarios cache coherence
protocols utilize transition states. Each proposed protocol also inherits such transition
states from the baseline protocol and used them to maintain correctness. In essence,
for any cache line that does not exhibit a producer-consumer sharing pattern, our
proposed protocols work like the baseline protocol which is basically enforcing a
write-invalidate policy for all cache lines.

All of the proposed protocols can be implemented on top of any write-invalidate
directory protocol, but for clarity we gave an overview of our baseline protocol in
Sect. 3.2. In addition, Fig. 4 shows how a typical write-invalidate based protocol
works for a sample producer-consumer data sharing example. Each arrow presents a
hypothetical time line and designates a specific location in the system. From left to
right, these locations are the producer’s cache, the home tile which also includes the
directory cache, the consumer’s cache, and the main memory. The example assumes
a single producer and a single consumer for clarity. Also, the cache line is assumed to
be loaded and modified earlier so that the cache line actually exists in the producer’s
cache. Similarly, the cache line also exists in the directory cache of the home node/tile.
Initial state of the cache line is OWNED in the producer’s cache and SHARED in
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Fig. 4 Write-invalidate directory protocol

the consumer’s cache. The directory cache is inside the home tile and this can be
the same tile as the producer. This does not change the order of transactions but the
latency of each message, and again for clarity it can be assumed that they represent
different cores. Bold lines refer to coherence traffic and dashed gray lines correspond
to avoided traffic. Figure 4 presents how a write-invalidate protocol would suffer a
remote cache miss for a producer-consumer sharing cache line. These remote cache
misses can become costly as the number of cores increases. Figures 5 and 6 present
how prediction can help to avoid these coherence misses on the consumers. Figure 5
represents an earlier study by Cheng et al. [6] and our CMP specific optimizations
can be seen by examining Fig. 6. Our proposed protocols use the same fundamentals
to implement a data forwarding mechanism to trigger updates to consumers. How-
ever, Fig. 6 only mentions PCA for simplicity. In fact, differences between our pro-
posed protocols come from interconnection resource aware mechanisms as explained
earlier.

The initial transactions in all the examined protocols are same, which presents how
the producer gets the exclusive rights on the cache line in order to modify it. With
that modification, the cache line becomes MODIFIED in the producer’s cache, and
invalidated in the consumer’s cache. After this, assuming the prediction mechanism
detects that the cache line is actually a producer-consumer sharing line, consumers
will be updated in Figs. 5 and 6. However, there is a major difference on how our
proposed scheme and previous study handles the write-update process. Previous work
[6] requires a WRITEBACK transaction after the producer modifies the cache line. As
such, the cache line is written back to memory and in the meantime the consumer is
updated. Even this scheme requires the producer to downgrade its rights on the cache
line to be able to do the WRITEBACK, and then the home node updates the producer
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Fig. 5 Related work [6]

Fig. 6 PCA

along with the consumer. As we discussed earlier, CMPs provide unique optimization
opportunities and avoiding off-chip memory accesses is definitely crucial to harness
them. In Fig. 6, it is shown how PCA tries to avoid off-chip memory accesses wherever
possible to exploit the on-chip resources. In addition, the way the update mechanism
is triggered differs between the previous work and PCA.

More details about our trigger update mechanism can be found in the next
section.
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4.4 Trigger Update Mechanism

The Trigger Update event is integrated into the baseline cache coherence protocol
to be able to intelligently update the consumer caches. This event becomes active
after a certain delay when the producer modifies the producer-consumer cache line.
This mechanism is analogous to the delayed intervention mechanism discussed in
[6]. However, our trigger update mechanism improves the previous study by adding
a dynamic mechanism to trigger updates. In this process, it is important to choose
a long enough delay so that producers would finish their write-bursts. On the other
hand, by selecting a long delay, it might be too late to update the consumers and we
would not be able to prevent a cache miss in one of the consumer caches. Thereby, we
did a sensitivity analysis which can be seen in Fig. 11 in order to select the best value.
Accordingly, a static 1,000 cycle latency is selected to trigger the update mechanism
after the producer modifies a cache line. However, this value should be configured
based on the specific hardware configuration and system settings during the design
stage as the optimal value may differ from the one chosen for our specific system.

As an optimization to this static trigger update mechanism, we devised a novel
dynamic scheme that can adapt to the consumer’s behavior in such update scenarios.
This dynamic trigger mechanism still uses the static trigger delay, however, if there is
a GETS (Get Shared) request from one of the consumers before the delay is ended, not
only the GETS request is answered with the corresponding data block but also a Trigger
Update event is called to push updates to the other consumers. In the meantime, this
cancels the trigger delay to prevent unnecessary future updates. If the request comes
from a core that is at the point not a member of the consumer’s list, the requesting
core is added to the consumer list and updates are still pushed to the consumers. As
such, this dynamic scheme can improve the performance of the update mechanism
by preventing late triggers that fail to prevent cache misses for the consumers. There
is no difference between the static and dynamic schemes if the GETS request comes
after the trigger delay period. In fact, that scenario is our goal which results in a cache
hit in the consumer caches.

4.5 Verification of the Protocol

PCA and PCBA rely on the baseline coherence protocol correctness. However, exten-
sions made to the base protocol can easily create race conditions which need to be
verified and tested. For verification, we utilized the stress tests provided by GEMS.
This synthetic testing mechanism generates excessive race conditions on the cache
coherence protocol to identify potential coherence bugs. Furthermore, we managed to
run all benchmark suites to completion with successful data verification at the end.

5 Experimental Analysis

This section presents our experimental study; simulation environment, workloads and
performance evaluation of our proposed protocols.
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Table 1 Architectural details

Parameter Value

Processors 16 × UltraSPARC-III Cu processor cores, in-order, 2-way, 2 GHz

L1 Caches Split I&D, 64 KB 4-way set associative with 64-byte blocks per
core, 1-cycle hit latency

L2 Caches 4-way set associative with 64-byte blocks per core

Directory cache (DC) 8,192 entries, 20-cycle lookup latency

Cache replacement policy Pseudo-LRU

Coherence mechanism Directory-based protocol based on MOESI states

Memory 512 MB per core, shared memory, 160-cycle response latency

Interconnect 2D MESH (4× 4), 1-cycle latency per hop

Table 2 Simulation workloads
Benchmark Input data set

Barnes 16 K nodes, 123 seed

Cholesky Input tk29.O

FFT 64 K complex data points

FMM 16 K particles

NPB BT 12*12*12 nodes, # of iterations = 60

NPB CG Size = 1, 400, # of iterations = 15

NPB LU 16*16*16 nodes, # of iterations = 50

Ocean 258*258 grid, 10−7 error tolerance

Ocean_noncont 258*258 grid, 10−7 error tolerance

5.1 Simulation Environment

This research is conducted with full-system simulation utilizing Virtutech Simics [25]
extended with a modified version of the GEMS toolset [26]. Simics provides the func-
tional full-system simulation and GEMS provides a detailed memory system timing
infrastructure which observes all cache coherence protocol messages and correspond-
ing state transitions. The simulated machine is a 16-processor SPARC system running
unmodified Solaris 10. Table 1 provides the details of the simulation environment
along with the target architecture details. Results are reported only from the parallel
computational phase of each workload.

5.2 Simulation Workloads

The benchmarks for the full-system simulation study were selected from the SPLASH-
2 [37] benchmark suite and the NAS Parallel benchmark (NPB) suite [1]. The input
data sets for the simulation workloads are provided in Table 2.

Barnes is an implementation of the Barnes-Hut method to simulate the interac-
tion of a system of bodies over time in a gravitational system (N-body problem). BT
solves a partial differential equation using a block tridiagonal algorithm. CG imple-
ments unstructured matrix vector multiplication via conjugate gradient method to
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approximate the smallest eigenvalue of a large, sparse, symmetric positive definite
matrix. Cholesky kernel performs a blocked cholesky factorization on a sparse matrix.
FFT benchmark solves a complex, one-dimensional version of the radi x−√n six-step
FFT. FMM application implements a parallel adaptive Fast Multi-pole method to sim-
ulate the N-body problem like Barnes. LU benchmark refers to the LU decomposition.
Ocean application is a simulation of large-scale ocean movements based on eddy and
boundary currents. We used both of the contiguous and non-contiguous versions of the
Ocean code. Non-contiguous version implements the grids in two-dimensional arrays
which results in non-contiguous memory allocation. On the other hand, contiguous
version implements the grids with three-dimensional arrays. First dimension is used
to specify the local processor for a given partition and accordingly allows contiguous
allocation of particles inside the local memory of processors that own them.

5.3 Results

In this section, we present performance analysis results from the workloads presented
in Table 2. For all the figures; base refers to the baseline write-invalidate directory-
based cache coherence protocol as described in Sect. 3.2. Figures 7 and 8 show the
performance comparison between our proposed adaptive, hybrid protocol and the base.
However, PCA uses two variants to differentiate the static trigger mechanism (PCA–
ST) and the dynamic trigger mechanism (PCA–DT). PCBA is experimented with a
static 1,000-cycle Trigger Update latency. Results show improvements up to 48 %
with an average of 31 % for coherence misses as illustrated in Fig. 7. Coherence miss
reduction is directly proportional to the available producer-consumer sharing pattern
inside the given workload.

In general, our proposed optimizations provide performance gains proportional
to the available producer-consumer sharing pattern inside the given workload. As
such, Fig. 9 presents the percentage of LOADs that are part of a producer-consumer
sharing pattern to better interpret the performance results. This profiling analysis is
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Fig. 7 Improvement in coherence misses
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Fig. 9 Consumer pattern profiling

done by post-processing the memory traces of the applications obtained from our
simulation framework. Total execution time improvements may vary for different
architectural settings, but results demonstrate performance gains in all the applications
experimented. Since we manage to reduce the coherence misses, these performance
gains should even be higher for larger number of cores inside the chip where remote
miss latencies will have more severe affects.

5.3.1 Bandwidth Adaptivity Analysis

Figure 10 shows results from our performance evaluation of the bandwidth adap-
tive mechanism. Results from four different workloads; NPB CG, NPB LU, Ocean,
and Cholesky are presented with varying link bandwidth characteristics. Performance
results for each link bandwidth value is normalized to the worst result for that spe-
cific link bandwidth. Experiments vary the static link bandwidth between 400 and
4,000 MB/s (The chip bi-directional cross-section bandwidth varying from 3.2 to
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Fig. 10 Bandwith adaptivity results a NPB CG. b. ocean cont. c cholesky. d NPB LU

32 GB/s). One thing to note here is the fact that our simulator is based on an in-
order SPARC core. Accordingly, bandwidth utilization in such a system is lower than
most of the contemporary systems. To compensate this, we vary our tests in a way to
throttle the links in terms of bandwidth to create a scenario that can happen with a
more aggressive out-of-order processor under larger link bandwidths. The goal is to
check whether PCBA can help when there is a network congestion in the system by
dynamically adapting and cutting off any update optimizations which tend to generate
more traffic than simple invalidates. Comparison of PCA, PCBA and base protocols
clearly indicate how PCBA can adapt to low bandwidth situations and mitigate any
potential performance loss. Results show that a hybrid/adaptive protocol such as PCA
without a bandwidth-aware mechanism can suffer a performance degradation with
high interconnect utilization. PCBA performed up to 40 % better in low-bandwidth
scenarios as seen for the NBP CG case. Furthermore, when bandwidth is plentiful
PCBA performs similarly to PCA. The bandwidth-adaptive mechanism mostly lets
update optimizations to be triggered in such cases.

5.3.2 Sensitivity Analysis

In order to select the Trigger Update delay latency, we conducted a sensitivity analysis
for a wide range of delay cycles while running our workloads. Corresponding results
can be seen in Fig. 11. The y axes in the figures refer to the total execution time which
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Fig. 11 Update trigger delay sensitivity analysis. a Barnes. b FMM. c LU. d Ocean cont

is presented as Ruby cycles. Ruby is the detailed memory timing simulator inside
GEMS. On the x axes, different values, in cycles, for the update trigger delay are
shown. Although there are slight variations, 1,000 cycles is proven to be an optimal
value for most of the cases. However, some workloads tend to be insensitive for a
wide range of delay cycles. Hence, they are not included in the results. In addition,
our dynamic trigger update mechanism further optimizes this process, and makes the
choice of 1,000 cycles much safer.

5.3.3 Scalability Analysis

There are some limitations with the simulation infrastructure we utilized to scale
to large number of cores. Not only simulation times become extremeley long but
also there are architecutal constraints that prevent such runs. However, in order to
show results from larger number of cores, we developed a synthetic benchmark that
exhibits producer-consumer sharing. Then, we ran this benchmark without SIMICS
by just utilizing the GEMS memory timing simulator to get better understanding of
the scalability results. Figure 12 shows results from this experiments. It can be seen
that PCA outperforms the base write-invalidate protocol by 34 % while reducing the
coherence misses 46 %.
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6 Conclusions and Future Work

Cache coherence has been investigated heavily in the research community, but most
of the prior work targeted multiprocessor machines (MPs) comprised of multiple
single-core processors. With the advent of CMPs, cache coherence becomes a first-
order design issue at the chip level. Many constraints including interconnect, latency,
power, and energy differ in MP and CMP designs. In addition, most contemporary
cache coherence protocols use a write-invalidate policy which tends to generate a
high number of coherence misses. This can become a major performance bottleneck
as the number of cores inside a single chip increases. An adaptive cache coherence
protocol enables a solution that can perform well in many system configurations and
under different workloads. Thus, in this paper we propose a novel bandwidth adaptive,
hybrid cache coherence protocol that is optimized in accordance with the CMP specific
technological parameters to provide better performance. We presented adaptive mech-
anisms that can reduce coherence misses as well as can adapt to varying interconnect
utilization to avoid network congestions. Furthermore, the extra hardware cost needed
to implement such an adaptive mechanism is kept low at around 19 KB per core.

Experimental evaluation is conducted on a many-core tiled CMP via full-system
simulation. Performance analysis is presented on a set of scientific applications from
the SPLASH-2 and the NAS parallel benchmark suites. Results showed that the pro-
posed mechanisms reduce cache-to-cache misses up to 48 % by an average of 25 %
which in turn improves application performance up to 25 % by an average of 14 %. The
performance benefits have more impact as the number of cores increases which shows
34 % performance improvement while running a producer-consumer synthetic bench-
mark under a 256-core tiled CMP. In addition, bandwidth adaptive hybrid protocol
is proven to perform well under varying interconnect utilizations. For low-bandwidth
scenarios, our proposed protocol prevents any performance loss that might happen with
the write-update optimizations. In addition, when bandwidth is plentiful our proposed
solution outperforms the base directory protocol. One area of future work is to extend
this study on larger CMPs. Hierarchical policies can also be integrated to accommo-
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date the emerging many core systems and multi-CMP platforms. Additionally, more
aggressive prediction mechanisms can be evaluated.
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