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Abstract Optimizing Message Passing Interface (MPI) point-to-point communica-
tion for large messages is of paramount importance since most communications in
MPI applications are performed by such operations. Remote Direct Memory Access
(RDMA) allows one-sided data transfer and provides great flexibility in the design of
efficient communication protocols for large messages. However, achieving high point-
to-point communication performance on RDMA-enabled clusters is challenging due
to both the complexity in communication protocols and the impact of the protocol
invocation scenario on the performance of a given protocol. In this work, we analyze
existing protocols and show that they are not ideal in many situations, and propose
to use protocol customization, that is, different protocols for different situations to
improve MPI performance. More specifically, by leveraging the RDMA capability,
we develop a set of protocols that can provide high performance for all protocol invo-
cation scenarios. Armed with this set of protocols that can collectively achieve high
performance in all situations, we demonstrate the potential of protocol customization
by developing a trace-driven toolkit that allows the appropriate protocol to be selected
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for each communication in an MPI application to maximize performance. We evaluate
the performance of the proposed techniques using micro-benchmarks and application
benchmarks. The results indicate that protocol customization can out-perform tradi-
tional communication schemes by a large degree in many situations.

Keywords MPI · Point-to-point communication · Protocol customization

1 Introduction

Achieving high performance in Message Passing Interface (MPI) point-to-point com-
munication for large messages is of paramount importance since most communica-
tions in MPI applications are performed by such operations [22]. Traditionally, MPI
point-to-point communications of large messages are realized by the rendezvous pro-
tocols, which avoid data copies in the library, but require the sender and the receiver
to negotiate before data are communicated.

Contemporary system area networks such as InfiniBand [8] and Myrinet [18] sup-
port Remote Direct Memory Access (RDMA) that allows one-sided direct data trans-
fer. By allowing data transfer to be initiated by either the sender or the receiver,
RDMA provides great flexibility in the design of communication protocols. Much
effort has been made to use the RDMA capability to improve the rendezvous proto-
cols [23,25,27]. However, it is well known that existing protocols perform well in
some situations, but not all situations [25].

Achieving high performance communication for large messages on RDMA-enabled
clusters is challenging mainly for two related reasons. The first is the protocol com-
plexity. Since the data size is large, copying data introduces significant overheads and
should in general be avoided. Hence, all existing protocols are rendezvous protocols
with multiple rounds of control messages, which can result in various problems such
as unnecessary synchronizations and communication progress issues [5,21,23,25,27].
The second is the significant impact of the protocol invocation scenario on the perfor-
mance of a given protocol. MPI allows both the sender and the receiver to mark the
times when a communication can start (e.g. MPI_Isend/MPI_Irecv) and when a
communication must be completed (e.g. MPI_Wait). There are many combinations
of the relative timing of these events. We use the term protocol invocation scenario to
denote the timing of the events in a communication. As will be shown later, the pro-
tocol invocation scenario can significantly affect the performance of a given protocol;
and it is virtually impossible to design one scheme (even one that combines multiple
protocols [23,25]) that guarantees high performance for all scenarios.

In this work, we propose a protocol customization approach to overcome the lim-
itations in traditional MPI libraries. Instead of using the same protocol for any pro-
tocol invocation scenario as in a traditional MPI library, protocol customization uses
different protocols for different communications. The idea is to infer protocol invo-
cation scenario by some means such as program analysis, runtime analysis, profiling,
and trace analysis, and to select the most effective protocol for each communication
based on the protocol invocation scenario. This work focuses on trace-driven protocol
customization for deterministic communications where the information is obtained
by trace analysis. Non-deterministic communications with MPI_ANY_SOURCE and
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MPI_ANY_TAG are not considered in this work. In a recent work, we have applied a
limited form of protocol customization at runtime [16].

In order for protocol customization to be effective, (1) efficient communication
protocols must be designed for all invocation scenarios; and (2) techniques must be
developed to accurately determine protocol invocation scenarios. We analyze existing
protocols for communicating large messages on RDMA-enabled clusters and show
that they are not ideal in many situations. There exist protocol invocation scenarios
for which no existing protocol performs well. We develop a set of six protocols that
can deliver high performance for all protocol invocation scenarios by leveraging the
RDMA capability. These protocols form a foundation for protocol customization: one
of the six protocols can be selected to achieve high performance for any given sce-
nario. Armed with this set of protocols, we demonstrate the effectiveness of protocol
customization by developing a trace-driven protocol customization toolkit that auto-
matically selects the appropriate protocol for each communication in an MPI applica-
tion. We implement the set of six protocols and the trace-driven protocol customization
toolkit on InfiniBand and evaluate the performance using micro-benchmarks and appli-
cation benchmarks. The results indicate that protocol customization can significantly
improve MPI communication performance in many situations.

The rest of the paper is organized as follows. Section 2 discusses the related work.
Section 3 outlines protocol invocation scenarios and analyzes existing rendezvous pro-
tocols. In Sect. 4, we present the six customized rendezvous protocols. In Sect. 5, we
present our trace-driven protocol customization toolkit. Section 6 reports the experi-
mental results. Finally, Sect. 7 concludes the paper.

2 Related Work

The performance issues with rendezvous protocols including unnecessary synchro-
nizations, problems with communication progress, and limited opportunities for
overlapping communication and computation, have been observed in many studies
[1,11,21]. Various techniques have been developed to overcome these problems. The
techniques can be broadly classified into three types: using interrupts to improve
communication progress [1,24,27], using asynchronous communication progress to
improve communication–computation overlaps [12,13,15,28], and improving the
protocol design [5,21,23,25,27]. The interrupt driven message detection approach
[1,24,27] allows each party (sender or receiver) to react to a message whenever
the message arrives. The drawback is the non-negligible interrupt overhead. Asyn-
chronous communication progress allows communications to be performed asynchro-
nously with the main computation thread. This approach either needs a helper thread
[13,15,28] or requires additional hardware support [12]. Allowing communication
and computation overlaps with a helper thread incurs performance penalties for syn-
chronous communications. The third approach tries to improve the performance with
better protocols, which can benefit both synchronous and asynchronous communica-
tions [21,23,25,27].

All existing schemes perform well in some situations, but not all situations. The
closest work to this research is the Gravel library [5] that supports limited protocol
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customization with compiler and/or user support. Protocols in Gravel cannot provide
high performance for all scenarios while our protocols cover all cases. Another closely
related work is the dynamic MPI reconfiguration with application communication
characteristics [29]. In this work, a profiler is used to obtain application communi-
cation information, which is used to reconfigure the underlying byte-transfer layer in
Open MPI. Although this technique also reconfigures protocols based on application
information, the protocols were not designed to deal with different protocol invocation
scenarios. As a result, the techniques are very different from the one proposed in our
work. For example, the technique in [29] is not concerned with the relative timing of
communication events, which is the focus of our work. The work [7] uses timing of
communication events to optimize collective communications. This work applies to a
similar approach to point-to-point communications.

3 Protocol Invocation Scenarios and Rendezvous Protocols

3.1 Protocol Invocation Scenarios

There are four critical events in each MPI point-to-point communication: (1) the time
when the sender can start the communication, which corresponds to the MPI_Isend
call at the sender side and will be denoted as SS, (2) the time when the sender must com-
plete the communication, which corresponds to the MPI_Wait (or MPI_Waitall)
call at the sender side and will be denoted as SW , (3) the time when the receiver can
start the communication, which corresponds to the MPI_Irecv call at the receiver
side and will be denoted as RS, and (4) the time when the receiver must complete the
communication, which corresponds to the MPI_Wait at the receiver side and will
be denoted as RW . Notations SS, SW, RS, and RW will be used to denote both the
events and the timing of the events. The sender may or may not have computations
between SS and SW ; and the receiver may or may not have computation between
RS and RW . When there are computations at those points, it is desirable to overlap
the communication with these computations. Note that high-end systems are usually
equipped with communication co-processors that allow communication and compu-
tation to progress simultaneously [3]. After SW , the sender is blocked and does not
perform any useful work until the communication is completed at the sender side.
Similar, after RW , the receiver is blocked and does not perform any useful work until
the communication is completed at the receiver side.

Let A, B ∈ {SS, SW, RS, RW }. We will use the notion A ≤ B to denote that
event A happens before or at the same time as event B, A = B to denote that event A
happens at the same time as event B, and A < B to denote that A happens before B.
Ordering events in one process is trivial: clearly, we have SS ≤ SW and RS ≤ RW .
Note that SS and SW happen at the same time in a blocking send call (MPI_Send);
1 and RS and RW happen at the same time in a blocking receive call (MPI_Recv).
For events in two processes, the order is defined as follows. Let event A happen in

1 According to the MPI specification, MPI_Send blocks until the user buffer can be reused. The definition
of SS and SW follows this convention.
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Fig. 1 The ordering of events in two nodes

process PA, and event B in process PB . A < B if after A, PA can notify B; and PB

will receive the notification before B. A = B denotes the case when each party does
not have time to deliver the notification (a control message) to other party before the
event in that party happens. Figure 1 shows the ordering of events in two processes.
Note that this ordering of events is theoretical and used to illustrate protocol invocation
scenarios and protocols. In practice, even if the relative timing is mis-predicted, the
communication will still be carried out as long as both sender and receiver agree on
the same protocol.

Since SS ≤ SW and RS ≤ RW , there are only six different orderings among
the four events in a communication: SS ≤ SW ≤ RS ≤ RW, SS ≤ RS ≤ SW ≤
RW, SS ≤ RS ≤ RW ≤ SW, RS ≤ RW ≤ SS ≤ SW, RS ≤ SS ≤ RW ≤ SW ,
and RS ≤ SS ≤ SW ≤ RW . However, the ordering of the communication events is
not the only factor that affects protocol design, the actual timing of the events also has
an impact as will be shown in the Sect. 4.

3.2 Existing Rendezvous Protocols and Their Limitations

In this paper, we assume that protocol operations are performed in MPI routines. All
major MPI implementations including MVAPICH [17] and Open MPI [20] use this
approach by default. Other schemes such as interrupt-driven communication [1,24,27]
and asynchronous communication progress [12,13,15,28] allow protocol operations
to be performed outside MPI routines. However, they have significant limitations as
discussed earlier, and are not considered.

There are three existing rendezvous protocols developed for RDMA-enabled sys-
tems, the traditional sender-initiated RDMA write-based protocol [14], the sender-
initiated RDMA read-based protocol [27], and the receiver-initiated protocol [21,23].
We will briefly introduce the protocols and discuss their limitations. Ideally, in a ren-
dezvous protocol, when both sender and receiver are ready for the communication,
that is, both SS and RS happen, data transfer should start to maximize the overlap
with the computations between SS and SW in the sender side and between RS and
RW in the receiver side. None of these protocols can achieve this in all cases. The
discussion of the limitations of sender-initiated RDMA write-based protocol can be
found in [26]. Here, we will give examples for the other two more recently developed
protocols.

An example of the sender-initiated RDMA read-based protocol [27] is shown in
Fig. 2a. In this protocol, the receiver responds to the SENDER_READY packet with
a RDMA read operation. After the RDMA read operation is completed, the receiver
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sends a FIN packet to the sender and completes the operation. The sender exits the
operation after it receives the FIN packet. This protocol suffers from some limitations
as shown in Fig. 2. In Fig. 2a, SS = RS. Using this protocol, since SENDER_READY
misses RS, data transfer cannot happen until RW , which is sub-optimal: ideally, the
data transfer should happen when both SS and RS happen, which in this case would
have allowed communication to overlap with computation. In Fig. 2b, RS < SS. With
this protocol, the receiver does nothing at RS and data transfer still happens at RW
instead of SS.

An example of the receiver-initiated protocol [21] is shown in Fig. 3. In this protocol,
the sender does nothing at SS if SS < RS. The receiver sends a RECEIVER_READY
packet to the sender, which carries the receiving buffer information. When the sender
gets this packet, it can directly deposit the data message into the receiver user space.
As shown in Fig. 3, when SS = RS, the protocol is not ideal as the data transfer starts
at SW .

There are cases that all existing protocols can only give sub-optimal performance
[26]. The protocol invocation scenarios can significantly affect the performance of a
given protocol: the performance penalties for the inefficient protocol can be very large
and depend on the program structure rather than the performance of the underlying
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communication system. Our performance study in Sect. 6.1 further demonstrates this.
Hence, protocol customization that allows the most effective protocol to be used for
each communication can potentially significantly improve the communication perfor-
mance in comparison to the traditional scheme that uses one protocol for all scenarios.
However, to effectively support protocol customization, new efficient protocols must
be developed for efficient communication in all scenarios.

4 Efficient Protocols for All Protocol Invocation Scenarios

We present protocols for communicating large messages that can deliver near-optimal
performance for all protocol invocation scenarios. We make the following assumptions:

• Data transfer cannot start unless both SS and RS happen. This is typical for sending
large messages: both sides must be ready for the data to be communicated.

• The delay (cost) associated with sending and receiving a control message is neg-
ligible. Note that relative to communicating large messages, the control message
overhead is small. For example, on our test system, a control message takes around
5 µs, while the transmission of a 500KB message takes around 450 µs, about 90
times of the control message. This assumption is for illustrating the protocols. In
the implementation, our models take control message overheads into considera-
tion.

• RDMA read and RDMA write have similar performance. This is to simplify the dis-
cussion: the difference can be easily accommodated in the communication models
for the protocols that are used for protocol selection.

• The sender can buffer the data message when necessary. Buffering at the sender
side, even for large messages, is practical since it does not require the excessive
per-pair buffers. However, buffering requires CPU time and memory and thus,
must be used with care. Hence, we further assume that buffering at the sender can
only be performed when the sender is blocked.

Let RE N D be the time when both SS and RS happen (the rendezvous time of
the communication), comm(msg) be the time to transfer the message with either
RDMA write or RDMA read, and copy(msg) be the time to make a local copy of the
message. Under the above assumptions, an ideal communication scheme should have
the following properties.

• It should start the data transfer at the earliest time, which is RE N D. Starting
the data transfer at the earliest time also maximizes communication–computation
overlaps. It follows that the receiver should complete the operation at RE N D +
comm(msg). Here, RE N D + comm(msg) is comm(msg) time after RE N D.

• When RE N D ≤ SW , the sender should send the message at RE N D and complete
the operation at RE N D + comm(msg).

• When SW < RE N D, the sender can buffer the data, use a control message to
notify the receiver about the buffer, and return from the operation. The receiver can
get the data from the buffer; and the buffer can be released in a later communication
operation after the receiver gets the data. Thus, in this case, the sender should
complete the operation at SW + copy(msg)
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• Given a message size, the copy time and transmission time of that message can be
estimated. The memory bandwidth and network bandwith at the message passing
layer can be obtained by empirical measurements. With the data in the system, the
copy time and transmission time can be estimated.

We note that this ideal communication scheme may not be optimal in that the com-
pletion times for the sender and the receiver may not be the earliest possible times in
all cases. For example, we do not consider the concurrency of sending data and copy-
ing data simultaneously. Improvements can be made by exploiting such concurrency.
Hence, we say that this ideal scheme is near-optimal. Our protocols are near-optimal
in the sense that, ignoring the control message overheads, they have the same com-
munication time as this ideal scheme.

Next, we will present our protocols for all protocol invocation scenarios. We
group all protocol invocation scenarios into three classes: SS < RS, SS = RS,
and RS < SS. For a SS < RS scenario, the sender arrives at the communication
earlier than the receiver: the sender can notify the receiver that it is ready for the
communication at SS and the receiver can get the notification at RS. Similarly, for a
RS < SS scenario, the receiver arrives at the communication earlier than the sender:
the receiver can notify the sender that it is ready for the communication at RS and
the sender can get the notification at SS. For a SS = RS scenario, the sender and the
receiver arrive at the communication at similar times: SS and RS are within one control
message time.

Let us first consider the scenarios with SS < RS. The scenarios in this class are
further partitioned into three cases with each case having a different protocol. The
three cases are: SS ≤ SW < SW + copy(msg) < RS ≤ RW, SS ≤ SW < RS(≤
SW +copy(msg)) ≤ RW , and SS < RS ≤ {SW and RW }. Here, SW +copy(msg)

is copy(msg) time after SW . In the case SS < RS ≤ {SW and RW }, SW and RW
both happen no earlier than RS and the order between SW and RW does not matter.

Figure 4a shows the scenario for SS ≤ SW < SW + copy(msg) < RS ≤ RW ,
where SW is much earlier than RS. Our protocol for this case, shown in Fig. 4b, is
called the copy_get protocol. In this protocol, the sender copies the message data to a
local buffer at SW . This does not directly increase the protocol execution time since
the sender is blocked for the communication and cannot do anything useful. However,

sender Receiver

SS
SW copy

RS

RW

(a) invocation scenario

sender Receiver

SS
SW copy

RS

RW
RDMA read

Done

Done

READY

(b) copy_get protocol

Fig. 4 SS ≤ SW < SW + copy(msg) < RS ≤ RW scenario and the copy_get protocol
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sender Receiver
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READY

SW partial copy
RS

Done

(b) copy_check_put protocol

uncopied data
copied data

FIN Done

Fig. 5 SS ≤ SW < RS(≤ SW + copy(msg)) ≤ RW scenario and the copy_check_put protocol

it requires additional memory to be reserved and creates additional traffic on the mem-
ory bus. After the data are copied, the sender issues to the receiver a READY message,
which contains the address of the local buffer and other related information to facilitate
the RDMA read from the receiver. The task in the sender side is completed; and the
sender can exit the operation. When the receiver gets the READYmessage, it performs
a RDMA read to obtain the data from the sender buffer. The sender side buffer must be
released at some point. Since this is a library buffer that the application will not access,
the information for the receiver to notify the sender that the buffer can be released
can be piggybacked in a later control message. The copy_get protocol leverages
the RDMA capability and allows the sender to complete the communication before the
receiver even arrives. For the sender, the operation completes at SW +copy(msg). The
data transfer starts at RE N D = RS and the receiver completes the communication at
RE N D + comm(msg). Hence, this protocol is near-optimal for both the sender and
the receiver.

Figure 5a shows the scenario for SS ≤ SW < RS(≤ SW + copy(msg)) ≤ RW ,
where sender blocks (SW ) slightly earlier than receiver arriving at the communication
(RS) with not enough time to copy the whole message. Our protocol for this case,
shown in Fig. 5b, is called the copy_check_put protocol. In this protocol, the sender
sends a SENDER_READY message to the receiver at SS. At SW , the sender starts
copying the message data to a local buffer while monitoring control messages from
the receiver. This can be implemented by repeatedly copying a small chunk of data and
checking the message queue. Like in the copy_get protocol, these operations do not
delay the useful computation further since the sender is blocked for the communication
and cannot do anything useful. When the receiver arrives at RS, it will receive the
SENDER_READY and send a RECEIVER_READY message, which should arrive at
the sender before the sender finishes making a local copy. When the sender gets the
RECEIVER_READY message, it sends partial data to the receiver while continuing
to copy the message concurrently. We will assume that the system knows the copy
and data transmission speeds and can determine the amount data to be copied and to
be transferred so that the combination of copied data and transferred data covers the
whole message and that the (partial) data copy and (partial) data transfer complete at
the same time. After that, the sender initiates the sending of the copied data and the FIN
packet, and then returns from the communication. The copied data will be released in

123



Int J Parallel Prog (2013) 41:682–703 691

a later communication operation. For this protocol, the sender completes the operation
before SW +copy(msg) since it returns after the message is partially copied (initiating
a communication does not take significant time). This is due to the concurrent sending
and copying data in the protocol. The data transfer starts at RE N D = RS and the
receiver completes the operation at RE N D + comm(msg). Hence, this protocol is
near-optimal.

For SS < RS ≤ {SW and RW } scenarios, the traditional sender-initiated RDMA
read-based protocol (Fig. 2) is near-optimal. Using this protocol, data transfer starts
at RE N D = RS; and both the sender and the receiver complete the communication
at RE N D + comm(msg).

Let us now consider the second class: SS = RS. This is one case when no exist-
ing rendezvous protocol is ideal. However, if trace/profile/static analysis can draw
the conclusion that SS and RS are within one control message time, the solution is
straight-forward: waiting for the corresponding control message at SS or RS. We will
call such protocols delayed sender-initiated protocols and delayed receiver-initiated
protocols. Figure 6a shows a delayed sender-initiated RDMA read-based protocol.
In this protocol, the receiver adds a delay time in RS (marked as RS(begin) and
RS(end) in Fig. 6a). During the delay, the receiver repeatedly polls the control mes-
sage queue waiting for the SENDER_READY message to arrive at RS so that data
transfer can start before the receiver leaves RS. Notice that the delay is less than
one control message time and the communication starts within one control message
time from RE N D. Hence, both the sender and receiver will complete the operation
at RE N D + comm(msg). Figure 6b shows the delayed receiver-initiated protocol
where the delay is added to the sender at SS.

Finally, for the third class where receiver arrives earlier than sender (RS < SS),
the receiver-initiated protocol (Fig. 3) can achieve near-optimal performance. Data
transfer starts exactly at SS = RE N D, which is the earliest time possible. Both
sender and receiver will complete the operation at RE N D + comm(msg), which is
the same as the ideal scheme.

5 Trace-Driven Protocol Customization

The protocols in the previous section collectively offer high performance for all pro-
tocol invocation scenarios: when the protocol invocation scenario information for a
communication can be derived, it is possible to select a protocol that is most effective
for the communication. To demonstrate the effectiveness of protocol customization,
we develop a trace-driven protocol customization toolkit that applies trace analysis
techniques to obtain the protocol invocation scenario information for each communi-
cation and select the appropriate protocol for the communication. We note that this
tool, which is designed for our protocol customization effectiveness study, has various
limitations. For example, it does not handle non-deterministic communications with
MPI_ANY_TAG and MPI_ANY_SOURCE.

Figure 7a shows the three components in the toolkit, an MPI profiler, a trace ana-
lyzer, and a customized MPI library. The MPI profiler uses the PMPI interface to
capture accurate timings and all parameters of MPI calls including the routine name,
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Fig. 7 Trace-driven protocol customization toolkit

message size, sender id, receiver id, tag, communicator, routine entry time, routine
exit time, etc, and store the information in trace files, one for each process. The trace
files contain information for all MPI point-to-point routines in the application. The
trace analyzer examines the traces, selects protocol for each communication for the
application based on the trace information, and generates protocol files, one for each
MPI process, that specify the communication protocol to be used by each (point-
to-point) communication of the application. The customized MPI library implements
the six protocols in Sect. 4 as well as the eager protocol for small messages for
InfiniBand clusters. The library supports MPI_Isend, MPI_Irecv, MPI_Send,
MPI_Recv, MPI_Wait, and MPI_Waitall. It has wrappers for MPI_Init and
MPI_Finalize to initialize and finalize data structures in the library. All six pro-
tocols and the eager protocol are incorporated in the communication progress engine
using a similar approach as that in our earlier work [25]. In the MPI_Init wrap-
per, the protocol file that specifies the protocol to be used for each communication is
loaded. The customized MPI library can co-exist with MVAPICH. MPI functions that
are not supported by our library can be realized by MVAPICH. Protocol customization
is performed in the trace analyzer, which we will discuss in more detail next.
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5.1 Trace Analyzer

Figure 7b shows the logic in the trace analyzer. After the analyzer reads all traces into
memory, it matches nonblocking calls (MPI_Isend and MPI_Irecv) with corre-
sponding blocking events (MPI_Wait and MPI_Waitall). For each non-blocking
send or receive call, the profiler stores the pointer to request; for each wait and waitall
call, the profiler stores the request pointer and count information. These information
are used to match non-blocking send and receive calls with wait and waitall operations.
The analyzer then matches sending calls with the corresponding receiving calls. After
that, the analyzer enters into a loop. In each iteration in the loop, the analyzer uses a
heuristic to determine a communication (matching send events and receive events) for
protocol selection. Once a communication is determined, the analyzer uses communi-
cation models that model the performance of the protocols and select a protocol based
on a performance criterion. After the protocol is determined for a communication, the
exit time for communication blocking events are updated based on the communica-
tion model, along with the timings for the nonblocking events following the blocking
events with updated times (before another blocking event in the process). Notice that
different protocols will result in different exit times for the blocking events in a com-
munication, which in turn affect the timing of the communication events after them.
The time adjustment step accommodates this effect. After the time adjustment, the
loop is repeated until protocols are selected for all communications.

We note that the time adjustment may accumulate prediction errors, which in turn
can result in errors in protocol selection. We emphasize that the relative timing of
communication events is mainly determined by the computation workload in each
process. Although prediction in our tool may have cascading errors, their impact on
communication timing is secondary as compared to the workload. In Sect. 6.2, we
study the protocol selection accuracy of the tool and find that the protocol selection
is mostly accurate, with the prediction accuracy ranging from 95.0 to 98.1 % in five
benchmarks used in our experiments. This demonstrates that the time adjustment in
the tool is sufficiently accurate for a class of applications such as those used in our
experiments. In cases when the prediction results significantly deviate from the actual
execution, some dynamic runtime approach may be needed to address this problem,
which is beyond the scope of this paper.

Determining a communication for protocol selection The analyzer uses a heuristic to
choose a communication (the matching send and receive events) for protocol selection,
one at a time. Since the selection of a protocol for a communication time will change
the exit times for the blocking events (and the times for other events after the blocking
events), the ideal order is to follow the global order of blocking events in the whole
program so that the protocol invocation scenario of a communication whose protocol
is determined earlier will not be affected by one that is selected later. However, this
ideal order is not possible due to the inter-dependence of the communication events
in different processes: when a protocol is selected for send events, the protocol is also
determined for the corresponding receive events in another process. Our system uses
the following heuristic that works well in practice: the unselected communication with
the smallest global starting time stamp for one of its blocking events is chosen.
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Communication models A protocol is selected for a communication based on the
estimated performance from our communication models for the protocols. The mod-
els assume the memory copy time and data/control message transmission time for
different message sizes are known. There are various models for message transmis-
sion time such as LogP [4]. To have high accuracy, our system uses a table based
approach: we measure the time for memory copy and network transmissions for mes-
sages (data and control) of sizes in power of two from 1 byte to 64 MB and establish
two tables. The times for other sizes are obtained by extrapolating the data points from
the table. The following notations are used in our model: the control message time is
cntl_t ime; the transmission time for message of size msg is comm(msg); memory
copy time for message of size msg is copy(msg). SS, SW, RS, and RW denote the
starting time of the corresponding events. The models try to estimate the sender and
receiver finishing times (times when the SW and RW events complete). We will use the
notion end_t ime to denote the communication completion time for both sender and
receiver. When communication is completely overlapped with computation, end_t ime
may be earlier than SW and RW : the communication can be completed before the
wait calls. In this case, the exit time for SW and RW should be the same as their
entry time. When end_time is later than SW and RW , it should be the exit time for
SW and RW .

The models basically emulate the behavior of the protocols in all protocol invoca-
tion scenarios. We will discuss the model for the sender-initiated RDMA-read based
protocol. The models for other protocols are similar. Figure 8 shows the model for the
sender-initiated RDMA-read based protocol. There are three different scenarios to cal-
culate the sender end time and the receiver end time. (1) If the initiate control message
arrives at the receiver side before RS(SS < RS), the transmission can start as soon as
the receiver arrives at RS. The sender end time is: end_t ime = RS + comm(msg) +
cntl_t ime and the receiver end time is: end_time = RS + comm(msg). Figure 8a
shows this case. (2) If the initiate control message arrives later than RS but earlier
than RW (RS ≤ SS < RW ), the transmission can start as soon as the receiver wait is
called (RW ). The sender end time is: end_time = RW + comm(msg) + cntl_t ime
and the receiver end time is: end_time = RW + comm(msg). Figure 8b shows this
case. (3) If the initiate control message arrives later than RW (RW ≤ SS), the receiver
is blocked and the transmission time depends on the sender. The sender end time is:
end_t ime = SS + cntl_time + comm(msg) + cntl_t ime and the receiver’s end
time is: end_t ime = SS + cntl_time + comm(msg). Figure 8c shows this case.

sender receiver

SS
cntl_time

cntl_time

comm(msg)

end_time

end_time
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RW

send end_time = RW + comm(msg)+cntl_time
recv end_time = RW+comm(msg) 

sender receiver
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cntl_time

RS
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comm(msg)

end_time
cntl_time
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recv end_time = SS+comm(msg)+cntl_time 

sender receiver
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send end_time = RS + comm(msg)+cntl_time
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RS <= SS < RW  SS < RS  RW <= SS(a) (b) (c)

Fig. 8 Model for the sender-initiated RDMA-read based protocol
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Notice that the sender and receiver end_time may depend on the timing for some of
the SS, SW, RS, and RW events. As such, Fig. 8 only shows events that are relevant
to the end_time. Notice also that the RDMA-read and RDMA-write time can be easily
incorporated into the model by replacing comm(msg) with the specific RDMA read
time or RDMA write time.

The models give the exit time of theMPI_Wait routine. To deal withMPI_Wait-
all that blocks a number of MPI_Isend’s, MPI_Irecv’s, we treat each communication
separately. The exit time for MPI_Waitall is determined only after the protocols
for all communications in the operation are selected. We accumulate the incoming and
outgoing transmissions for the process with each other parties and use the one with
the maximum time as its exit time.

Protocol selection Protocol selection assumes that SS, SW, RS, and RW are known.
With the models for all protocols, protocol selection seems trivial: for each com-
munication, using the model to decide the communication time for both sender and
receiver for each protocol and selecting the protocol with the best performance. There
are, however, some complications. First, since a communication involves two parties
(sender and receiver) at different processes, optimizing the performance could have
different meanings: (1) minimizing the effective communication time at the sender
side, (2) minimizing the effective communication time at the receiver side, and (3)
minimizing the total effective communication time (the sum of the sender side time
and receiver side time). The effective communication time is the time that commu-
nication routines take (the real time that the application spends on communications),
which excludes the communication time that is overlapped with computation. Each
of these options may result in better performance for an application depending on the
communication structure in the application. Our analyzer supports any of the three
options. In our experiments, minimizing the total communication is used and results
in good performance.

Another consideration in protocol selection is the robustness of each protocol.
As discussed in the previous section, each protocol offers high performance for the
protocol invocation scenario that the protocol is designed for. However, in the protocol
selection, the predicted protocol invocation scenario by our analyzer may not always
be accurate and the analyzer must cope with mis-prediction since using one protocol
in scenarios that the protocol is not designed for can cause penalty that is much higher
than other protocols. For example, the delayed rendezvous protocols will have much
higher overhead than other protocols and hence, should be used more cautiously. Our
protocol selection scheme takes this factor into account.

Using the models described in the previous section as well as our experiments, we
compare the robustness of each of the protocols. The copy_get protocol is more robust
than all other protocols for scenarios that a protocol is not designed for. Intuitively,
this is because the copy_get protocol eliminates the dependence from the receiver to
the sender. Hence, our analyzer uses the copy_get protocol as the default protocol and
selects other protocol only when the protocol invocation scenario can be determined
with sufficiently large error margins. It must be pointed out that the copy_get protocol
increases memory traffic (and buffer space requirement), it may not be ideal when the
number of cores per processor is large.
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6 Performance Study

We implemented the trace-driven protocol customization toolkit including the MPI
profiler, the trace analyzer, and the customized MPI library, for InfiniBand Clusters.
The evaluation is performed on an InfiniBand cluster with 16 compute nodes. Each
node is a Dell Poweredge 1950 with two 2.33 Ghz Quad-core Xeon E5345’s (8 cores
per node) and 8 GB memory. All nodes run Linux with the 2.6.9-42.ELsmp kernel.
The compute nodes are connected by a 20 Gbps InfiniBand DDR switch (CISCO
SFS 7000D). We compare the performance of protocol customization with that of
the default MVAPICH2-1.2.rc1, which uses the sender-initiated RDMA write-based
protocol for large messages. Since rendezvous protocols are designed for inter-node
communication, our protocol customization only optimizes inter-node communica-
tion. To show the effectiveness of the optimization, we run one process on each node
and all communications are inter-node.

We compare the performance of our scheme with that of MVAPICH (MVAPICH2-
1.2.rc1). To obtain the performance of a program with our scheme, we first run the
program linked with the MVAPICH library to collect communication traces. The trace-
analysis protocol customization tool then analyzes the traces and produces the protocol
file for each process. In the next run when the performance of our protocol customiza-
tion scheme is measured, our MPI library reads the protocol files at MPI_Init and
operates the specific protocol for each communication. We have experimented using
traces produced by protocols other than the default MVAPICH protocol including the
receiver-initiated protocol, the sender-initiated protocol and the copy_get protocol.
The performance of the protocol customization scheme is very similar to that using
the default MVAPICH to generate the traces. Hence, we conclude that our scheme is
not sensitive to methods to generate traces, and report results for traces generated with
MVAPICH.

6.1 Micro-Benchmark Results

We use a micro-benchmark to evaluate the performance of the libraries with different
protocol invocation scenarios. The micro-benchmark is shown in Fig. 9. In this bench-
mark, the time for 1000 iterations of the loop is measured. Inside the loop, a barrier
is first called to synchronize the sender and the receiver. After that, the sender per-
forms some computation comp1, calls MPI_Isend to start the send operation, performs
some more computation comp2, calls MPI_Wait to complete the send operation, and
performs some more computation comp3. Similarly, the receiver also performs some
computation comp4 after the barrier, calls MPI_Irecv to start the receive operation,
performs some more computation comp5, calls MPI_Wait to complete the receive
operation, and performs some more computation comp6. The message size and the
computation in between the communication routines are parameters. We will use the
notation (comp1, comp2, comp3, comp4, comp5, comp6) to represent the configu-
ration of the benchmark, where compX represents the unit of computation (in the unit
of a basic loop). For each computation, the larger the number is, the longer the com-
putation lasts. By changing the values of the parameters, the benchmark can create all
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Fig. 9 Micro-benchmark

protocol invocation scenarios. In the discussion, we will use notation C(compX) for
the time for compX units of computation, M(msize) for the time to transfer a message
of msize bytes, and copy(msize) for the time to copy a message of msize bytes. In
the experiment, C(X) + C(Y ) ≈ C(X + Y ), C(1) ≈ 18µs and M(100K B) ≈ 90µs.
This benchmark controls the protocol invocation scenarios for the communications
and allows the performance of a library with different protocol invocation scenarios
to be evaluated.

We perform experiments using this micro-benchmark with different protocol invo-
cation scenarios. Protocol customization consistently achieves higher performance.
In the following, we will show the results for three representative cases. The first
case has configuration (1, 1, 48, 30, 19, 1), which emulates the case when SS and
SW are much earlier than RS and RW as shown in Fig. 4a. The second case
has configuration (10, 30, 10, 10, 30, 10), which emulates the case when SS = RS
as shown in Fig. 2a. The third case has configuration (10, 20, 20, 1, 40, 9), which
emulates the case when RS < SS as shown in Fig. 2b. Note that for all cases,
both sender and receiver have a total of 50 units of computations, which translate
to roughly C(50) = 50 × 18 = 900 µs if both sides perform the computation
concurrently.

Results for configuration (1, 1, 48, 30, 19, 1) with different message sizes are
shown in Fig. 10a. Using the default rendezvous protocol in MVAPICH, there
is an implicit synchronization from RS to SW , which results in the computation
before RS (30 units) at the receiver and the computation after SW (48 units) at
the sender to be sequentialized. Hence, the total time for each iteration is roughly
M(msize) + C(30 + 48). On the other hand, with protocol customization, the most
effective protocol is the copy_get protocol in Fig. 4b. With this protocol, the total
time for each iteration is roughly copy(msize) + C(50), which is much better than
the result with the default MVAPICH as shown in Fig. 10a. Notice that copying data
introduces significant overheads as shown in the upward slope for the curve for our
scheme in Fig. 10a.

Results for configuration (10, 30, 10, 10, 30, 10) with different message sizes are
shown in Fig. 10b. This is the case when the READY messages from both sender
and receiver pass each other and no existing protocol is ideal as discussed in Sect. 3.
With the default MVAPICH protocol, data transfer is performed at SW (and RW ),
and no communication–computation overlap is achieved. The per iteration time is
thus roughly M(msize) + C(50): the time increases linearly with the message size
as shown in Fig. 10b. The most effective protocol for this situation is the delayed
receiver-initiated protocol shown in Fig. 6b. Using this protocol, the communication
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(a) (b)

Fig. 10 Micro-benchmark results

Fig. 11 Results for
configuration
(10, 20, 20, 1, 40, 9)

can be completely overlapped with computations between SS and SW at the sender
side and RS and RW at the receiver side; and the per iteration time is roughly C(50),
shown as a flat line in Fig. 10b.

Results for configuration (10, 20, 20, 1, 40, 9) with different message sizes are
shown in Fig. 11. This case emulates the situation at Fig. 2b. With the default
protocol, the communication starts at RW . Hence, the per iteration is roughly
C(41) + M(msize) + C(20) = C(61) + M(msize). Using the near-optimal receiver
initiated protocol, the communication is overlapped completely with computation and
the total time is roughly C(50).

These results demonstrate that by using near-optimal protocols for different sce-
narios, protocol customization avoids the performance penalties due to the mismatch
between the protocol and the protocol invocation scenarios and can achieve much
higher performance in comparison to traditional schemes in many cases. Moreover,
the improvement from protocol customization depends not only on the system com-
munication performance, but also on program structures.
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Table 1 Protocol selection accuracy

# of nodes # of comm. # of mis-prediction Selection accuracy (%)

BT (Class B) 4 9, 672 204 97.9

CG (Class B) 8 39, 520 1, 804 95.4

SP (Class B) 4 19, 272 514 95.0

sparsemm 4 240 11 95.4

jacobi 8 27, 356 514 98.1

6.2 Application Benchmark Results

We use five application benchmarks in the evaluation. Three benchmarks are from
the NAS parallel benchmarks [19]: BT, CG, and SP. We use the CLASS B and C
problem sizes for all of the three programs. The other two programs are jacobi and
sparsemm. The jacobi program uses Gauss–Seidel iterations to solve Laplace equa-
tions [10] on a 8K × 8K discretized unit square with Dirichlet boundary conditions.
The sparsemm is a message passing implementation of the sparse SUMMA sparse
matrix–matrix multiplication algorithm [2]. The program performs multiple times the
self multiplication of a sparse matrix stored in file G3_circuit.mtx from the Univer-
sity of Florida sparse matrix collection [6]. The matrix in G3_circuit.mtx is a sparse
1, 585, 478 × 1, 585, 478 matrix with 4,623,152 non-zero entries.

The execution of the benchmarks on our platform has fairly consistent timing results.
We run each benchmark with different communication protocols on different numbers
of nodes five times. The timing variation is very small for the programs. The run with
the largest standard deviation is CG class B on 8 nodes. The times are 25.38, 25.28,
25.28, 25.37, 25.36 s: the standard deviation is 0.05, less than 0.2 % of the mean value.
Since the time variation is small, we will report the performance using the average.

We first investigate the protocol selection accuracy of our trace-driven tool. Table 1
shows the number of large-message communications to which we apply protocol cus-
tomization, the number of mis-predicted communications, and the selection accuracy
for the programs. The number of mis-predicted communications is obtained by profil-
ing the programs with trace-driven protocol customization, and then re-examining the
timing of the communication events to determine if the selected protocols are still ideal
for the actual protocol invocation scenarios during execution. As can be seen from the
table, for the benchmarks that we consider, the protocol selection accuracy is very
high, ranging from 95.0 to 98.1 % for the programs. We believe that this is because
the timing of the communication events are mainly determined by the computation
load at each process, which is measured accurately in the trace and does not change
with different communication protocols. We note that using different communication
protocols will change the timing to a degree and that the time adjustment approach
that we use in the tool may accumulate errors. Such errors, however, are secondary
compared to effect of the computation load. This experiment validates to a degree the
techniques that we use in the trace-driven protocol customization tool.

Table 2 shows the total application times, total communication times, and the com-
munication improvement percentages using our protocol customization scheme over
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Table 2 Performance on 16 processes (one process per node)

MVAPICH Customization Comm. improve.
percentage

Total (s) Comm. (s) Total (s) Comm. (s)

BT (Class B) 79.32 4.12 76.31 1.29 219.4 %

CG (Class B) 14.64 2.09 14.18 1.70 23.0 %

SP (Class B) 41.7 2.95 40.04 1.32 123.5 %

BT (Class C) 321.79 10.06 315.7 3.95 154.7 %

CG (Class C) 35.78 3.44 35.22 3.07 12.1 %

SP (Class C) 181.23 6.76 177.2 2.75 145.8 %

sparsemm 16.35 12.75 10.51 6.92 84.2 %

jacobi 282.94 2.88 282.33 2.35 22.6 %

MVAPICH for the programs running on 16 processes (one process per node). The
communication time includes all Send, Isend, Recv, Irecv, Wait, and Waitall times,
which account for the majority of all communication times in these benchmarks. As
can be seen from the table, protocol customization achieves significant improvement
over MVAPICH for all the programs in terms of communication time. The reason
that protocol customization provides better performance for different programs are
different. For BT, SP, and jacobi, the main reason is that protocol customization can
explore the communication and computation overlapping opportunities better than the
traditional protocol. For sparsemm, the main reason is the use of the copy_get protocol
that eliminates the unnecessary synchronization from the sender to the receiver: the
computation load is not balanced in this sparse matrix–matrix multiplication program
and unnecessary synchronizations introduce large waiting time, which is reduced with
protocol customization. For CG, the performance gain is mainly from using a simpler
receiver initiated protocol to carry out the communication. As can be seen from the
table, although communication does not account for a large percentage of the total
application time in BT, CG, SP, and jacobi, the improvement in communication times
transfers into improvement of the total application time. For sparsemm, the total appli-
cation time is also significantly improved since the communication time dominates
this program.

To further confirm that protocol customization is the major factor for the improve-
ment, we run the benchmarks with major protocols including the default MVAPICH
protocol (traditional rendezvous protocol), the receiver-initiated protocol, the sender-
initiated RDMA read-based protocol, the copy_get protocol, and the profile driven
customization. Table 3 shows the communication times for the applications with dif-
ferent protocols. As can be seen from the table, different protocols result in different
communication times: this indicates that protocols have significant impact on the
communication performance and protocol customization is the major contributor for
the performance improvement in the study. Protocol customization achieves the best
performance among all the schemes for CG, SP, and jacobi, and is slightly worse
than the best scheme for BT and sparsemm. Under the theoretical perfect condition,
protocol customization should out-perform all other schemes: the fact that it some-
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Table 3 Communication time (s) with different protocols (one process per node)

# of nodes MVAPICH Recv_init Send_init Copy_get Customization

BT (Class B) 4 2.95 2.47 2.53 2.72 2.51

CG (Class B) 8 2.12 1.85 2.06 2.27 1.81

SP (Class B) 4 2.88 1.94 2.18 2.29 1.85

sparsemm 4 12.13 12.10 12.11 6.19 6.35

jacobi 8 5.08 4.90 4.83 5.46 4.67

times performs slightly worse than the best performing protocol can be attributed to
various inaccuracies in our tool. However, protocol customization significantly out-
performs each of the other protocols in different applications: it performs much better
than MVAPICH, the receiver-initiated protocol, and the sender initiated protocol on
sparsemm, and than copy_get on BT, CG, SP and jacobi. This demonstrates the strength
of protocol customization.

7 Conclusion

In this work, we investigate using protocol customization to optimize MPI perfor-
mance. We show that existing protocols for handling large messages are not ideal in
many cases and develop a set of protocols that can achieve near-optimal performance
for any protocol invocation scenario. Building upon the set of protocols, we demon-
strate the potential of protocol customization with a trace-driven protocol customiza-
tion toolkit that automatically selects an efficient protocol for each communication
based on the protocol invocation scenario information obtained through trace analysis.
Our evaluation with micro-benchmarks and application benchmarks demonstrates that
protocol customization can significantly improve MPI communication performance.
We point out that parallel programs in the future on massively parallel machines are
likely to be communication bound: protocol customization can be a very effective
communication optimization technique for such environments.
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