
Int J Parallel Prog (2013) 41:704–750
DOI 10.1007/s10766-013-0241-1

Predictive Modeling in a Polyhedral Optimization Space

Eunjung Park · John Cavazos · Louis-Noël
Pouchet · Cédric Bastoul · Albert Cohen ·
P. Sadayappan

Received: 3 April 2012 / Accepted: 5 February 2013 / Published online: 21 February 2013
© Springer Science+Business Media New York 2013

Abstract High-level program optimizations, such as loop transformations, are crit-
ical for high performance on multi-core targets. However, complex sequences of loop
transformations are often required to expose parallelism (both coarse-grain and fine-
grain) and improve data locality. The polyhedral compilation framework has proved to
be very effective at representing these complex sequences and restructuring compute-
intensive applications, seamlessly handling perfectly and imperfectly nested loops.

This article is an extended version of our work published at CGO’11 [43].

E. Park · J. Cavazos
University of Delaware, Newark, DE, USA
e-mail: epark@cis.udel.edu

J. Cavazos
e-mail: cavazos@cis.udel.edu

L. N. Pouchet (B)· P. Sadayappan
The Ohio State University, Columbus, OH, USA
e-mail: pouchet@cse.ohio-state.edu

P. Sadayappan
e-mail: saday@cse.ohio-state.edu

L. N. Pouchet
University of California Los Angeles, Los Angeles, CA, USA
e-mail: pouchet@cs.ucla.edu

C. Bastoul
LRI, University of Paris-Sud 11, Orsay Cedex, France
e-mail: cedric.bastoul@u-psud.fr

A. Cohen
INRIA Paris-Rocquencourt / ENS, Le Chesnay Cedex, France
e-mail: albert.cohen@inria.fr

123

Int J Parallel Prog (2013) 41:704–750 705

It models arbitrarily complex sequences of loop transformations in a unified mathe-
matical framework, dramatically increasing the expressiveness (and expected effec-
tiveness) of the loop optimization stage. Nevertheless identifying the most effective
loop transformations remains a major challenge: current state-of-the-art heuristics in
polyhedral frameworks simply fail to expose good performance over a wide range of
numerical applications. Their lack of effectiveness is mainly due to simplistic per-
formance models that do not reflect the complexity today’s processors (CPU, cache
behavior, etc.). We address the problem of selecting the best polyhedral optimizations
with dedicated machine learning models, trained specifically on the target machine.
We show that these models can quickly select high-performance optimizations with
very limited iterative search. We decouple the problem of selecting good complex
sequences of optimizations in two stages: (1) we narrow the set of candidate optimiza-
tions using static cost models to select the loop transformations that implement specific
high-level optimizations (e.g., tiling, parallelism, etc.); (2) we predict the performance
of each high-level complex optimization sequence with trained models that take as
input a performance-counter characterization of the original program. Our end-to-end
framework is validated using numerous benchmarks on two modern multi-core plat-
forms. We investigate a variety of different machine learning algorithms and hardware
counters, and we obtain performance improvements over productions compilers rang-
ing on average from 3.2× to 8.7×, by running not more than 6 program variants from
a polyhedral optimization space.

Keywords Loop transformation · Polyhedral optimization · Iterative compilation ·
Machine learning · Performance counters

1 Introduction

Numerous scientific and engineering compute-intensive applications spend most of
their execution time in loop nests that are amenable to high-level optimizations. Typical
examples include dense linear algebra codes (e.g. [4,6,57]) and stencil-based iterative
methods (e.g. [19,40,50]). Those applications are typically executed on multi-core
architectures, where the data access cost is hidden behind complex memory hier-
archies. High-level loop transformations are critical to achieving high performance
in such context to correctly exploit the various levels of parallelism (course-grained
versus fine-grained) available and to leverage the program’s data locality potential.
However, the best loop optimization sequence is program-specific and depends on the
features of the target hardware. Thus, tuning the high-level loop transformations is
critical to reach the best possible performance as illustrated by Pouchet et al. [44–46].

Although significant advances have been made in developing robust and expressive
compiler optimization frameworks, identifying the best high-level loop transformations
for a given program and architecture remains an open problem. Manually-constructed
heuristics are used to identify good transformations, but they rely on overly sim-
plified models of the machine. These simple static models are unable to char-
acterize the complex interplay between all the hardware resources (e.g., cache,
TLBs, instruction pipelines, hardware prefetch units, SIMD units, etc.). Moreover,

123

706 Int J Parallel Prog (2013) 41:704–750

optimization strategies often have conflicting objectives: for instance maximizing
thread-level parallelism may hamper SIMD-level parallelism and can degrade data
locality.

In the quest for performance portability, the compiler community has explored
research based on iterative compilation and machine learning to tune the compiler
optimization flags or optimization passes to find the best set of optimizations for
a given combination of benchmarks and target architectures. Although significant
performance improvements have been demonstrated [1,27,37,39], the performance
obtained has generally been limited by the optimizations selected for automatic tuning
and by the degrees of freedom available for exploration.

The polyhedral optimization framework has been demonstrated as a powerful alter-
native to traditional compilation frameworks. Polyhedral frameworks can optimize
a restricted, but important, set of loop nests that contain only affine array accesses.
For loops that are amenable to polyhedral compilation, these frameworks can model
an arbitrarily complex sequence of loop transformations in a single optimization step
within a powerful and unified mathematical framework [22,23,31,32,35,59]. The
downside of this expressiveness is the difficulty in selecting an effective set of affine
transformation coefficients that result in the best combination of tiling, coarse- and
fine-grain parallelization, fusion, distribution, interchange, skewing, permutation and
shifting [13,28,46,53].

Past and current work in polyhedral compilation has contributed algorithms and
tools to expose model-driven approaches for various high-level transformations,
including (1) loop fusion and distribution to partition the program into indepen-
dent loop nests, (2) loop tiling to partition (a sequence of) loop nests into blocks
of computations, (3) thread-level parallelism extraction, and (4) SIMD-level paral-
lelism extraction. There has been some recent limited success at developing analyt-
ical cost models to select good complex optimization sequences in the polyhedral
model. For example, Bondhugula et al. [8,9] proposed the first integrated heuris-
tic for parallelization, fusion, and tiling in the polyhedral model subsuming all the
above optimizations into a single, tunable cost-model. Individual objectives such as
the degree of fusion or the application of tiling can implicitly be tuned by minor ad-
hoc modifications of Bondhugula’s cost model. Nevertheless, it has been shown that
these simple static models are ineffective at systematically select the most effective
transformation on a range of numerical applications [46]. Previous work on iterative
compilation based on the polyhedral framework showed that there are opportunities
for large performance improvements over native compilers [3,44–46,53], signifi-
cantly outperforming compilation flag tuning, optimization pass selection, or opti-
mization phase-ordering. However, directly tuning the polyhedral transformation in
its original abstract representation remains a highly complex problem because the
search space is usually infinite. Despite progress in understanding the structure of this
space and how to bound its size [47], this problem remains largely intractable in its
original form.

We now summarize the contributions of the current article. We address the prob-
lem of effectively balancing the trade-off between data locality and various levels
of parallelism in a large set of high-level optimizations to achieve the best perfor-
mance. As a direct benefit of our problem formalization, we integrate the power of

123

Int J Parallel Prog (2013) 41:704–750 707

iterative compilation schemes with the expressiveness and efficiency of high-level
polyhedral transformations. Our technique relies on a training phase where numerous
possibilities to drive the high-level optimizer are tested using a source-to-source poly-
hedral compiler on top of a standard production compiler. We show how the problem
of selecting the best optimization criteria can be effectively learned using feedback
from the dynamic behavior of various possible high-level transformations. By cor-
relating hardware performance counters to the success of a polyhedral optimization
sequence we are able to build a model that predicts very effective polyhedral opti-
mization sequences for an unseen program. Our results show it is possible to achieve
solid performance improvements by using the high-level transformation that was pre-
dicted best by our model, improving performance on average by 2× up to 7× over
the native compiler. To the best of our knowledge, this is the first effort that demon-
strates very effective discovery of complex high-level loop transformations within the
polyhedral model using machine learning models. A performance that is close to the
search-space-optimal can be attained by evaluating no more than 6 optimized pro-
gram versions, using an iterative compilation approach. We explore different learning
algorithms for building our models and report their ability to predict good polyhe-
dral transformations. We observe that while no single algorithm is systematically the
best for all benchmarks, by combining models we can reach 8.7× average perfor-
mance improvement over the native compiler, by testing no more than 6 program
versions. Finally, we study feature reduction on our set of performance counters and
show that only a handful of counters is required to characterize programs for this
problem.

In Sect. 2, we first present details on the optimization space we consider before
analyzing the performance distribution of the considered search space in Sect. 3.
We present our machine learning approach to select good optimizations in Sect. 4.
Experimental results are presented in Sect. 5. We discuss related work in Sect. 6.

2 Optimization Space

We now present the optimization search space we consider in this work. Any candidate
optimization in this space can be automatically computed and applied on the input
program, thus producing a transformed variant to be executed on the target machine.
Deciding how to select an optimization in this space is the subject of the later Sect. 4.

2.1 Overview of the Approach

High-level loop transformations are crucial to effectively map a piece of code onto
a particular processor. Effective mapping typically requires the partitioning of the
computation into disjoint parts to be executed on different cores, and the transforma-
tion of those partitions into streams to be executed on each SIMD unit. In addition,
the way data is accessed by the code may need to be reorganized to better exploit
the cache memory hierarchy and improve communication costs. Addressing these
challenges for compute-intensive programs has been demonstrated to be a strength
of the polyhedral optimization framework. Several previous studies have shown how

123

708 Int J Parallel Prog (2013) 41:704–750

Table 1 High-level primitives considered in this work

High-level optimization Possible values

Loop fusion / distribution Max-fuse, smart-fuse, no-fuse

Loop tiling Tile size (one per tiled loop) :1 (no tiling), 32

Wavefronting On, off

Thread-level parallelization On, off

Pre-vectorization On, off

SIMD-level parallelization On, off

Register-tiling Unroll factors: 1 (no unrolling), 2, 4, 8

tiling, parallelization, vectorization, or data locality enhancement can be efficiently
addressed in an affine transformation framework [9,23,31,35,49,54].

High-level optimization primitives, such as tiling or parallelization, often require
a complex sequence of enabling loop transformations to be applied while preserv-
ing the semantics. As an example, tiling a loop nest may require skewing, fusion,
peeling, and shifting of loop iterations before it can be applied. A limitation of pre-
vious approaches, whether polyhedral-based [28,36] or syntactic-based [12], was the
challenge of computing the enabling sequence that was required to apply the main
optimization primitives. This led most previous work to be limited in applicability:
the enabling transformations were not considered in a separate fashion, so that trans-
formations such as tiling and coarse-grained parallelization could not be applied in
the most effective fashion.

We address this issue by decoupling the problem of selecting a polyhedral opti-
mization into two steps: (1) select a sequence of high-level optimizations, from the
set shown in Table 1, this selection being based on machine learning and feedback
from hardware performance counters; and (2) for the selected high-level optimiza-
tions, use static cost models to compute the appropriate enabling transformations. We
thus keep the expressiveness and applicability of the polyhedral model, while focusing
the selection decision only on the main transformations.

Table 1 shows the various high-level optimizations we consider and their parameter
range, they are each described in the following sections. For each of these high-level
optimizations, we rely on a polyhedral-based transformation framework to compute
any required enabling loop transformation. If such sequence of enabling loop trans-
formations exist, it will be found by the static model.

We remark that high-level transformations are by far not sufficient to achieve opti-
mal performance. Numerous low-level optimizations are also required, and chip mak-
ers such as Intel have developed extremely effective closed-source compilers for their
processors.

We consider such compilers as black-boxes, because of the difficulty in precisely
determining which optimizations are implemented and when. Technically, the loop
optimization stages of those compilers may interact with our source-level transforma-
tions in a detrimental way, by either altering the loop structure we generated, and/or
by becoming unable to apply a profitable loop optimization on the code we have

123

Int J Parallel Prog (2013) 41:704–750 709

generated. A typical example is SIMD vectorization, which may or may not be suc-
cessfully applied by the back-end compiler on the transformed program we generated,
even if the resulting program is indeed vectorizable. Consequently, our optimization
scheme may result in sub-optimal performance if for instance the compiler is unable
to apply SIMD vectorization on our transformed program while it was able to apply
it on the original program or some other variants. A precise and fine-grain tracking of
the back-end compiler optimizations applied would be required to avoid this potential
issue, but we have not addressed this problem in the present work. We also high-
light in Sect. 3 that indeed the optimal high-level transformation we generate must be
compiler specific. Our approach considers the back-end compiler as part of the target
machine, and we focus exclusively on driving the optimization process via high-level
source-to-source polyhedral transformations.

2.2 Polyhedral Model

Sequences of (possibly imperfectly nested) loops amenable to polyhedral optimization
are called static control parts (SCoP) [23,28] roughly defined as a set of (possibly
imperfectly nested) consecutive statements such that all loop bounds and conditionals
are affine functions of the surrounding loop iterators and global variables (constants
that are unknown at compile time but invariant in the loop nest). Relaxation of these
constraints to arbitrary side-effect free programs has recently been proposed [7], and
our optimization scheme is fully compatible with this extended polyhedral model.

Polyhedral program optimization involves the analysis of the input program to
extract its polyhedral representation, including dependence information and array
access patterns. These are defined at the granularity of the statement instance, that is,
an executed occurrence of a syntactic statement.

A program transformation is represented by an affine multidimensional sched-
ule. This schedule specifies the order in which each statement instance is executed.
A schedule captures in a single step what may typically correspond to a sequence
of loop transformations [28]. Arbitrary compositions of affine loop transformations
(e.g., skewing, interchange, multi-level distribution, fusion, peeling and shifting) are
embedded in a single affine schedule for the program. Every static control program
has a multidimensional affine schedule [23], and tiling can be applied by extending the
iteration domain of the statements with additional tile loop dimensions, in conjunction
with suitable modifications of the schedule [28].

Finally, syntactic code is regenerated from the polyhedral representation on which
the optimization has been applied. We use the state-of-the art code generator CLooG
[5] to perform this task.

We used the open-source polyhedral compiler PoCC1 for this paper, and we have
extended it for the purposes of enabling more effective model-based program trans-
formations.

1 http://pocc.sourceforge.net

123

http://pocc.sourceforge.net

710 Int J Parallel Prog (2013) 41:704–750

2.3 Loop Tiling

Tiling is a crucial loop transformation for parallelism and locality. It partitions the
computation into rectangular blocks that can be executed atomically. When tiling is
applied on a program, we rely on the Tiling Hyperplane method [9] to compute a
sequence of enabling loop transformations to make tiling legal on the generated loop
nests.

Two important performance factors must be considered for the profitability of tiling.
First, tiling may be detrimental as it may introduce complex loop structure and the
computation overhead may not be compensated by the locality improvement. This is
particularly the case for computations where data locality is not the performance bot-
tleneck. Second, the size of the tiles could have a dramatic impact on the performance
of the generated code. To obtain good performance with tiling, the data footprint of a
tile should typically reside in the L1 cache. The problem of selecting the optimal tile
size is known to be difficult and empirical search is often used for high-performance
codes [55,58,60]. To limit the search space while preserving significant expressive-
ness, we allow the specification of a limited number of tile sizes to be considered for
each tiled loop. In our experiments, we use only two possible sizes for a tile dimension:
either 1 (i.e., no tiling along this loop level) or 32. The total number of possibilities is
a function of the depth of the loop nest to be tiled: for instance, for a doubly-nested
loop we test rectangular tiles of size 1 × 1 (no tiling), 1 × 32, 32 × 1 and 32 × 32.

2.4 Loop Fusion/Distribution

In the framework used in the present paper, there is an equivalence between (i) maxi-
mally fusing statements, (ii) maximizing the number of tilable loop levels, (iii) max-
imizing locality and (iv) minimizing communications. In this seminal formulation,
Bondhugula proposed to find a transformation that maximizes the number of fused
statements on the whole program using an Integer Linear Program (ILP) encoding of
the problem [8]. However, maximally fusing statements may prevent parallelization
and vectorization, and the trade-off between improving locality despite reducing par-
allelization possibilities is not captured. Secondly, fusion may interfere with hardware
prefetching. Also, after fusion, too many data spaces may contend for use of the same
cache, reducing the effective cache capacity for each statement. Conflict misses are
also likely to increase. Obviously, systematically distributing all loops is generally not
a better solution as it may be detrimental to locality.

The best approach clearly depends on the target architecture, and the performance
variability of an optimizing transformation across different architectures creates a
burden in devising portable optimization schemes. Pouchet et al. showed that itera-
tive search among the possible fusion structures can provide significant performance
improvement [46,47]. However, to control the size of the search space we rely on
three specific fusion / distribution schemes that proved to be effective for a wide vari-
ety of programs. The three high-level fusion schemes we consider in this paper are:
(1) no-fuse, where we do not fuse at all; (2) smart-fuse, where we only fuse together
statements that carry data reuse and of similar loop nesting depth; and (3) max-fuse,

123

Int J Parallel Prog (2013) 41:704–750 711

where we maximally fuse statements. These three cases are easily implemented in the
polyhedral framework, simply by restricting the cost function of the Tiling Hyperplane
method to operate only on a given (possibly empty) set of statements.

Interaction with tiling. The scope of application of tiling directly depends on the fusion
scheme applied on the program. Only statements under a common outer loop may be
grouped in a single tile. Maximal fusion results in tiles performing more computations,
while smart fusion may result in more tiles to be executed, but with fewer operations
in them. The cache pressure is thus directly driven by the fusion and tiling scheme.

2.5 Wavefronting

When a loop nest is tiled, it is always possible to execute the tiles either in parallel
or in a pipeline-parallel fashion. Wavefronting is the transformation creating a valid,
pipeline-parallel schedule for the tiled execution. It is useful only to expose coarse-
grain parallelism between tiles, when the outer-most tile loop is not already sync-
free parallel. When wavefronting is turned on, the tile loops are modified to expose
parallelism at the expense of increasing the distance between reused elements. So,
there is a trade-off to the application of this transformation, and as such is part of our
high-level optimization choices. Additionally, we remark that wavefronting will not
be useful for a program where thread-level parallelism is not also useful.

2.5.1 Pre-Vectorization

The tiling hyperplane method finds a loop transformation that pushes dependences to
the inner loop levels, naturally exposing coarse-grain parallelism. Nevertheless, for
effective SIMD execution it is desirable to expose at least one level of inner parallelism.
The pre-vectorization stage modifies the affine schedule of the program (that is, the
transformation to be applied) so that the inner-most parallel loop dimension is sunk
into the inner-most loop dimension.

This approach can guarantee that the inner-most loop(s) of a program are sync-
free parallel, when the dependence permits. It has the advantage of enforcing the
parallelism of all loops at a given depth in the generated loop nest, for the entire
program. However this simple model shows significant limitations: no information
is taken into account regarding the contiguity of data accesses, a critical concern for
effective SIMD execution. Also, it works as a pre-pass before the code is transformed,
i.e., it does not take into account the changes in the loop structure that is going to be
generated by CLooG (our polyhedral code generator). Nevertheless, this model has
shown potential to increase the success of the new SIMD-level parallelization pass
that we have implemented in PoCC (detailed next).

2.5.2 SIMD-Level Parallelization

Our approach to vectorization extends recent analytical modeling results by Tri-
funovic et al. [54]. We take advantage of the polyhedral representation to restructure

123

712 Int J Parallel Prog (2013) 41:704–750

imperfectly nested programs allowing us to expose vectorization opportunities in inner
loops. The most important part of the transformation to enable vectorization comes
from the selection of which parallel loop is moved to the innermost position. The cost
model selects a synchronization-free loop that minimizes the memory stride of the data
accessed by two contiguous iterations of the loop [54]. This is a more SIMD-friendly
approach than simple pre-vectorization. We note however that this interchange may
not always lead to the optimal vectorization because of the limitations of the model or
may simply be useless for a machine which does not support SIMD instructions. In
addition, we have implemented this vectorization transformation pass on the generated
code after applying the tiling hyperplane method. Our algorithm operates on individ-
ual loop nests generated after the separation phase of CLooG and does not require to
have all loops at a given depth in the program to be vectorized in a similar fashion.
To achieve this, we benefit from the fact that programs generated by CLooG are also
polyhedral programs, that is we can re-analyze the transformed code and extract a
polyhedral representation from it. When SIMD vectorization is turned on, we mark
the vectorizable loops with ivdep and vector always pragmas to facilitate the
task of the compiler auto-vectorization.

2.5.3 Thread-Level Parallelization

Thread-level parallelism is not always beneficial, e.g., with small kernels that execute
few iterations or when it prevents vectorization. It is thus critical to be able to disable
thread-level parallelism in some instances. We have designed a specific optimization
pass in PoCC that analyzes the generated code, in a similar fashion to SIMD-level par-
allelization. It finds the outer-most parallel loop in each loop nest in the generated code
using automated scalar privatization techniques. When this optimization is turned on,
we use OpenMP to generate parallel code and insert a #pragma omp parallel
for above the outer-most parallel loop that was found.

2.5.4 Register Tiling

Loop unrolling is known to help expose instruction-level parallelism. Tuning the
unrolling factor can influence register pressure in a manner that is compiler and
machine-dependent. Register tiling, or unroll-and-jam, combines the power of
unrolling multiple permutable loops in the inner loop body. In our framework, register
tiling is performed as a post-pass considering only the inner-most two loops in a loop
nest, if they are permutable. We expose four different sizes for the unroll factor, which
is the same for both loops to be unroll-and-jammed: 1 (no unrolling), 2, 4 and 8.

2.6 Putting it All Together

A sequence of high-level optimizations is encoded as a fixed-length vector of bits,
referred to as T . To each distinct value of T corresponds a distinct combination of
the above primitives. Technically, on/off primitives (e.g., SIMD-level parallelization
and thread-Level parallelization) are encoded using a single bit.

123

Int J Parallel Prog (2013) 41:704–750 713

Non-binary optimizations such as the unroll factor or the tile sizes are encoded
using a “thermometer” scale. As an illustration, to model unroll-and-jam factors we
use three binary variables (x, y, z). The pair (0, 0, 0) denotes no unroll-and-jam, an
unroll factor of 2 is denoted by (0, 0, 1), an unroll factor of 4 is denoted by (0, 1, 1),
and unroll factor of 8 by (1, 1, 1). Different tile sizes are encoded in a similar fashion.
In our experiments, we only model the tile size on the first three dimensions (leading
to 9 possibilities), and use a constant size for T . Thus, for programs where the tiles
have a lower dimensionality, some bits in T have no impact on the transformation.

To generate the polyhedral transformation corresponding to a specific value of T ,
we proceed as follows.

1. Partition the set of statements according to the fusion choice (one in no-fuse,
smart-fuse or max-fuse);

2. Apply the Tiling Hyperplane method [9] locally on each partition to obtain a
schedule for the program that (a) implements the fusion choice, (b) maximizes the
number of parallel loops, and (c) maximizes the number of tilable dimensions [8]
on each individual partition;

3. Modify the schedule according to the pre-vectorization model, if pre-vector is
set, to expose inner parallel loops;

4. Modify the schedule to generate a wavefront parallel schedule, if wavefronting is
set.

5. Tile all tilable loop nests, if any, if tile is set. The tile sizes to be used are encoded
in T .

6. Extract the polyhedral representation of the generated code, for subsequent analy-
sis.

7. Apply the per loop nest SIMD-level parallelization pass, if set.
8. Apply the per loop nest thread-level parallelization pass, if set.
9. Perform register tiling, if register-tiling is set. The unroll factors to be used are

encoded in T .

Candidate Search Space. The final search space we consider depends on the program.
For instance, not all programs exhibit coarse-grain parallelism or are tilable. For cases
where an optimization has no effect on the final program because of semantic consid-
erations, multiple values of T lead to the same candidate code version. Nevertheless,
the applicability of those optimizations directly derives from the expressiveness of the
polyhedral model, which significantly improves over other existing frameworks.

The search space, considering only values of T leading to distinct transformed
programs, ranges from 91 to 432 in our experiments, out of 1152 possible combinations
that can be encoded in T .

3 Analysis of the Performance Distribution

We now present an extensive quantitative analysis of the performance distribution of
the search space of polyhedral transformations that we have built. Section 3.1 presents
the machines and benchmarks we experimented with. We then extensively discuss
the performance distribution for numerous benchmarks, machines and compilers,

123

714 Int J Parallel Prog (2013) 41:704–750

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350 400

S
pe

ed
up

 v
s.

 O
rig

in
al

 Unique program variants
(sorted by speedup for GCC 4.5)

covariance (Nehalem E 5620)

GCC 4.5
ICC 11.1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300 350 400

S
pe

ed
up

 v
s.

 O
rig

in
al

 Unique program variants
(sorted by speedup for GCC 4.5)

covariance (Core 2 Q9650)

GCC 4.5
ICC 10.1

Fig. 1 Performance distribution for covariance

providing experimental evidence of the specificity of the optimal transformation to
each of these three aspects.

3.1 Experimental Setup

We provide experimental results on two multi-core systems: Nehalem, a 2-socket 4-
core Intel Xeon 5620 (16 H/W threads) with 16 GB of memory, and Q9650, a single
socket 4-core Intel Quad Q9650 with 8 GB of memory. The back-end compilers used
for the baseline and all candidate polyhedral optimizations are Intel ICC with option
-fast and GCC with option -O3. ICC version 11.1 and GCC version 4.5 were used
for Nehalem, and ICC version 10.1 and GCC version 4.5 were used for Q9650. Thus,
we present results for four different machine-compiler configurations: (1) Nehalem-
ICC11.1 (2) Nehalem-GCC4.5 (3) Q9650-ICC10.1 and (4) Q9650-GCC4.5.

Our benchmark suite is PolyBench v2.1 [30] composed of 30 different kernels
and applications containing static control parts. The list of programs in PolyBench is
shown in Table 2. We used the reference datasets [30].

3.2 Overview of the Performance Distribution

We first propose to quantify the performance distribution, from the perspective
of determining the fraction of the search space that achieves better performance
than the original code, and the fraction that achieves a nearly optimal performance in
the considered space. Figure 1 plots, for all considered architectures and compilers,
the relative speedup (compared to the original program) achieved by each variants,
for the covariance benchmark. Figure 2 shows a similar plot for the fdtd-2d
benchmark.

First, we observe that the fraction of the search space which improves performance
is dependent upon the benchmark. covariance and fdtd-2d are two representative
benchmarks. For covariance the majority of the search space improves performance,
for both architectures and compilers. This means that a simple random approach is
likely to succeed in improving performance for this benchmark. For fdtd-2d and the

123

Int J Parallel Prog (2013) 41:704–750 715

Table 2 The 30 programs in PolyBench V2.1 were used for our training and testing of each prediction
model

Prog. Name Description

2mm 2 Matrix multiplications (D=A×B; E=C×D)

3mm 3 Matrix multiplications (E=A×B; F=C×D; G=E×F)

adi Alternating direction implicit solver

atax Matrix Transpose and Vector Multiplication

bicg BiCG sub kernel of BiCGStab linear solver

cholesky Cholesky decomposition

correlation Correlation computation

covariance Covariance computation

doitgen Multiresolution analysis kernel (MADNESS)

durbin Toeplitz system solver

dynprog Dynamic programming (2D)

fdtd-2d 2-D Finite different time domain kernel

fdtd-apml FDTD using anisotropic perfectly matched layer

gauss-filter Gaussian filter

gemm Matrix-multiply C = αA × B + βC

gemver Vector multiplication and matrix addition

gesummv Scalar, vector and matrix multiplication

gramschmidt Gram-Schmidt decomposition

jacobi-1D 1-D Jacobi stencil computation

jacobi-2D 2-D Jacobi stencil computation

lu LU decomposition

ludcmp LU decomposition

mvt Matrix vector product and transpose

reg-detect 2-D image processing

seidel 2-D Seidel stencil computation

symm Symmetric matrix-multiply

syr2k Symmetric rank−2k operations

syrk Symmetric rank−k operations

trisolv Triangular solver

trmm Triangular matrix-multiply

They are set of programs including computations used in data mining, image processing, and linear algebra
solvers and kernels

Nehalem architecture, the opposite pattern is observed where only a marginal fraction
of the space improves performance. This latter benchmark corresponds to the majority
of benchmarks, where usually a significant fraction of the space degrades performance.
Indeed, this result confirms that the search space we consider is very expressive and
that many of the high-level optimizations shown in Table 1 can actually decrease
performance if not parameterized properly.

More importantly, we observe for all cases that the fraction of the space which
achieves nearly optimal performance is extremely small, usually below 1 % of the

123

716 Int J Parallel Prog (2013) 41:704–750

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120

S
pe

ed
up

 v
s.

 O
rig

in
al

 Unique program variants
(sorted by speedup for GCC 4.5)

fdtd-2d (Nehalem E 5620)

GCC 4.5
ICC 11.1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120

S
pe

ed
up

 v
s.

 O
rig

in
al

 Unique program variants
(sorted by speedup for GCC 4.5)

fdtd-2d (Core 2 Q9650)

GCC 4.5
ICC 10.1

Fig. 2 Performance distribution for fdtd-2d

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300 350

S
pe

ed
up

 v
s.

 O
rig

in
al

 Unique program variants
(sorted by speedup for GCC 4.5)

gemm (Nehalem E 5620)

GCC 4.5
ICC 11.1

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

S
pe

ed
up

 v
s.

 O
rig

in
al

 Unique program variants
(sorted by speedup for GCC 4.5)

seidel (Nehalem E 5620)

GCC 4.5
ICC 11.1

Fig. 3 Performance distribution for gemm and seidel for the E-5620 machine

space. This pattern was observed for all benchmarks. This severely limits the ability
of any naive statistical model to discover the best performance in this space, thus
motivating our use of the powerful machine learning algorithms instead.

3.3 Variability Across Compilers

We now provide observations about the relative performance of similar transformations
when used for the same machine and benchmark, but with two different compilers.
Figures 3 and 4 plots, for the two machines, the performance distribution for gemm
and seidel using GCC and ICC, but sorted by increasing performance for GCC.

The most prominent feature of these plots is that the best performing optimized
variants for GCC (on the far right of the plots) are not the best performing variants
for ICC, and conversely. That is, the sequences of high-level optimizations achieving
the best performance differ for each compiler. This is particularly shown in Fig. 3 for
gemm or in Fig. 4 for seidel. This pattern is not systematic for all benchmarks, but
is dominant in our test suite. This can for instance be observed also in Figs. 1 and 2.
One of the main reason for these differences comes from the very fragile optimiza-
tion heuristics implemented in each compiler. The benefit of using our tool-chain to

123

Int J Parallel Prog (2013) 41:704–750 717

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 50 100 150 200 250 300 350

S
pe

ed
up

 v
s.

 O
rig

in
al

 Unique program variants
(sorted by speedup for GCC 4.5)

gemm (Core 2 Q9650)

GCC 4.5
ICC 10.1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100

S
pe

ed
up

 v
s.

 O
rig

in
al

 Unique program variants
(sorted by speedup for GCC 4.5)

seidel (Core 2 Q9650)

GCC 4.5
ICC 10.1

Fig. 4 Performance distribution for gemm and seidel for the Q-9650 machine

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200 250 300

S
pe

ed
up

 v
s.

 O
rig

in
al

 Unique program variants
(sorted by speedup for E5620)

adi (GCC 4.5)

E5620
Q9650

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200 250 300 350

S
pe

ed
up

 v
s.

 O
rig

in
al

 Unique program variants
(sorted by speedup for E5620)

syr2k (GCC 4.5)

E5620
Q9650

Fig. 5 Performance distribution for adi and syr2k using GCC 4.5

generate potentially effective transformations (e.g., tiling or register tiling) can break
the application of high-performance scalar optimizations by the native compiler. This
is because the transformed code to be compiled becomes syntactically more complex,
and fragile optimization cost models in the native compiler can be challenged by its
structure. Another reason comes naturally from the differences in optimizations being
implemented in each compiler and when they are applied. For instance, we have man-
ually observed instances where the cost model of GCC applies register tiling more
aggressively than ICC, thus making useless (if not detrimental) the application of
register tiling in our framework.

3.4 Variability Across Machines

We now present experimental evidence of the sensitivity of transformation sequences
to the target machine. In Fig. 5 we plot, for the same benchmark and the same compiler,
the performance distribution for both machines sorted by ascending performance for
Nehalem.

It is extremely interesting to observe that for both a stencil (adi) and a simple
linear kernel (syr2k), the best performing variant for one processor has significantly

123

718 Int J Parallel Prog (2013) 41:704–750

lower performance on the other. We remark that despite being two Intel x86 64 bits
processors, they significantly differ in design. The Q9650 is a Yorkfield dual-die
quad-core design based on the Core 2 duo microarchitecture, with 12MB of L2 cache.
The E5620 is a Westmere processor using the Nehalem microarchitecture, with hyper-
threading and 12MB of L3 cache. This machine has two processors, and thus has a total
of 16 H/W threads instead of 4 for the Q9650. And most notably, Intel made significant
changes on the E5620 adding a second-level branch predictor and translation lookaside
buffer and using the Intel QuickPath Interconnect for data transfers in place of the
slower Front Side Bus.

As a consequence, the relative impact of transformations such as vectorization, par-
allelism, or data locality is significantly changed. For instance, when there is a trade-off
between data locality and parallelization, a better and faster data cache hierarchy in the
Nehalem diminishes the need for our framework to focus on data locality improve-
ment (e.g., tiling), but more available threads makes the need to perform effective
parallelization for the Nehalem critical.

3.5 Sensitivity to Different Datasets

The best set of optimizations often depends on the program data, in particular when
the input data can significantly change the instructions executed by the program.
For instance, the sparsity of a matrix affects the number of floating point operations
in a sparse-matrix computation. Previous work investigated the use of standardized
datasets for arbitrary programs [14,26], and their impact on compiler optimization.

The present work focuses exclusively on static control programs, where the control
flow (and therefore the program instructions to be executed) can be fully determined
at compile-time. That is, SCoPs are not sensitive to the dataset content: for a given
input dataset size, the best optimization will be the same for any value of the elements
of this dataset. This is a strong benefit of focusing exclusively on SCoPs, as we are not
required to fine-tune the optimization sequence for different sets of inputs of identical
size.

3.5.1 Dataset Size

Despite a lack of sensitivity to the input data content, the total number of instructions
the program will execute still heavily depends on the dataset size, that is the number
of input data elements. We distinguish two features immediately depending on the
dataset size: (1) the ability to keep (most of) the data in cache, for smaller datasets;
and (2) the profitability of parallelization, when the cost of spawning threads is to be
compared with the total number of instructions to be executed.

We illustrate the following with a matrix-multiply example. For the first case, we
multiply matrices of size 8×8. The total dataset size for the three matrices (double)
is 1.5kB, and the total number of floating point operations is 1024. The data fits
fully in L1 data cache, and 512 SSE3 SIMD operations are required to execute the
vector operations corresponding to the complete computation. In this case, program
transformations such as tiling (for locality) and thread-level parallelization will clearly

123

Int J Parallel Prog (2013) 41:704–750 719

not improve the performance, because they address performance issues that are not
seen for this program. Considering now the same program, but operating on matrices
of size 1024 × 1024. The dataset size is now 25MB, and does not fit in the on-chip
data cache. The overhead of spawning threads is negligible in comparison of the
total number of operations to be executed. Therefore, optimizations such as tiling and
thread-level parallelization become highly profitable.

The results presented in the current Section are limited to a single dataset size,
the reference one for PolyBench 2.1 [30]. Depending on the benchmarks, the dataset
size can be L2 resident, L3 resident, or most of the time larger than L3. That is, the
benchmark set we have used spans most of the typical dataset size cases that can
arise. The workload also differs vastly from benchmark to benchmark, as shown in
Sect. 3.6 where for several benchmarks thread-level parallelization is not the optimal
transformation.

We also remark that the machine learning techniques described in Sect. 4 use a
hardware counters characterization of the input program to select the best transforma-
tion. Variation in the dataset size, and its implication in terms of data footprint and total
workload to be executed are fully captured by hardware counters. Our approach to
determine the best transformation is therefore robust to different dataset sizes, provided
we use a training set that correctly spans the various key problem sizes associated with
the profitability of each optimization. We remark that in the present work, we have
limited our study to only one problem size per benchmark, focusing exclusively on
out-of-L1 dataset sizes. These dataset sizes are representative of program which may
benefit from agressive loop transformations, the target of the present article. Comple-
mentary techniques such as versioning can be used to find the optimal transformation
for a few typical dataset sizes such as L1-resident, L2-resident, L3-resident and larger
than L3. Such technique has been successfully used in ATLAS for instance [57] and
is compatible with our approach.

3.6 Analysis of the Optimal Transformations

We conclude our analysis of the search space we consider by reporting, for both
machines, the high-level optimizations that are used for the best performing optimized
program variant obtained. Table 3 reports, for each benchmark and compiler, the
optimizations turned on for the best performance on Nehalem. Table 4 shows the
same data for the Q9650.

We observe interesting correlations between transformations. For instance, pre-
transformations for vectorization is always beneficial (or at least, not detrimental) when
using the SIMD-level parallelization pass. Wavefronting is useful for some stencils
which are tiled, but not all. For instance, wavefronting is not beneficial on Nehalem
for fdtd-apml. In contrast, wavefronting is always used in the best optimization for
stencils on the Q9650 machine, together with tiling.

The benefit of rectangular tiling is demonstrated in numerous benchmarks, such
as adi and dynprog for Q9650 or correlation and covariance for Nehalem. We
observe that contrary to what is expected, tiling all loops which carry data reuse does
not necessarily lead to the best performance. For instance, jacobi-1d-imper is not

123

720 Int J Parallel Prog (2013) 41:704–750

Table 3 Summary of the high-level optimizations used to achieve the best performance on Intel E-5620,
when using GCC 4.5 (g) or ICC 11.1 (i)

Fusion Tiling Parallelism SIMD Unroll-and-jam

M S N T1 T2 T3 W TLP Pre SLP 2 4 8

2mm g g g g g/i g g

3mm g/i g g g g/i g g

adi g g g g g/i

atax g g g g/i g

bicg g g g g/i g

cholesky g i g/i g

correlation i g g g/i g/i g/i

covariance g/i g g/i g/i g/i

doitgen g/i g/i g/i g/i

durbin g/i g/i

dynprog g/i

fdtd-2d g/i i

fdtd-apml g/i g g/i i

gauss-filter g/i g/i

gemm g/i g g g g/i g g

gemver g g/i g/i g/i g g g

gesummv g/i g/i g g/i

gramschmidt g/i g/i g/i g

jacobi-1d-imper g/i g/i g/i g/i g/i g

jacobi-2d-imper g/i

lu g/i

ludcmp i g g/i g

mvt g g g g/i g

reg_detect g g/i i i g i

seidel g/i g g g g/i i i g

symm g i g g/i g/i

syr2k g/i g/i g

syrk g g/i g

trisolv g/i g/i g/i g/i g/i g/i i

trmm i i g

For fusion, M corresponds to max-fuse, S to smart-fuse, and N to no-fuse. For tiling, T1 corresponds to
tiling the first dimension by 32, T2 the second by 32, and T3 the third by 32. For parallelism, W corresponds
to wavefronting and TLP to thread-level parallelization. For SIMD Pre corresponds to pre-vectorization
and SLP to SIMD-level parallelization. For unroll-and-jam, 2, 4 and 8 correspond to the unrolling factors
used

tiled, and for Nehalem, strip-mining the inner loop is the best choice for correlation
and covariance. This result is counter-intuitive, and its observation is a contribution
of our extensive analysis.

123

Int J Parallel Prog (2013) 41:704–750 721

Table 4 Summary of the high-level optimizations used to achieve the best performance on Intel Q9650,
when using GCC 4.5 (g) or ICC 10.1 (i)

Fusion Tiling Parallelism SIMD Unroll-and-jam

M S N T1 T2 T3 W TLP Pre SLP 2 4 8

2mm g g g g/i g g

3mm g/i g/i g g

adi i i i i g/i i

atax i i g

bicg i i g

cholesky g g/i g

correlation i g i i i g g g

covariance g i i g/i g g g

doitgen g/i g i i g/i g/i g/i

durbin i g/i i

dynprog i g i i i i

fdtd-2d g g/i g/i g/i g/i g

fdtd-apml g/i g i g g/i

gauss-filter i g i

gemm g/i g g/i g g/i g g

gemver g/i g/i g/i g/i g

gesummv i g/i g

gramschmidt i g g/i g/i

jacobi-1d-imper i i g

jacobi-2d-imper g/i g g g/i g/i g/i

lu g g g g g/i g g

ludcmp g/i g g/i g

mvt g i g g/i g/i g

reg_detect i g g g g/i g i

seidel g/i g g/i g/i g/i i i g

symm g/i

syr2k g/i g g g g/i

syrk g/i g g g g/i

trisolv i i i g/i

trmm i i g

The descriptions of the column headings can be found in the caption of Table 3

Building cost models for tiling is challenging, as illustrated by the difference in
dimensions to be tiled between compilers and between architectures. On the other hand,
as expected for Nehalem and for all but two benchmarks, thread-level parallelization
is part of the optimal transformation, and a naive heuristic could simply always apply
this optimization. This was expected as the number of available threads on Nehalem
is large (16 total), thus making coarse-grain parallelization a critical optimization for

123

722 Int J Parallel Prog (2013) 41:704–750

performance. Looking at Q9650 shows a very different trend, where for 7 out 30
benchmarks, thread-level parallelization is not optimal when using GCC. In addition,
GCC 4.5 does not have automatic OpenMP parallelization features turned on in -O3,
so it is clear that the compiler did not parallelize outer loops. This also confirms our
hypothesis that on Q9650, data locality and instruction-level parallelism are more
critical performance factors.

4 Selecting Effective Transformations

In this paper, we focus on the search of polyhedral optimizations with the highest
impact as described in Sect. 2. When considering a space of semantics-preserving
polyhedral optimizations, the optimization space can lead to a very large set of possible
optimized versions of a program [44]. We achieved a tremendous reduction in the
search space size using expert pruning when compared to these methods, but we still
have hundreds of sequences to consider. In this paper, we propose to formulate the
selection of the best sequence as a learning problem, and use off-line training to build
predictors that compute the best sequence(s) of polyhedral optimizations to apply to
a new program.

4.1 Characterization of Input Programs

In this work, we characterize the dynamic behavior of programs, by means of hardware
performance counters. Using performance counters abstracts away the specifics of the
machine, and overcomes the lack of precision and information of static characteristics.
Also, models using performance counter characteristics of programs have been shown
to out-perform models that use only static features of program [12].

A given program is represented by a feature vector of performance counters col-
lected by running the program on the particular target machine. We use the PAPI library
[38] to gather information about memory management, vectorization, and processor
activity. In particular, for all cache and TLB levels, we collect the total number of
accesses and misses, the total number of stall cycles, the total number of vector instruc-
tions, and the total number of issued instructions. All counter values are normalized
using the total number of instructions issued Table 5 lists the PAPI counters we have
used for this work.

4.2 Speedup Prediction Model

A general formulation of the optimization problem is to construct a function that
takes as input features of a program being optimized and generates as output one or
more optimization sequences predicted to perform well on that program. Previous
work [12,21] has proposed to model the optimization problem by characterizing a
program using performance counters. We use a prediction model originally proposed
by Cavazos et al. [11,20], but slightly adapted to support polyhedral optimizations
instead. We refer to it as a speedup predictor model.

123

Int J Parallel Prog (2013) 41:704–750 723

Table 5 Performance counters (PC): We collected 56 different performance counters available using PAPI
library to characterize a program

Category of PCs List of PCs selected

Cache line access CA-CLN, CA-ITV, CA-SHR

Level 1 cache L1-DCA, L1-DCH, L1-DCM, L1-ICA, L1-ICH,

L1-ICM, L1-LDM, L1-STM, L1-TCA, L1-TCM

Level 2 & 3 cache L2-DCA, L2-DCM, L2-DCR, L2-DCW, L2-ICA, L2-ICH, L2-ICM, L2-LDM,

L2-STM, L2-TCA, L2-TCH, L2-TCM, L2-TCR, L2-TCW, L3-TCA, L3-TCM

Branch related BR-CN, BR-INS, BR-MSP, BR-NTK, BR-PRC, BR-TKN, BR-UCN

Floating point DP-OPS, FDV-INS, FML-INS, FP-INS, FP-OPS, SP-OPS

Interrupt/stall HW-INT, RES-STL

TLB TLB-DM, TLB-IM, TLB-SD, TLB-TL

Total cycle or instruction TOT-CYC, TOT-IIS, TOT-INS

Load/store instruction LD-INS, SR-INS

SIMD instruction VEC-DP, VEC-INS, VEC-SP

Fig. 6 Our speedup prediction
model takes in two inputs. The
first input is a characterization of
the program consisting of a
feature vector F of performance
counters. The second input is a
set of possible optimizations
from the polyhedral
optimization space. The target
value for this predictor is the
speedup of a specific
optimization set T over baseline

This model takes as an input a tuple (F, T) where F is the feature vector of all
hardware counters collected when running the original program and T is one of the
possible sequence of polyhedral primitives. Its output is a prediction of the speedup
T should achieve relative to the performance of the original code. Figure 6 illustrates
the speedup prediction model.

We implemented the speedup prediction model by using six different machine
learning algorithms shown in Table 6 using Weka V3.6.2 [10]. For each machine
learning algorithm, we used the default settings, except for support vector machines
(SVM) and linear regression (LR). For the SVM and LR algorithms, we conducted
experiments to tune parameters of those algorithms.

The regression-based model demonstrates the relationship between dependent and
independent variables, and we can use this model to observe the dependent variables
according to the change of given independent variables. We used linear regression
to fit a predictive model to a dependent variable which is speedup of programs, and

123

724 Int J Parallel Prog (2013) 41:704–750

Table 6 The six machine learning algorithms we evaluated in this paper

Name Description

LR Linear regression

SVM Support vector machine (Regression using Normalized Polynomial Kernel)

IBk Instance-based learning using K-Nearest Neighbor and Euclidean Distance

K* Instance-based learning using Entropic Distance

M5P M5 model tree based learning

MLP Multi-layer perceptron

independent variables which are performance counters and the polyhedral optimization
sequence. Support vector machines (SVM) is a supervised machine learning algorithm,
used for both classification and regression, and it can apply linear techniques to non-
linear problems. First, an SVM algorithm transforms the training data into a linear
space by using kernel functions, and then it uses a linear classifier to separate data with
a hyperplane. SVMs not only finds a hyperplane to separate data, but it also finds the
best hyperplane, i.e., the maximum margin hyperplane, that gives the largest separation
of the data in the training examples from the set of all hyperplanes. IBk and K*
are instance-based learning algorithms that predict the classification of new instances
based on instances already classified in the memory. These types of algorithms assume
that similar instances belong to a similar class. IBk first selects the K-nearest neighbors
of a new instance, then selects the class of the neighbor that is closest amongst them [2].
We used Euclidean distance function of all the features to find the nearest neighbors, but
other distance functions can also be used, e.g., Manhattan distance. K* also selects from
instances already classified. It then chooses the class of the predominant instance, but
uses entropic distance. Entropic distance is defined as the complexity of transforming
one instance into another one [15]. M5P generates M5 model trees, which look like
conventional decision trees, but have linear regression functions at the leaf nodes. MLP
(MultiLayer Perceptron) is neural network classifier, and we used back propagation
to train the network.

4.3 Model Generation and Evaluation

We train a specific model for each target architecture, as the specifics of a machine (e.g.,
cache miss cost, number of cores, etc.) significantly influence what transformations
are effective for it. In addition, to evaluate the quality of machine learning algorithms
used, we train one specific model for machine.

A model is trained as follows. For a given program P in the training set, (1) we
compute its execution time E and collect its performance counters F ; (2) for all
possible sequences of polyhedral optimizations Ti , we apply the transformation to P
and execute the transformed program on the target machine, this gives an execution
time ETi , and the associated speedup STi = E/ETi ; (3) we train the model with the
entry (F, Ti) = STi . This is repeated for all programs in the training set. This is
illustrated in Fig. 7.

123

Int J Parallel Prog (2013) 41:704–750 725

Fig. 7 To train the model, we collect performance counters F from each program in training set. We also
collect the speedup for each optimization set Ti . We build the prediction model with F, Ti , and the associated
speedup over baseline for Ti

For a new input program, we first collect a feature vector of performance counters
from several runs of the program. Then, we use the model to predict the expected
speedup of each set of optimizations Ti . By predicting the performance of each possible
set, it is possible to rank them according to their expected speedup and select the set(s)
with the greatest speedup. This is illustrated in Fig. 8.

Each of our models must predict optimizations to apply to unseen programs that
were not used in training the model. To do this, we need to feed as input to our models a
characterization of the unseen program. We then ask the model to predict the speedup
of each possible optimization set Ti in our polyhedral optimization space, given the
characteristics of the unseen program. We order the predicted speedups to determine
which optimization set is predicted best, and we apply the predicted best optimization
set(s) to the unseen program.

Note in the experiments presented below, we use a leave-one-benchmark-out cross-
validation procedure for evaluating our models. That is, the six models (LR, SVM,
IBk, K*, M5P, or MLP) are trained on all program variants of each of the N − 1
benchmarks and evaluated on the program variants of the benchmark that was left out.

123

726 Int J Parallel Prog (2013) 41:704–750

Fig. 8 To use the model, we collect performance counters F for a given new program. We give F and an
optimization set T as input to model. The models produces a predicted speedup for each optimization set
Ti . This prediction can be used in both an non-iterative and iterative scenario

This procedure is repeated for each benchmark to be evaluated, that is, we construct
a different model for each program in our training set.

4.4 1-Shot and Multi-Model Evaluation

The models presented above output a single optimization sequence for an unseen
program. For the rest of the paper, we refer to this approach as a 1-shot model.

It is worth considering an empirical evaluation of several candidate optimization
sets, since a given model may not correctly predict the actual best optimization set
for a program. A typical source of misprediction comes from the back-end compiler:
depending on the input source code, the back-end compiler may perform different
optimizations. For example, we observed in our experiments that for the benchmark
2mm (computing two matrix multiplications tmp = A.B; output = tmp.C), the best
performance when using Intel ICC 11.1 is achieved when no tiling is applied by our
polyhedral compiler. We suspect this is because ICC performs specific optimizations
on this particular computation (matrix-multiply), since in this setup tiling 2mm to
make it L1-resident decreases the performance. However, another program with similar
hardware counter features may be compiled entirely differently by ICC, and as shown

123

Int J Parallel Prog (2013) 41:704–750 727

Table 7 Weka V3.6.2 Training and Testing time, for the various ML algorithms we have used

LR SVM IBk K* M5P MLP

Training 3–10 min 20–25 h 10–20 min 14–16 min 13–15 min 45–60 min

Testing 1–4 sec 30–80 sec 5–10 sec 10–16 sec 1–12 sec 2–10 sec

by our experiments even the same program is handled differently by ICC 11.1 and
ICC 10.1 on two different machines.

We propose to also evaluate an approach that combines the output of multiple
individual models. In contrast to the 1-shot model, which does not require to run
the transformed variant on the machine, we propose to resort to a small number of
iterative compilation steps. We call this second scheme multi-model, since we use
each optimization set that was predicted best by each individual 1-shot model. The
optimization set which has the best observed performance is retained as the output of
the compilation process.

5 Experimental Results

We now present extensive experimental results, using the platforms and benchmarks
detailed in Sect. 3.

5.1 Training and Testing Time

We report in Table 7 the training and testing time for the 6 ML algorithms we have used.
We recall that we have used Weka V3.6.2 [10], running on a Core2 Duo. The Training
operates on all the program variants generated for a set of N −1 benchmarks, out of N
benchmarks in our test suite. The Testing is done on all the variants of the benchmark
which was left out during training. Because of different numbers of variants for each
benchmark, we report the time range taken by the training and testing in Table 7.

5.2 Evaluation of the Machine Learning Models on Nehalem

We show in Tables 8 and 9 the performance of the six different machine learning
models we have evaluated using the 1-shot approach on the Nehalem machine. For
each benchmark, we report the maximal performance improvement over the original
code in the search space (Opt column). This improvement is relative to the performance
obtained by running the native compiler on the original code. We also report the
improvement obtained by a simple random method of generating an optimization
set (averaging the performance of 100 distinct random draws). (Random column).
Finally, we report the performance improvement achieved by the optimization set in
our search space that is predicted best by each model (columns LR to MLP). The
fraction (in percentage) of the optimal improvement is also reported.

123

728 Int J Parallel Prog (2013) 41:704–750

Ta
bl

e
8

T
hi

s
ta

bl
e

sh
ow

s
pe

rf
or

m
an

ce
im

pr
ov

em
en

to
n

th
e

In
te

lX
eo

n
E

56
20

(b
as

el
in

e:
G

C
C

4.
5

-O
3)

fo
r

th
e

1-
sh

ot
m

od
el

B
en

ch
m

ar
k

O
pt

R
an

do
m

LR
S

V
M

IB
k

K
*

M
5P

M
LP

2
m

m
25

.0
5×

5.
84

×(
23

%
)

25
.0

5×
(1

00
%

)
25

.0
5×

(1
00

%
)

25
.0

5×
(1

00
%

)
25

.0
5×

(1
00

%
)

25
.0

5×
(1

00
%

)
25

.0
5×

(1
00

%
)

3
m

m
28

.0
0×

5.
25

×(
18

%
)

20
.6

0×
(7

3
%

)
28

.0
0×

(1
00

%
)

27
.0

6×
(9

6
%

)
28

.0
0×

(1
00

%
)

25
.0

9×
(8

9
%

)
19

.4
0×

(6
9

%
)

ad
i

3.
45

×
1.

04
×(

30
%

)
2.

94
×(

85
%

)
0.

35
×(

10
%

)
2.

22
×(

64
%

)
1.

00
×(

29
%

)
2.

22
×(

64
%

)
3.

29
×(

95
%

)

at
ax

2.
17

×
0.

41
×(

18
%

)
1.

87
×(

86
%

)
0.

12
×(

5
%

)
1.

13
×(

51
%

)
0.

18
×(

8
%

)
1.

78
×(

81
%

)
0.

91
×(

42
%

)

bi
cg

2.
07

×
0.

48
×(

23
%

)
1.

89
×(

91
%

)
0.

95
×(

46
%

)
1.

19
×(

57
%

)
1.

17
×(

56
%

)
0.

95
×(

45
%

)
0.

95
×(

46
%

)

ch
ol

es
ky

1.
14

×
1.

08
×(

94
%

)
1.

14
×(

99
%

)
1.

13
×(

99
%

)
1.

14
×(

99
%

)
1.

14
×(

99
%

)
1.

14
×(

99
%

)
1.

13
×(

99
%

)

co
rr

el
at

io
n

19
.2

5×
5.

27
×(

27
%

)
10

.0
3×

(5
2

%
)

18
.8

2×
(9

7
%

)
18

.9
6×

(9
8

%
)

19
.2

5×
(1

00
%

)
18

.1
1×

(9
4

%
)

2.
79

×(
14

%
)

co
va

ria
nc

e
20

.9
8×

4.
64

×(
22

%
)

10
.2

2×
(4

8
%

)
19

.9
7×

(9
5

%
)

20
.0

1×
(9

5
%

)
20

.0
1×

(9
5

%
)

15
.1

5×
(7

2
%

)
15

.9
3×

(7
5

%
)

do
itg

en
20

.9
4×

5.
06

×(
24

%
)

6.
72

×(
32

%
)

18
.2

3×
(8

7
%

)
7.

96
×(

38
%

)
5.

85
×(

28
%

)
2.

50
×(

11
%

)
7.

96
×(

38
%

)

du
rb

in
1.

00
×

0.
99

×(
99

%
)

0.
99

×(
99

%
)

0.
98

×(
98

%
)

0.
99

×(
99

%
)

0.
99

×(
98

%
)

1.
00

×(
99

%
)

0.
99

×(
99

%
)

dy
np

ro
g

0 .
94

×
0.

55
×(

58
%

)
0.

84
×(

89
%

)
0.

44
×(

47
%

)
0.

58
×(

61
%

)
0.

68
×(

72
%

)
0.

69
×(

73
%

)
0.

55
×(

58
%

)

fd
td

-2
d

5.
17

×
0.

64
×(

12
%

)
0.

80
×(

15
%

)
0.

69
×(

13
%

)
5.

10
×(

98
%

)
5.

17
×(

10
0

%
)

5.
10

×(
98

%
)

1.
16

×(
22

%
)

fd
td

-a
pm

l
8.

21
×

2.
18

×(
26

%
)

3.
48

×(
42

%
)

7.
34

×(
89

%
)

6.
74

×(
82

%
)

6.
75

×(
82

%
)

7.
36

×(
89

%
)

7.
39

×(
90

%
)

ga
us

s-
fil

te
r

3.
45

×
1.

04
×(

30
%

)
1.

69
×(

49
%

)
2.

15
×(

62
%

)
1.

06
×(

30
%

)
1.

05
×(

30
%

)
2.

15
×(

62
%

)
2.

14
×(

62
%

)

ge
m

m
27

.7
6×

10
.2

1×
(3

6
%

)
19

.4
5×

(7
0

%
)

17
.9

5×
(6

4
%

)
26

.5
2×

(9
5

%
)

26
.5

2×
(9

5
%

)
10

.0
3×

(3
6

%
)

26
.5

2×
(9

5
%

)

ge
m

ve
r

7.
77

×
1.

92
×(

24
%

)
6.

57
×(

84
%

)
6.

57
×(

84
%

)
6.

58
×(

84
%

)
6.

58
×(

84
%

)
7.

58
×(

97
%

)
7.

77
×(

10
0

%
)

ge
su

m
m

v
2.

31
×

1.
03

×(
44

%
)

1.
59

×(
68

%
)

2.
10

×(
90

%
)

2.
16

×(
93

%
)

1.
58

×(
68

%
)

2.
18

×(
94

%
)

2.
04

×(
88

%
)

gr
am

sc
hm

id
t

25
.4

2×
9.

74
×(

38
%

)
25

.0
4×

(9
8

%
)

6.
83

×(
26

%
)

1.
00

×(
3

%
)

6.
80

×(
26

%
)

25
.0

4×
(9

8
%

)
21

.4
7×

(8
4

%
)

ja
co

bi
-1

d
2.

99
×

0.
53

×(
17

%
)

2.
66

×(
88

%
)

1.
00

×(
33

%
)

1.
00

×(
33

%
)

0.
46

×(
15

%
)

2.
66

×(
88

%
)

0.
07

×(
2

%
)

ja
co

bi
-2

d
6.

49
×

1.
06

×(
16

%
)

0.
58

×(
8

%
)

1.
91

×(
29

%
)

1.
91

×(
29

%
)

6.
49

×(
10

0
%

)
1.

69
×(

26
%

)
2.

78
×(

42
%

)

123

Int J Parallel Prog (2013) 41:704–750 729

Ta
bl

e
8

co
nt

in
ue

d

B
en

ch
m

ar
k

O
pt

R
an

do
m

LR
S

V
M

IB
k

K
*

M
5P

M
LP

lu
6.

20
×

0.
91

×(
14

%
)

0.
92

×(
14

%
)

0.
12

×(
1

%
)

6.
20

×(
10

0
%

)
6.

20
×(

10
0

%
)

3.
81

×(
61

%
)

3.
81

×(
61

%
)

lu
dc

m
p

1.
10

×
1.

06
×(

96
%

)
1.

04
×(

94
%

)
1.

00
×(

91
%

)
1.

10
×(

99
%

)
1.

10
×(

99
%

)
1.

10
×(

99
%

)
1.

05
×(

96
%

)

m
vt

13
.1

0×
3.

42
×(

26
%

)
11

.3
8×

(8
6

%
)

11
.2

9×
(8

6
%

)
11

.3
3×

(8
6

%
)

11
.3

4×
(8

6
%

)
6.

66
×(

50
%

)
1.

02
×(

7
%

)

re
g-

de
te

ct
1.

91
×

0.
82

×(
42

%
)

0.
59

×(
30

%
)

1.
00

×(
52

%
)

0.
24

×(
12

%
)

0.
24

×(
12

%
)

0.
58

×(
30

%
)

0.
40

×(
21

%
)

se
id

el
7.

10
×

1.
62

×(
22

%
)

0.
82

×(
11

%
)

1.
00

×(
14

%
)

1.
00

×(
14

%
)

0.
81

×(
11

%
)

0.
92

×(
13

%
)

0.
85

×(
12

%
)

sy
m

m
1.

01
×

1.
00

×(
99

%
)

1.
01

×(
99

%
)

1.
00

×(
99

%
)

1.
00

×(
99

%
)

1.
00

×(
99

%
)

1.
00

×(
99

%
)

1.
00

×(
99

%
)

sy
r2

k
9.

96
×

1.
99

×(
20

%
)

4.
22

×(
42

%
)

1.
76

×(
17

%
)

9.
92

×(
99

%
)

9.
94

×(
99

%
)

9.
94

×(
99

%
)

1.
00

×(
10

%
)

sy
rk

13
.5

4×
2.

83
×(

20
%

)
3.

83
×(

28
%

)
0.

76
×(

5
%

)
13

.2
9×

(9
8

%
)

13
.4

2×
(9

9
%

)
3.

21
×(

23
%

)
1.

29
×(

9
%

)

tr
is

ol
v

2.
01

×
0.

66
×(

32
%

)
1.

89
×(

94
%

)
0.

12
×(

5
%

)
1.

20
×(

59
%

)
0.

12
×(

6
%

)
1.

20
×(

59
%

)
1.

21
×(

60
%

)

tr
m

m
1.

35
×

0.
65

×(
48

%
)

0.
78

×(
57

%
)

1.
30

×(
96

%
)

1.
35

×(
10

0
%

)
0.

53
×(

39
%

)
1.

35
×(

10
0

%
)

1.
27

×(
94

%
)

A
ve

ra
ge

9 .
06

×
2.

46
×(

27
%

)
5.

69
×(

62
%

)
6.

00
×(

66
%

)
6.

83
×(

75
%

)
6.

98
×(

77
%

)
6.

24
×(

68
%

)
5.

44
×(

60
%

)

E
ac

h
of

si
x

m
ac

hi
ne

le
ar

ni
ng

m
od

el
s

ou
tp

er
fo

rm
s

R
an

do
m

fo
r

ea
ch

of
th

e
be

nc
hm

ar
ks

.W
e

ac
hi

ev
ed

up
to

77
%

of
O

pt
on

av
er

ag
e

by
us

in
g

th
e

K
*

m
od

el
.W

e
al

so
ob

se
rv

e
th

at
th

er
e

is
no

on
e

m
ac

hi
ne

le
ar

ni
ng

al
go

ri
th

m
th

at
is

th
e

be
st

fo
ra

ll
be

nc
hm

ar
ks

.F
or

ex
am

pl
e,

al
th

ou
gh

K
*

gi
ve

s
th

e
be

st
pe

rf
or

m
an

ce
im

pr
ov

em
en

ts
fo

rm
os

tb
en

ch
m

ar
ks

,
M

LP
pr

od
uc

es
th

e
be

st
m

od
el

fo
r

ad
ia

nd
S

V
M

pr
od

uc
es

th
e

be
st

m
od

el
fo

r
do

itg
en

123

730 Int J Parallel Prog (2013) 41:704–750

Ta
bl

e
9

T
hi

s
ta

bl
e

sh
ow

s
pe

rf
or

m
an

ce
im

pr
ov

em
en

to
n

th
e

In
te

lX
eo

n
E

56
20

(b
as

el
in

e:
IC

C
11

.1
-f

as
t)

fo
r

th
e

1-
sh

ot
m

od
el

B
en

ch
m

ar
k

O
pt

R
an

do
m

LR
S

V
M

IB
k

K
*

M
5P

M
LP

2
m

m
13

.3
7×

1.
42

×(
10

%
)

6.
43

×(
48

%
)

4.
44

×(
33

%
)

12
.8

4×
(9

6
%

)
13

.3
7×

(1
00

%
)

7.
80

×(
58

%
)

12
.8

4×
(9

6
%

)

3
m

m
13

.3
8×

1.
07

×(
8

%
)

3.
98

×(
29

%
)

4.
33

×(
32

%
)

13
.0

4×
(9

7
%

)
13

.3
5×

(9
9

%
)

7.
63

×(
57

%
)

13
.3

8×
(1

00
%

)

ad
i

3.
80

×
0.

69
×(

18
%

)
2.

56
×(

67
%

)
2.

57
×(

67
%

)
1.

09
×(

28
%

)
2.

60
×(

68
%

)
2.

60
×(

68
%

)
2.

60
×(

68
%

)

at
ax

2.
57

×
0.

63
×(

24
%

)
1.

95
×(

76
%

)
2.

56
×(

99
%

)
2.

18
×(

84
%

)
2.

56
×(

99
%

)
1.

17
×(

45
%

)
1.

17
×(

45
%

)

bi
cg

1.
71

×
0.

50
×(

29
%

)
1.

30
×(

76
%

)
1.

45
×(

85
%

)
1.

45
×(

85
%

)
1.

45
×(

85
%

)
0.

51
×(

29
%

)
1.

30
×(

76
%

)

ch
ol

es
ky

1.
04

×
0.

67
×(

64
%

)
1.

04
×(

99
%

)
0.

59
×(

57
%

)
1.

01
× (

97
%

)
1.

02
×(

97
%

)
0.

58
×(

55
%

)
1.

01
×(

97
%

)

co
rr

el
at

io
n

8.
47

×
1.

99
×(

23
%

)
4.

88
×(

57
%

)
7.

91
×(

93
%

)
8.

47
×(

10
0

%
)

8.
29

×(
97

%
)

1.
99

×(
23

%
)

8.
29

×(
97

%
)

co
va

ria
nc

e
9.

03
×

1.
96

×(
21

%
)

4.
99

×(
55

%
)

9.
03

×(
10

0
%

)
8.

87
×(

98
%

)
9.

03
×(

10
0

%
)

8.
87

×(
98

%
)

8.
78

×(
97

%
)

do
itg

en
12

.8
9×

2.
99

×(
23

%
)

3.
32

×(
25

%
)

0.
91

×(
7

%
)

12
.5

8×
(9

7
%

)
12

.5
8×

(9
7

%
)

10
.2

7×
(7

9
%

)
3.

26
×(

25
%

)

du
rb

in
1.

00
×

0.
99

×(
98

%
)

1.
00

×(
99

%
)

1.
00

×(
99

%
)

1.
00

×(
99

%
)

1.
00

×(
99

%
)

1.
00

×(
99

%
)

0.
99

×(
98

%
)

dy
np

ro
g

1.
14

×
0.

70
×(

61
%

)
0.

98
×(

86
%

)
0.

70
×(

61
%

)
0.

45
×(

39
%

)
0.

54
×(

47
%

)
0.

62
×(

54
%

)
0.

54
×(

47
%

)

fd
td

-2
d

1.
03

×
0.

09
×(

9
%

)
0.

18
×(

17
%

)
0.

02
×(

2
%

)
1.

01
×(

98
%

)
0.

13
×(

12
%

)
0.

21
×(

20
%

)
0.

13
×(

12
%

)

fd
td

-a
pm

l
5.

96
×

1.
62

×(
27

%
)

1.
58

×(
26

%
)

0.
90

×(
15

%
)

5.
83

×(
97

%
)

1.
58

×(
26

%
)

1.
57

×(
26

%
)

1.
76

×(
29

%
)

ga
us

s-
fil

te
r

8.
48

×
2.

63
×(

31
%

)
3.

69
×(

43
%

)
4.

41
×(

52
%

)
3.

40
×(

40
%

)
3.

40
×(

40
%

)
4.

41
×(

52
%

)
4.

18
×(

49
%

)

ge
m

m
13

.1
4×

2.
42

×(
18

%
)

4.
28

×(
32

%
)

2.
31

×(
17

%
)

7.
49

×(
57

%
)

11
.3

1×
(8

6
%

)
4.

35
×(

33
%

)
0.

88
×(

6
%

)

ge
m

ve
r

1.
74

×
0.

68
×(

39
%

)
1.

47
×(

84
%

)
0.

80
×(

45
%

)
1.

74
×(

10
0

%
)

0.
71

×(
41

%
)

0.
85

×(
48

%
)

0.
79

×(
45

%
)

ge
su

m
m

v
1.

05
×

0.
52

×(
49

%
)

0.
85

×(
81

%
)

0.
99

×(
94

%
)

0.
99

×(
94

%
)

0.
99

×(
94

%
)

0.
83

× (
79

%
)

0.
99

×(
94

%
)

gr
am

sc
hm

id
t

22
.2

7×
7.

77
×(

34
%

)
1.

76
×(

7
%

)
7.

18
×(

32
%

)
17

.7
7×

(7
9

%
)

7.
05

×(
31

%
)

22
.2

7×
(1

00
%

)
21

.5
9×

(9
6

%
)

ja
co

bi
-1

d
9.

07
×

1.
13

×(
12

%
)

9.
07

×(
10

0
%

)
0.

98
×(

10
%

)
0.

98
×(

10
%

)
0.

98
×(

10
%

)
0.

98
×(

10
%

)
0.

98
×(

10
%

)

ja
co

bi
-2

d
4.

18
×

0.
62

×(
14

%
)

0.
42

×(
10

%
)

0.
60

×(
14

%
)

0.
42

×(
10

%
)

0.
52

×(
12

%
)

0.
52

×(
12

%
)

0.
40

×(
9

%
)

lu
4.

72
×

0.
94

×(
20

%
)

0.
85

×(
18

%
)

0.
37

×(
7

%
)

0.
13

×(
2

%
)

0.
23

×(
4

%
)

0.
13

×(
2

%
)

4.
00

×(
84

%
)

lu
dc

m
p

1.
03

×
1.

00
×(

96
%

)
1.

03
×(

99
%

)
1.

03
×(

10
0

%
)

1.
01

×(
98

%
)

1.
03

×(
99

%
)

1.
01

×(
98

%
)

1.
01

×(
98

%
)

123

Int J Parallel Prog (2013) 41:704–750 731

Ta
bl

e
9

co
nt

in
ue

d

B
en

ch
m

ar
k

O
pt

R
an

do
m

LR
S

V
M

IB
k

K
*

M
5P

M
LP

m
vt

2.
06

×
0.

72
×(

35
%

)
1.

54
×(

74
%

)
0.

76
×(

36
%

)
2.

06
×(

10
0

%
)

2.
06

×(
10

0
%

)
1.

54
×(

74
%

)
0.

69
×(

33
%

)

re
g-

de
te

ct
1.

42
×

0.
66

×(
46

%
)

0.
49

×(
34

%
)

0.
35

×(
24

%
)

1.
03

×(
72

%
)

0.
98

×(
69

%
)

0.
91

×(
64

%
)

0.
38

×(
26

%
)

se
id

el
12

.3
4×

2.
45

×(
19

%
)

1.
05

×(
8

%
)

8.
48

×(
68

%
)

1.
00

×(
8

%
)

1.
00

×(
8

%
)

1.
21

×(
9

%
)

1.
01

×(
8

%
)

sy
m

m
1.

01
×

1.
00

×(
99

%
)

1.
00

×(
98

%
)

1.
01

×(
10

0
%

)
1.

01
×(

10
0

%
)

1.
01

×(
10

0
%

)
1.

01
×(

10
0

%
)

1.
00

×(
98

%
)

sy
r2

k
1.

00
×

0.
20

×(
20

%
)

0.
42

×(
42

%
)

1.
00

×(
99

%
)

1.
00

×(
10

0
%

)
1.

00
×(

10
0

%
)

1.
00

×(
99

%
)

0.
75

×(
74

%
)

sy
rk

1.
05

×
0.

19
×(

17
%

)
0.

19
×(

18
%

)
1.

05
×(

10
0

%
)

1.
05

× (
99

%
)

1.
05

×(
10

0
%

)
0.

16
×(

15
%

)
1.

05
×(

99
%

)

tr
is

ol
v

2.
74

×
0.

67
×(

24
%

)
0.

67
×(

24
%

)
0.

67
×(

24
%

)
0.

16
×(

5
%

)
0.

67
×(

24
%

)
2.

72
×(

99
%

)
0.

59
×(

21
%

)

tr
m

m
5.

38
×

0.
94

×(
17

%
)

0.
81

×(
15

%
)

1.
01

×(
18

%
)

0.
71

×(
13

%
)

1.
01

×(
18

%
)

1.
01

×(
18

%
)

0.
81

×(
15

%
)

A
ve

ra
ge

5.
60

×
1.

33
×(

23
%

)
2.

13
×(

38
%

)
2.

31
×(

41
%

)
3.

73
×(

66
%

)
3.

42
×(

61
%

)
2.

99
×(

53
%

)
3.

24
×(

57
%

)

T
hi

s
ta

bl
e

sh
ow

s
si

m
ila

r
re

su
lts

to
Ta

bl
e

8.
E

ac
h

of
si

x
m

ac
hi

ne
le

ar
ni

ng
al

go
ri

th
m

s
ou

tp
er

fo
rm

s
R

an
do

m
,r

ea
ch

in
g

up
to

3.
7×

sp
ee

du
p

w
ith

IB
k

m
od

el
.I

nt
er

es
tin

gl
y,

w
e

no
tic

e
th

at
th

e
M

LP
m

od
el

pe
rf

or
m

s
w

el
lf

or
IC

C
w

hi
le

it
w

as
th

e
w

or
st

m
od

el
fo

r
G

C
C

123

732 Int J Parallel Prog (2013) 41:704–750

5.2.1 Analysis

We observe that a very important performance improvement can be achieved with
the polyhedral optimization sets we consider, on average a speedup of 9× for GCC
and 5.6× for ICC, with peaks up to 28×. The range of the performance improvement
is wide: with GCC (ICC) as the back-end compiler, 7 (12) benchmarks shows an
improvement below 2×, while 10 (7) shows an improvement above 10×. We also
observe that for all benchmarks, there exists at least a polyhedral optimization set that
improves the performance.

Note that we have shown in Sect. 3 that for many benchmarks a vast majority
of optimization sets can decrease performance. This is confirmed using Random
where, choosing optimization sets randomly, we decrease performance compared to
the original code for 11 benchmarks when using GCC (17 for ICC) as the backend
compiler. Still, a simple random strategy increases performance on average by up to
2.5× using GCC. This is explained by the very large performance improvement that
can be obtained for some benchmarks where the majority of transformed variants
provide a solid improvement, such as 2mm or 3mm. Nevertheless, the fraction of
possible improvement achieved by a simple strategy such as Random remains very
low, i.e., around 25 % for both compilers.

We observe that each of the six machine learning models we evaluated outperform
Random, with K* reaching up to almost 7× performance improvement on average
with GCC and with IBk reaching to 3.73× with ICC. On average, both K* and IBk are
top two best models for both compilers. A very interesting observation is that none
of the models, including K*, performs consistently best for all benchmarks. Table 9
shows the ability of each model to successfully predict the best optimization set for
at least some benchmarks, while other models fail. That is, each model produces
the best improvement on at least one benchmark. As an illustration, K* using GCC
on gramschmidth does not provide an improvement, while LR produces an almost
optimal variant reaching 25.04× improvement (98 % of the maximal improvement
possible for this benchmark). Even MLP, the worst-performing model on average for
GCC, succeeds in finding the optimal variant for gemver, while all other models
fail at doing so. The effectiveness of the models on average differs depending on the
backend compiler used. For example, MLP using ICC performs well (it is the third
best model on average), while it is the worst model for GCC. Nevertheless LR and
SVM perform on average consistently worse than IBk and M5P, and K* performs
consistently best. We conclude this analysis by observing that for both compilers,
no model is able to guarantee, in one shot, to not decrease the performance of the
original code. K* significantly decreases the performance for 5 benchmarks for GCC
and 6 for ICC, while SVM decreases the performance for 11 benchmarks for both
compilers.

This motivates an approach we call the multi-model approach evaluated in Sect. 5.4,
which combines the predictions of multiple models to select a transformation. We show
in Sect. 5.4 that our multi-model approach decreases the performance for only one
benchmark on Nehalem, for both compiler, while providing substantial performance
improvements for the other benchmarks.

123

Int J Parallel Prog (2013) 41:704–750 733

5.3 Evaluation of the Machine Learning Models on Core 2 Quad

Tables 10 and 11 report, for all benchmarks, the performance of the models we have
evaluated in a similar fashion as in the previous section, but for the Q9650 machine.

5.3.1 Analysis

Similarly to the Nehalem machine, we observe that for most benchmarks and com-
pilers there exists at least one polyhedral transformation that achieves a performance
significantly better to the original code. Nevertheless the average maximal perfor-
mance improvement in our search space is lower with the Q9650 machine than on the
Nehalem. The Q9650 has a lower number of computing units available (less cores),
and thus the maximal improvement obtained by exploiting parallelism is reduced. Still,
a significant improvement is observed, from 3.7× on average for GCC to 4.6× for
ICC, with peaks up to 23×. The number of benchmarks for which there is little to no
improvement increased from Nehalem with up to 13 benchmarks having a speedup
lower than 2× for GCC.

Interestingly, comparing to the Nehalem, K* is not the best performing model on
average for the Q9650. M5P and IBk perform consistently better on average, and they
also reduce the number of benchmarks for which the performance is decreased by the
selected transformation. We also notice for the Q9650 that each model performs well
on a specific benchmark while the other models fail for that benchmark. For example,
LR chooses an optimization set that reaches 90 % of the maximal improvement for
2mm, while all other models fail to discover more than 34 % of the maximal improve-
ment for GCC. Similarly, MLP is the only model that finds the optimal optimization
set for fdtd-2d. This pattern is observed for several benchmarks.

We conclude this analysis by observing that similarly to the Nehalem results, the
models can decrease the performance of several benchmarks relative to not optimizing
the benchmarks with PoCC. For example, M5P decreases the performance for seven
benchmarks for both compilers. In contrast, the multi-model approach (discussed next)
significantly reduces the number of benchmarks it obtains worse performance on than
not using PoCC.

5.4 Multi-Model Evaluation

Table 12 reports the performance achieved by the multi-model approach for each
benchmark on each architecture/compiler pair. In contrast to the 1-shot approach,
which is a compile-time only approach, our multi-model approach requires six opti-
mized variants of the code to be executed on the target machine, corresponding to the
predicted optimization configurations from each of the six individual models. That
is, we optimize a benchmark with the optimization configuration predicted to give
the best speedup from each machine learning model. Then, we evaluate each of these
optimized variants of the benchmark and return the variant that gives the best speedup.

123

734 Int J Parallel Prog (2013) 41:704–750

Ta
bl

e
10

T
he

ta
bl

e
de

sc
ri

be
s

th
e

pe
rf

or
m

an
ce

im
pr

ov
em

en
tf

or
th

e
In

te
lQ

ua
d

Q
96

50
(b

as
el

in
e:

G
C

C
4.

4
-O

3)
fo

r
ou

r
1-

Sh
ot

m
od

el

B
en

ch
m

ar
k

O
pt

R
an

do
m

LR
S

V
M

IB
k

K
*

M
5P

M
LP

2
m

m
5.

82
×

2.
14

×(
36

%
)

5.
24

×(
90

%
)

0.
50

×(
8

%
)

1.
97

×(
33

%
)

1.
98

×(
34

%
)

1.
98

×(
34

%
)

1.
97

×(
33

%
)

3
m

m
10

.5
5×

1.
93

×(
18

%
)

8.
06

×(
76

%
)

8.
02

×(
76

%
)

9.
36

×(
88

%
)

7.
60

×(
72

%
)

1.
94

×(
18

%
)

4.
01

×(
38

%
)

ad
i

1.
37

×
0.

40
×(

29
%

)
0.

80
×(

58
%

)
1.

00
×(

72
%

)
1.

05
×(

76
%

)
1.

27
×(

92
%

)
0.

80
×(

58
%

)
1.

05
×(

76
%

)

at
ax

1.
02

×
0.

33
×(

32
%

)
0.

48
×(

47
%

)
0.

25
×(

24
%

)
1.

00
×(

97
%

)
1.

00
×(

97
%

)
0.

17
×(

17
%

)
0.

58
×(

57
%

)

bi
cg

1.
04

×
0.

24
×(

23
%

)
0.

39
×(

37
%

)
1.

00
×(

96
%

)
0.

39
×(

37
%

)
1.

00
×(

96
%

)
0.

55
×(

52
%

)
0.

35
×(

33
%

)

ch
ol

es
ky

1.
05

×
1.

03
×(

97
%

)
1.

02
×(

97
%

)
1.

01
×(

96
%

)
1.

02
× (

97
%

)
1.

02
×(

97
%

)
1.

02
×(

97
%

)
1.

02
×(

97
%

)

co
rr

el
at

io
n

14
.3

7×
4.

03
×(

28
%

)
7.

37
×(

51
%

)
0.

88
×(

6
%

)
13

.9
1×

(9
6

%
)

13
.1

0×
(9

1
%

)
13

.9
1×

(9
6

%
)

7.
17

×(
49

%
)

co
va

ria
nc

e
15

.4
3×

6.
36

×(
41

%
)

7.
76

×(
50

%
)

14
.4

4×
(9

3
%

)
8.

03
×(

52
%

)
7.

38
×(

47
%

)
14

.4
4×

(9
3

%
)

14
.4

4×
(9

3
%

)

do
itg

en
5.

75
×

2.
27

×(
39

%
)

4.
58

×(
79

%
)

4.
50

×(
78

%
)

4.
50

×(
78

%
)

0.
66

×(
11

%
)

2.
05

×(
35

%
)

4.
16

×(
72

%
)

du
rb

in
1.

00
×

0.
97

×(
97

%
)

0.
96

×(
95

%
)

0.
95

×(
95

%
)

0.
99

×(
98

%
)

0.
99

×(
98

%
)

0.
98

×(
98

%
)

0.
97

×(
97

%
)

dy
np

ro
g

0.
99

×
0.

55
×(

55
%

)
0.

28
×(

28
%

)
0.

36
×(

36
%

)
0.

80
×(

80
%

)
0.

22
×(

21
%

)
0.

46
×(

46
%

)
0.

19
×(

19
%

)

fd
td

-2
d

3.
78

×
1.

62
×(

42
%

)
1.

86
×(

49
%

)
2.

98
×(

78
%

)
2.

98
×(

78
%

)
1.

07
×(

28
%

)
1.

51
×(

39
%

)
3.

78
×(

10
0

%
)

fd
td

-a
pm

l
3.

53
×

1.
66

×(
46

%
)

2.
05

×(
58

%
)

2.
97

×(
84

%
)

0.
76

×(
21

%
)

2.
71

×(
76

%
)

2.
54

×(
72

%
)

1.
11

×(
31

%
)

ga
us

s-
fil

te
r

1.
44

×
0.

58
×(

40
%

)
0.

84
×(

58
%

)
0.

46
×(

32
%

)
1.

41
×(

98
%

)
0.

46
×(

31
%

)
0.

83
×(

57
%

)
0.

58
×(

40
%

)

ge
m

m
4.

21
×

1.
96

×(
46

%
)

3.
94

×(
93

%
)

3.
94

×(
93

%
)

3.
89

×(
92

%
)

3.
84

×(
91

%
)

3.
21

×(
76

%
)

3.
87

×(
92

%
)

ge
m

ve
r

2.
21

×
1.

01
×(

45
%

)
1.

66
×(

75
%

)
0.

20
×(

9
%

)
1.

74
×(

78
%

)
1.

74
×(

78
%

)
1.

36
×(

61
%

)
1.

60
×(

72
%

)

ge
su

m
m

v
1.

88
×

0.
78

×(
41

%
)

1.
02

×(
54

%
)

1.
08

×(
57

%
)

1.
08

×(
57

%
)

1.
39

×(
74

%
)

1.
42

× (
75

%
)

1.
41

×(
75

%
)

gr
am

sc
hm

id
t

7.
95

×
2.

39
×(

30
%

)
5.

24
×(

66
%

)
2.

89
×(

36
%

)
1.

00
×(

12
%

)
1.

19
×(

14
%

)
5.

79
×(

72
%

)
5.

85
×(

73
%

)

ja
co

bi
-1

d
1.

02
×

0.
19

×(
18

%
)

0.
17

×(
16

%
)

0.
07

×(
7

%
)

0.
32

×(
31

%
)

0.
19

×(
18

%
)

0.
19

×(
18

%
)

0.
17

×(
17

%
)

ja
co

bi
-2

d
2.

89
×

1.
21

×(
41

%
)

1.
46

×(
50

%
)

2.
28

×(
78

%
)

1.
35

×(
46

%
)

1.
53

×(
52

%
)

1.
32

×(
45

%
)

1.
29

×(
44

%
)

lu
3.

37
×

0.
30

×(
9

%
)

1.
12

×(
33

%
)

0.
17

×(
5

%
)

1.
16

×(
34

%
)

1.
16

×(
34

%
)

3.
36

×(
99

%
)

0.
16

×(
4

%
)

123

Int J Parallel Prog (2013) 41:704–750 735

Ta
bl

e
10

co
nt

in
ue

d

B
en

ch
m

ar
k

O
pt

R
an

do
m

LR
S

V
M

IB
k

K
*

M
5P

M
LP

lu
dc

m
p

1.
01

×
1.

00
×(

99
%

)
1.

00
×(

99
%

)
0.

99
×(

97
%

)
1.

00
×(

98
%

)
1.

01
×(

99
%

)
1.

00
×(

98
%

)
1.

00
×(

98
%

)

m
vt

2.
34

×
1.

32
×(

56
%

)
2.

01
×(

86
%

)
0.

62
×(

26
%

)
2.

19
×(

93
%

)
1.

77
×(

76
%

)
2.

01
×(

86
%

)
2.

01
×(

86
%

)

re
g-

de
te

ct
2.

50
×

0.
98

×(
39

%
)

1.
10

×(
44

%
)

0.
22

×(
8

%
)

0.
22

×(
8

%
)

1.
12

×(
44

%
)

1.
12

×(
44

%
)

0.
34

×(
13

%
)

se
id

el
2.

83
×

1.
11

×(
39

%
)

0.
85

×(
30

%
)

0.
84

×(
29

%
)

1.
00

×(
35

%
)

2.
38

×(
83

%
)

0.
69

×(
24

%
)

0.
85

×(
30

%
)

sy
m

m
1.

01
×

0.
99

×(
98

%
)

1.
00

×(
99

%
)

0.
99

×(
98

%
)

1.
00

×(
99

%
)

1.
00

×(
99

%
)

1.
00

×(
99

%
)

1.
00

×(
99

%
)

sy
r2

k
4.

14
×

1.
29

×(
31

%
)

2.
00

×(
48

%
)

1.
66

×(
40

%
)

2.
22

× (
53

%
)

2.
08

×(
50

%
)

1.
01

×(
24

%
)

2.
13

×(
51

%
)

sy
rk

3.
58

×
1.

35
×(

37
%

)
1.

97
×(

55
%

)
2.

71
×(

75
%

)
1.

24
×(

34
%

)
2.

86
×(

79
%

)
1.

22
×(

34
%

)
1.

24
×(

34
%

)

tr
is

ol
v

1.
00

×
0.

57
×(

57
%

)
0.

45
×(

45
%

)
1.

00
×(

99
%

)
0.

46
×(

46
%

)
0.

86
×(

85
%

)
0.

99
×(

99
%

)
0.

64
×(

63
%

)

tr
m

m
1.

02
×

0.
59

×(
57

%
)

0.
60

×(
59

%
)

0.
63

×(
61

%
)

0.
62

×(
60

%
)

0.
65

×(
63

%
)

0.
65

×(
63

%
)

0.
59

×(
57

%
)

A
ve

ra
ge

3.
67

×
1.

37
×(

37
%

)
2.

24
×(

61
%

)
1.

99
×(

54
%

)
2.

29
×(

62
%

)
2.

17
×(

59
%

)
2.

32
×(

63
%

)
2.

18
×(

59
%

)

W
e

ob
se

rv
e

th
at

ea
ch

of
m

ac
hi

ne
le

ar
ni

ng
m

od
el

s
ou

tp
er

fo
rm

s
R

an
do

m
.U

nl
ik

e
th

e
N

eh
al

em
re

su
lts

,w
e

ob
se

rv
e

th
at

th
e

K
*

m
od

el
is

no
tt

he
be

st
m

od
el

.A
lth

ou
gh

th
e

K
*

m
od

el
st

ill
gi

ve
s

go
od

pe
rf

or
m

an
ce

ov
er

al
l,

IB
k

an
d

M
5P

ou
tp

er
fo

rm
s

K
*

on
av

er
ag

e
w

hi
le

re
ac

hi
ng

a
sp

ee
du

p
of

up
to

2.
3×

123

736 Int J Parallel Prog (2013) 41:704–750

Ta
bl

e
11

T
he

ta
bl

e
de

sc
ri

be
s

th
e

pe
rf

or
m

an
ce

im
pr

ov
em

en
tf

or
th

e
In

te
lQ

ua
d

Q
96

50
(b

as
el

in
e:

IC
C

10
.1

-f
as

t)
fo

r
ou

r
1-

Sh
ot

m
od

el

B
en

ch
m

ar
k

O
pt

R
an

do
m

LR
S

V
M

IB
k

K
*

M
5P

M
LP

2
m

m
19

.5
1×

2.
14

×(
11

%
)

8.
65

×(
44

%
)

8.
69

×(
44

%
)

19
.5

1×
(1

00
%

)
8.

84
×(

45
%

)
7.

73
×(

39
%

)
8.

56
×(

43
%

)

3
m

m
24

.7
5×

1.
93

×(
7

%
)

11
.3

1×
(4

5
%

)
8.

85
×(

35
%

)
24

.6
8×

(9
9

%
)

24
.6

8×
(9

9
%

)
24

.7
5×

(1
00

%
)

24
.7

5×
(1

00
%

)

ad
i

1.
89

×
0.

40
×(

21
%

)
1.

32
×(

69
%

)
0.

31
×(

16
%

)
0.

94
×(

49
%

)
0.

23
×(

12
%

)
0.

60
×(

32
%

)
0.

27
×(

14
%

)

at
ax

2.
55

×
0.

33
×(

13
%

)
1.

32
×(

51
%

)
1.

28
×(

50
%

)
2.

10
×(

82
%

)
1.

79
×(

70
%

)
1.

00
×(

39
%

)
1.

83
×(

71
%

)

bi
cg

1.
57

×
0.

24
×(

15
%

)
0.

79
×(

50
%

)
0.

79
×(

50
%

)
1.

02
×(

64
%

)
1.

57
×(

10
0

%
)

1.
12

×(
70

%
)

1.
52

×(
96

%
)

ch
ol

es
ky

1.
10

×
1.

03
×(

93
%

)
1.

09
×(

99
%

)
1.

10
×(

99
%

)
1.

10
× (

10
0

%
)

0.
61

×(
56

%
)

1.
09

×(
99

%
)

1.
02

×(
92

%
)

co
rr

el
at

io
n

6.
63

×
4.

03
×(

60
%

)
4.

10
×(

61
%

)
5.

86
×(

88
%

)
6.

63
×(

10
0

%
)

2.
67

×(
40

%
)

6.
63

×(
10

0
%

)
4.

92
×(

74
%

)

co
va

ria
nc

e
5.

24
×

6.
36

×(
12

1
%

)
3.

28
×(

62
%

)
3.

69
×(

70
%

)
4.

22
×(

80
%

)
5.

24
×(

10
0

%
)

3.
58

×(
68

%
)

2.
92

×(
55

%
)

do
itg

en
2.

86
×

2.
27

×(
79

%
)

0.
80

×(
27

%
)

2.
05

×(
71

%
)

2.
05

×(
71

%
)

0.
80

×(
28

%
)

2.
09

×(
73

%
)

1.
19

×(
41

%
)

du
rb

in
1.

06
×

0.
97

×(
91

%
)

0.
77

×(
72

%
)

1.
01

×(
95

%
)

1.
00

×(
94

%
)

1.
00

×(
94

%
)

1.
04

×(
98

%
)

0.
77

×(
72

%
)

dy
np

ro
g

1.
76

×
0.

55
×(

31
%

)
0.

15
×(

8
%

)
0.

21
×(

12
%

)
0.

18
×(

10
%

)
0.

20
×(

11
%

)
0.

23
×(

13
%

)
0.

18
×(

10
%

)

fd
td

-2
d

3.
17

×
1.

62
×(

51
%

)
2.

56
×(

81
%

)
0.

80
×(

25
%

)
1.

03
×(

32
%

)
0.

81
×(

25
%

)
1.

08
×(

34
%

)
0.

81
×(

25
%

)

fd
td

-a
pm

l
2.

69
×

1.
66

×(
61

%
)

0.
53

×(
19

%
)

2.
63

×(
98

%
)

2.
63

×(
98

%
)

1.
36

×(
50

%
)

0.
35

×(
13

%
)

0.
59

×(
21

%
)

ga
us

s-
fil

te
r

4.
55

×
0.

58
×(

12
%

)
2.

01
×(

44
%

)
1.

30
×(

28
%

)
2.

20
×(

48
%

)
1.

22
×(

26
%

)
2.

85
×(

62
%

)
2.

05
×(

45
%

)

ge
m

m
2.

82
×

1.
96

×(
69

%
)

1.
40

×(
49

%
)

1.
11

×(
39

%
)

2.
50

×(
88

%
)

2.
53

×(
89

%
)

2.
53

×(
89

%
)

1.
62

×(
57

%
)

ge
m

ve
r

1.
47

×
1.

01
×(

68
%

)
1.

22
×(

83
%

)
1.

22
×(

83
%

)
0.

79
×(

53
%

)
0.

79
×(

53
%

)
0.

91
×(

61
%

)
0.

94
×(

63
%

)

ge
su

m
m

v
1.

75
×

0.
78

×(
44

%
)

0.
66

×(
38

%
)

0.
80

×(
45

%
)

1.
37

×(
78

%
)

1.
43

×(
82

%
)

0.
66

× (
38

%
)

0.
80

×(
45

%
)

gr
am

sc
hm

id
t

22
.9

4×
2.

39
×(

10
%

)
12

.0
9×

(5
2

%
)

4.
89

×(
21

%
)

1.
01

×(
4

%
)

1.
01

×(
4

%
)

7.
35

×(
32

%
)

4.
79

×(
20

%
)

ja
co

bi
-1

d
4.

71
×

0.
19

×(
4

%
)

2.
87

×(
60

%
)

3.
18

×(
67

%
)

0.
87

×(
18

%
)

2.
81

×(
59

%
)

3.
18

×(
67

%
)

2.
81

×(
59

%
)

123

Int J Parallel Prog (2013) 41:704–750 737

Ta
bl

e
11

co
nt

in
ue

d

B
en

ch
m

ar
k

O
pt

R
an

do
m

LR
S

V
M

IB
k

K
*

M
5P

M
LP

ja
co

bi
-2

d
6.

23
×

1.
21

×(
19

%
)

5.
44

×(
87

%
)

4.
02

×(
64

%
)

1.
25

×(
20

%
)

3.
02

×(
48

%
)

2.
72

×(
43

%
)

2.
72

×(
43

%
)

lu
3.

50
×

0.
30

×(
8

%
)

0.
23

×(
6

%
)

3.
50

×(
10

0
%

)
0.

84
×(

24
%

)
0.

72
×(

20
%

)
0.

84
×(

24
%

)
0.

84
×(

24
%

)

lu
dc

m
p

0.
98

×
1.

00
×(

10
2

%
)

0.
98

×(
99

%
)

0.
96

×(
97

%
)

0.
98

×(
99

%
)

0.
98

×(
99

%
)

0.
98

×(
99

%
)

0.
96

×(
97

%
)

m
vt

1.
92

×
1.

32
×(

68
%

)
1.

31
×(

68
%

)
1.

02
×(

52
%

)
1.

56
×(

81
%

)
1.

56
×(

81
%

)
1.

18
×(

61
%

)
0.

88
×(

45
%

)

re
g-

de
te

ct
1.

12
×

0.
98

×(
87

%
)

1.
03

×(
91

%
)

0.
92

×(
82

%
)

0.
61

×(
54

%
)

0.
82

×(
73

%
)

0.
62

×(
55

%
)

0.
98

×(
87

%
)

se
id

el
2.

37
×

1.
11

×(
47

%
)

0.
95

×(
39

%
)

1.
63

×(
68

%
)

1.
00

× (
42

%
)

1.
18

×(
49

%
)

1.
05

×(
44

%
)

1.
00

×(
42

%
)

sy
m

m
1.

02
×

0.
99

×(
96

%
)

1.
02

×(
99

%
)

1.
02

×(
99

%
)

1.
01

×(
99

%
)

1.
00

×(
98

%
)

1.
00

×(
98

%
)

1.
02

×(
99

%
)

sy
r2

k
1.

03
×

1.
29

×(
12

5
%

)
0.

03
×(

2
%

)
1.

01
×(

98
%

)
1.

01
×(

98
%

)
0.

19
×(

18
%

)
0.

11
×(

11
%

)
0.

28
×(

27
%

)

sy
rk

1.
08

×
1.

35
×(

12
4

%
)

0.
18

×(
16

%
)

0.
86

×(
79

%
)

0.
86

×(
79

%
)

0.
97

×(
89

%
)

0.
97

×(
89

%
)

0.
84

×(
77

%
)

tr
is

ol
v

3.
15

×
0.

57
×(

18
%

)
0.

52
×(

16
%

)
1.

30
×(

41
%

)
1.

00
×(

31
%

)
0.

51
×(

16
%

)
0.

49
×(

15
%

)
1.

00
×(

31
%

)

tr
m

m
1.

56
×

0.
59

×(
37

%
)

1.
56

×(
10

0
%

)
0.

99
×(

63
%

)
0.

99
×(

63
%

)
0.

67
×(

42
%

)
0.

78
×(

49
%

)
0.

99
×(

63
%

)

A
ve

ra
ge

4.
57

×
1.

37
×(

30
%

)
2.

34
×(

51
%

)
2.

23
×(

48
%

)
2.

90
×(

63
%

)
2.

37
×(

52
%

)
2.

65
×(

58
%

)
2.

46
×(

53
%

)

W
e

se
e

si
m

ila
r

re
su

lts
as

in
Ta

bl
e

10
.

R
an

do
m

is
no

t
ab

le
to

ou
tp

er
fo

rm
an

y
of

th
e

si
x

m
ac

hi
ne

le
ar

ni
ng

m
od

el
s.

T
he

M
5P

,
IB

k,
an

d
M

LP
m

od
el

s
gi

ve
pe

rf
or

m
an

ce
im

pr
ov

em
en

ts
fo

r
m

os
t

pr
og

ra
m

s
re

ac
hi

ng
up

to
2.

9×
.A

ls
o,

co
nt

ra
ry

to
th

e
re

su
lts

on
th

e
N

eh
al

em
ar

ch
ite

ct
ur

e,
th

e
M

5P
or

IB
k

m
od

el
is

th
e

be
st

m
od

el
on

th
e

Q
96

50
ar

ch
ite

ct
ur

e

123

738 Int J Parallel Prog (2013) 41:704–750

Table 12 This table shows the performance improvement of using the multi-model approach for all
configurations

Benchmark Nehalem-gcc Nehalem-icc Q9650-gcc Q9650-icc

2mm 25.05×(100.00 %) 13.37×(100.00 %) 5.24×(90.00 %) 14.36×(73.00 %)

3mm 28.00×(100.00 %) 13.38×(100.00 %) 9.32×(88.00 %) 24.75×(100.00 %)

adi 3.45×(100.00 %) 2.60×(68.00 %) 1.27×(92.00 %) 1.32×(69.00 %)

atax 1.87×(86.00 %) 2.57×(100.00 %) 1.00×(98.00 %) 2.55×(100.00 %)

bicg 1.89×(91.00 %) 1.45×(84.00 %) 1.04×(100.00 %) 1.57×(100.00 %)

cholesky 1.14×(100.00 %) 1.04×(100.00 %) 1.03×(98.00 %) 1.10×(100.00 %)

correlation 19.25×(100.00 %) 8.29×(97.00 %) 13.91×(96.00 %) 6.63×(100.00 %)

covariance 20.98×(100.00 %) 9.03×(100.00 %) 14.44×(93.00 %) 5.24×(100.00 %)

doitgen 18.23×(87.00 %) 12.58×(97.00 %) 4.69×(81.00 %) 2.09×(73.00 %)

durbin 1.00×(100.00 %) 1.00×(100.00 %) 0.99×(99.00 %) 1.04×(98.00 %)

dynprog 0.84×(89.00 %) 0.98×(85.00 %) 0.86×(86.00 %) 0.23×(13.00 %)

fdtd-2d 5.17×(100.00 %) 0.21×(20.00 %) 3.15×(83.00 %) 2.56×(80.00 %)

fdtd-apml 7.36×(89.00 %) 1.76×(29.00 %) 3.32×(94.00 %) 2.63×(97.00 %)

gauss-filter 2.15×(62.00 %) 4.41×(52.00 %) 1.43×(99.00 %) 2.85×(62.00 %)

gemm 27.62×(99.00 %) 11.31×(86.00 %) 3.94×(93.00 %) 2.53×(89.00 %)

gemver 7.77×(100.00 %) 1.47×(84.00 %) 1.74×(78.00 %) 1.25×(85.00 %)

gesummv 2.18×(94.00 %) 0.99×(94.00 %) 1.42×(75.00 %) 1.43×(81.00 %)

gramschmidt 25.04×(98.00 %) 22.27×(100.00 %) 5.80×(72.00 %) 12.09×(52.00 %)

jacobi-1d 2.66×(88.00 %) 9.07×(100.00 %) 1.02×(100.00 %) 3.68×(78.00 %)

jacobi-2d 6.49×(100.00 %) 1.58×(37.00 %) 2.28×(78.00 %) 5.44×(87.00 %)

lu 6.20×(100.00 %) 4.72×(100.00 %) 3.36×(99.00 %) 3.50×(100.00 %)

ludcmp 1.10×(100.00 %) 1.03×(100.00 %) 1.01×(100.00 %) 0.98×(100.00 %)

mvt 11.38×(86.00 %) 2.06×(100.00 %) 2.19×(93.00 %) 1.56×(81.00 %)

reg-detect 1.33×(69.00 %) 0.98×(69.00 %) 1.59×(63.00 %) 1.03×(91.00 %)

seidel 5.16×(72.00 %) 10.14×(82.00 %) 2.38×(84.00 %) 1.63×(68.00 %)

symm 1.01×(100.00 %) 1.01×(100.00 %) 1.00×(99.00 %) 1.02×(100.00 %)

syr2k 9.94×(99.00 %) 1.00×(100.00 %) 2.15×(51.00 %) 1.01×(98.00 %)

syrk 13.44×(99.00 %) 1.05×(100.00 %) 2.93×(81.00 %) 0.97×(89.00 %)

trisolv 1.89×(94.00 %) 2.72×(99.00 %) 1.00×(100.00 %) 1.86×(59.00 %)

trmm 1.35×(100.00 %) 1.01×(18.00 %) 0.65×(63.00 %) 1.56×(100.00 %)

Average 8.70×(93.61 %) 4.84×(83.64 %) 3.20×(87.94 %) 3.68×(84.42 %)

The multi-model compiles the program using the predicted best optimization configuration from each
individual model and keeps the best performing one. Thus, six optimized program variants on the machine
are evaluated in total

5.4.1 Analysis

We observe in Table 12 that our multi-model approach significantly outperforms the
1-shot approach, for all architecture/ compiler pairs we experimented with. In terms
of average performance improvement, the multi-model consistently discovers more

123

Int J Parallel Prog (2013) 41:704–750 739

Table 13 This table shows the average performance improvement of the multi-model approach and the
6-shot models for all configurations

Algorithms Nehalem-gcc Nehalem-icc Q9650-gcc Q9650-icc

LR (6-shot) 6.00× (68.5 %) 2.48× (54.7 %) 2.38× (66.0 %) 2.61× (62.1 %)

SVM (6-shot) 6.49× (64.4 %) 3.48× (65.8 %) 2.26× (64.0 %) 2.97× (68.4 %)

IBk (6-shot) 7.08× (76.3 %) 4.08× (75.7 %) 2.51× (70.0 %) 3.03× (72.1 %)

K* (6-shot) 7.56× (83.4 %) 4.05× (70.4 %) 2.68× (77.0 %) 2.64× (63.4 %)

M5P (6-shot) 6.45× (75.2 %) 3.06× (57.6 %) 2.58× (72.1 %) 3.06× (70.9 %)

MLP (6-shot) 6.35× (68.1 %) 3.74× (69.1 %) 2.59× (67.2 %) 2.79× (69.1 %)

Multi-model 8.70× (93.61 %) 4.84× (83.64 %) 3.20× (87.94 %) 3.68× (84.42 %)

We observe that multi-model approach outperforms any of 6-shot machine learning models and achieves
up to 94 % of the maximum available speedup in our search space

than 70 % of the optimal improvement, a jump from 58 % for ICC on Q9650. More
importantly, for the majority of the benchmarks for Nehalem, the optimal (or close to
optimal) variant is discovered by the multi-model. For the Q9650, the optimal variant
is discovered by the multi-model approach for more than a third of the benchmarks.

The multi-model approach also achieves very significant improvements in terms
performance guarantees: for all architecture/compiler pairs, the multi-model approach
selects a variant that does not degrade performance for all but two benchmarks at most.
However, there are still some benchmarks that see a degradation in performance with
the multi-model approach. For example, dynprog sees its performance consistently
degraded for all architecture/compiler pairs. This is a benchmark for which there is
very little performance improvement to be discovered in the search space. We also see
a degradation for trmm on the Q9650 using GCC.

In addition, we observe that our multi-model approach on Nehalem using ICC fails
to discover good performance for fdtd-2d, but also to a lesser extent with jacobi-2d.
This is consistent with the 1-shot results shown before. We suspect this is because
for these two stencil codes, in contrast to other benchmarks, tiling is not part of the
optimal transformation (shown in Table 3). So it is likely that the models output a tiled
variant, which for this very specific architecture/compiler configuration does not lead
to the best performance.

Table 13 shows that average performance improvements with our multi-model
approach can outperform all models using six evaluations, which we term the 6-shot
approach. That is, using our multi-model approach (which uses six predicted opti-
mization configuration, one from each model), we can achieve better performance
improvements than by using the top six predicted optimization configurations from
any one single model.

5.5 Evaluation of Feature Selection

In this section, we evaluate our models using a subset of performance counters deemed
to be the most predictive. The main benefit of using a subset of counters is that we

123

740 Int J Parallel Prog (2013) 41:704–750

Table 14 This table shows the 2 to 5 performance counters that were picked by the LR model for each
architecture/compiler configuration

Machine-compiler List of performance counters used for all models

Nehalem GCC4.5 BR-MSP, L1-ICA

Nehalem ICC11.1 L2-ICM, L3-TCM, TLB-IM, TLB-SD

Q9650 GCC4.4 L2-STM, L2-ICA

Q9650 ICC 10.1 BR-CN, BR-NTK, TOT-IIS, SR-INS, VEC-DP

Note that the full set of performance counters is 38 for Nehalem and 49 for Q9650

can reduce the number of application runs it takes to characterize that application.
Using the full set of performance counters available on an architecture can take a large
number of program executions to collect, especially if multiplexing2 is not used. In
addition, training time can be reduced if the number of performance counters collected
is reduced. To find an effective subset of performance counters to use, we analyzed
the output of LR models trained using greedy attribution selection mode. The output
of the model lists the performance counters that were most informative in building
the model. For each architecture/compiler configuration, we used the subset of per-
formance counters that were used to build the LR model. As a result, we used 2
to 5 performance counters depending on the architecture/compiler configuration as
shown in Table 14. Each configuration had a unique subset of important performance
counters, including counters for different cache levels, TLB statistics, and instruction
types.

Using the six different machine learning algorithms we evaluated for this research,
we retrained our models with the subset of performance counters deemed important
by the LR model, and we compared these models to using the full set of performance
counters available on each architecture. Table 15 shows results from evaluating each
of the models in a 1-shot scenario, and Table 16 shows results for our multi-model
scenario using the subset of performance counters.

5.5.1 Analysis

Table 15 shows results of building our models using a subset of performance counters
and used in a 1-shot scenario. For our 1-shot models, we observed that the LR models
give the same performance for both the subset and full set of performance counters,
except for Q9650-GCC. However, even this exceptional case shows only slight degra-
dation, less than 0.05×, when compared to using the full set of counters. We found
that the SVM, IBk, and MLP models trained with our performance counters subset
gave less improvements than using a full set. However, we noticed that some architec-
ture/compiler configurations and machine learning algorithms did achieve improve-
ments using the subsets of performance counters. For example, Nehalem-ICC with
IBk achieved 60.7 % of the optimization space optimal (OPT), while the same model
trained with the full set of achieved only 53.8 %. We also observed that we often

2 Note that multiplexing reduces the accuracy of the performance counter information collected.

123

Int J Parallel Prog (2013) 41:704–750 741

Ta
bl

e
15

T
hi

s
ta

bl
e

sh
ow

s
th

e
pe

rf
or

m
an

ce
of

1-
Sh

ot
m

od
el

s
us

in
g

a
su

bs
et

of
pe

rf
or

m
an

ce
co

un
te

rs

N
um

be
r

of
P

C
s

LR
S

V
M

IB
k

K
*

M
5P

M
LP

O
P

T

In
te

lX
eo

n
E

56
20

(B
as

el
in

e:
G

C
C

4.
5

-O
3)

2
5.

69
×(

62
.8

%
)

4.
84

×(
53

.4
%

)
6.

13
×(

67
.7

%
)

7.
35

×(
81

.1
%

)
6.

47
×(

71
.4

%
)

5.
11

×(
56

.4
%

)
9.

06
×

38
5.

69
×(

62
.8

%
)

6.
00

×(
66

.2
%

)
6.

22
×(

68
.7

%
)

6.
98

×(
77

.0
%

)
6.

24
×(

68
.9

%
)

5.
26

×(
58

.1
%

)
9.

06
×

In
te

lX
eo

n
E

56
20

(B
as

el
in

e:
IC

C
11

.1
-f

as
t)

4
2.

13
×(

38
.0

%
)

2.
36

×(
42

.1
%

)
3.

40
×(

60
.7

%
)

3.
44

×(
61

.4
%

)
3.

02
×(

53
.9

%
)

2.
83

×(
50

.5
%

)
5.

60
×

38
2.

13
×(

38
.0

%
)

2.
31

×(
41

.2
%

)
3.

01
×(

53
.8

%
)

3.
42

×(
61

.1
%

)
2.

99
×(

53
.4

%
)

3.
19

×(
57

.0
%

)
5.

60
×

In
te

lQ
ua

d
Q

96
50

(B
as

el
in

e:
G

C
C

4.
4

-O
3)

2
2.

22
×(

60
.5

%
)

1.
74

×(
47

.4
%

)
1.

70
×(

46
.3

%
)

2.
68

×(
73

.0
%

)
2.

70
×(

73
.6

%
)

1.
94

×(
52

.9
%

)
3.

67
×

49
2.

24
×(

61
.0

%
)

1.
99

×(
54

.2
%

)
2.

33
×(

63
.5

%
)

2.
17

×(
59

.1
%

)
2.

32
×(

63
.2

%
)

2.
09

×(
56

.9
%

)
3.

67
×

In
te

lQ
ua

d
Q

96
50

(B
as

el
in

e:
IC

C
10

.1
-f

as
t)

5
2.

34
×(

51
.2

%
)

2.
57

×(
56

.2
%

)
2.

16
× (

47
.3

%
)

2.
27

×(
49

.7
%

)
1.

78
×(

38
.9

%
)

2.
44

×(
53

.4
%

)
4.

57
×

49
2.

34
×(

51
.2

%
)

2.
23

×(
48

.8
%

)
2.

53
×(

55
.4

%
)

2.
37

×(
51

.9
%

)
2.

65
×(

58
.0

%
)

2.
60

×(
56

.9
%

)
4.

57
×

123

742 Int J Parallel Prog (2013) 41:704–750

Table 16 This table shows the performance improvement of Multi-Models using the subset of performance
counters found when using the LR models

Machine-Compiler Subset Full Set OPT

Nehalem-GCC 8.53×(92.2 %) 8.79×(93.6 %) 9.06×
Nehalem-ICC 4.51×(85.6 %) 4.84×(83.6 %) 5.60×
Q9650-GCC 3.24×(86.8 %) 3.20×(87.9 %) 3.67×
Q9650-ICC 3.69×(81.0 %) 3.68×(84.4 %) 4.57×
Percentage values shown between parentheses indicates the average of the percentages of OPT (optimal
over our optimization space) over all benchmarks

achieve better average performance improvement with K* and M5P models with the
subset of performance counters versus using the full set, especially for the K* model
on the Nehalem-GCC configuration. For those models, we achieved 81.1 % of OPT
with the subset of performance counters, while we achieved 77 % of OPT with the full
set. Thus, we are able to build a model with better prediction quality using a smaller
set of performance counters than using the full set.

Table 16 shows our results when using our multi-model models with the subset
of performance counters. Using, the subset of counters slightly outperformed models
versus using a full set for the Q9650 architecture. Although, the amount of improve-
ments are not substantial, we can see the potential when using a subset of performance
counters since we are able to build a model that achieves similar performance as when
using the full set. In the case of the Nehalem configurations, we observed the oppo-
site of the Nehalem results. Models that were trained with a full set of performance
counters outperformed those models trained with a subset.

5.6 Evaluation of ML Algorithms Parameters

In this section, we discuss the impact of the various parameters of the machine learning
algorithms we tested, and their relative impact on the quality of the predictors we build.
Table 17 summarizes the results, in terms of average performance, for numerous
different parameters values we have tested. We use the Weka option designations,
and we mark with an asterisk the parameter configuration we have selected for the
experiments presented in Sect. 5.2. We show in bold the best average performance
improvement obtained for a given model category (i.e., MLP, SVM, etc.) and a given
machine + compiler (i.e., Nehalem-ICC, Nehalem-GCC, etc.).

For LR, we evaluated different feature selection methods. S= 0 means we use the
M5′ method, S = 1 means we do not use any feature selection method, and S = 2
means we use a greedy method. The default setting for Weka is S = 0. For all machine-
compiler configurations except Q9650-GCC, we achieved the best prediction results
with greedy method (S = 2). For Q9650-GCC, the prediction model with no feature
selection gives the best prediction results by only a marginal fraction over the greedy
method, and for three out of four configurations the greedy method provides the best
results.

123

Int J Parallel Prog (2013) 41:704–750 743

Table 17 Average performance improvement with different machine learning parameter configurations
for 1-Shot PC Model

Algorithm and
Parameter
Configurations

Nehalem-GCC Nehalem-ICC Q9650-GCC Q9650-ICC

LR -S 0 5.55 1.88 2.23 2.25

LR -S 1 4.77 1.96 2.25 2.06

LR -S 2 (*) 5.69 2.13 2.24 2.34

SVM Normalized-
Polykernel -C 1.0 -E
8.0 (*)

6.00 2.31 1.99 2.23

SVM RBFKernel
-C 2.0 -G 0.0

1.56 1.17 1.37 1.25

SVM RBFkernel
-C 2.0 -G 25.0

4.19 2.21 1.65 1.30

SVM RBFKernel
-C 2.0 -G 50.0

4.51 2.09 1.30 1.25

SVM RBFKernel
-C 2.0 -G 75.0

4.11 2.07 1.25 1.25

SVM RBFKernel
-C 4.0 -G 30.0

4.09 2.21 1.32 1.28

SVM RBFKernel
-C 6.0 -G 30.0

3.89 2.21 1.42 1.28

SVM RBFKernel
-C 0.01 -G 30.0

1.66 1.75 1.26 1.28

SVM RBFKernel
-C 4.0 -G 50.0

3.92 2.07 1.30 1.25

IBk -K 1 6.22 3.01 2.33 2.53

IBk -K 2 6.07 2.88 2.13 2.97

IBk -K 5 (*) 6.83 3.49 2.32 2.94

M5P -M 1.0 6.17 2.99 2.21 2.67

M5P -M 2.0 6.17 2.99 2.21 2.67

M5P -M 4.0 (*) 6.24 2.99 2.32 2.65

M5P -M 10.0 5.29 2.83 2.23 2.05

M5P -M 50.0 6.24 2.66 1.89 2.62

K* -B 0 -M a 3.83 2.04 1.30 1.25

K* -B 20 -M a (*) 6.98 3.42 2.17 2.37

K* -B 25 -M a 6.98 3.39 2.23 2.11

K* -B 50 -M a 7.24 3.08 2.01 2.23

k* -B 75 -M a 6.57 3.06 1.98 2.22

K* -B 100 -M a 5.10 2.03 2.25 2.37

K* -B 0 -M n 3.83 2.04 1.30 1.25

K* -B 20 -M n 6.99 3.41 2.23 2.22

K* -B 25 -M n 6.98 3.39 2.23 2.11

K* -B 50 -M n 7.24 3.08 2.01 2.23

MLP -L 0.3 -N 500 -H a 5.26 3.19 2.09 2.60

123

744 Int J Parallel Prog (2013) 41:704–750

Table 17 continued

Algorithm and
Parameter
Configurations

Nehalem-GCC Nehalem-ICC Q9650-GCC Q9650-ICC

MLP -L 0.05 -N 500 -H a 6.02 2.51 2.15 2.06

MLP -L 0.1 -N 500 -H a 5.17 3.18 2.24 2.77

MLP -L 0.5 -N 500 -H a 5.50 2.38 2.26 2.53

MLP -L 0.9 -N 500 -H a 3.93 2.54 2.18 2.41

MLP -L 0.4 -N 500 -H a 5.12 2.79 2.00 2.18

MLP -L 0.5 -N 1000 -H a 5.43 2.58 2.25 2.52

MLP -L 0.5 -N 1500 -H a 5.24 2.60 2.24 2.42

MLP -L 0.5 -N 500 -H t (*) 5.44 3.24 2.18 2.46

For SVM, we evaluated the GaussianKernel and the NormalizedPolyKernel ker-
nel functions. We evaluated a range of gamma values (G) for Gaussiankernel, and a
range of of exponent values (E) for NormalizedPolyKernel. For both kernels, we eval-
uated a different complexity values (C). We tried G = 0, 0.01(default), 25, 30, 50, 75,
C = 1(default), 2, 4, and E = 1, 2(default), 4, 8, 16. The best performance improve-
ment is achieved with the NormalizedPolyKernel kernel, using C = 1 and E = 8 for all
machine-compiler configurations.

For IBk, we tested with several number of neighbors K = 1(default), 2, 5. The default
value for K is 1 in Weka, but we observe that using K = 5 gives the best prediction
result for both compilers. Although this configuration does not give the best prediction
for Q9650, the prediction result is very close to the best. Thus, we selected K = 5 for
our experiments.

For M5P, we evaluated different values for M which indicates the minimum number
of instances. We tried M = 1, 2, 4(default), 10, 50. M = 4 gives the best result for three
machine-compiler configurations except Q9650-ICC, and M = 2 gives the best result
for Q9650-ICC, but this is only 0.02× higher than the performance improvement
with M = 4. We selected M = 4, as the final parameter setting, which is also the default
Weka setting.

For K* algorithm, we tuned B and M, where B is the parameter for global balancing,
and M is the decision on how missing attribute values are handled. We evaluated B = 0,
20(default), 25, 50, 75, 100, and M = a(default), t where each indicates a different way
to handle missing values (a is to average column entropy curves, and t is to normalize
over the attributes). B = 20, M = a achieves the best prediction for both machines with
ICC compiler, and is fairly close to the best for both machines with GCC.

For MLP, we tuned three different parameters: the learning rate (L), the number
of iterations (N), and the number of hidden layers (H). We evaluated L = 0.05, 0.1,
0.3(default), 0.4, 0.5, 0.9, N = 500(default), 1000, 1500, and H = a(default) and t.
For H, a is defined as (number of attributes + number of classes)/2, and t is defined
as (number of attributes + number of classes). Each machine-compiler configuration
requires different parameter tuning for the best performance improvement for MLP.
We selected the configuration with L=0.5, N=500, H=t.

123

Int J Parallel Prog (2013) 41:704–750 745

6 Related Work

In recent years, considerable research has been performed on iterative compilation, and
its benefits have been reported in several publications [1,17,18,24,29,33]. Iterative
compilation has been shown to regularly outperform the most aggressive compilation
settings of commercial compilers, and it has often reached performance comparable
to hand-optimized library functions [25,48,56,57].

Machine learning and search techniques applied to compilation has been studied
in many recent projects [16,34,37,51,52,60,61]. These previous studies have devel-
oped machine learning-based algorithms to enabling efficiently search for the optimal
selection of optimizing transformations, the best values for the transformation para-
meters, or the optimal sequences of compiler optimizations. Generally, these studies
customize optimizations for each program or local code segments, some based on
code characteristics.

For example, Monsifrot et al. [37] used decision trees to decide whether to enable
or disable loop unrolling. This was one of the early efforts on using machine learning
to tune a high-level transformation. They showed an improvement of 3 % over a hand-
tuned heuristic and 2.7 % over g77’s unrolling strategy on the IA64 and UltraSPARC,
respectively. Stephenson et al. [52] used genetic programming to tune heuristic priority
functions for three compiler optimizations within the Trimaran’s IMPACT compiler.
For one of the optimizations, register allocation, they were only able to achieve on
average a 2 % increase over the manually tuned heuristic. The results in these papers
highlight the diminishing results obtained when only controlling a single optimization.
In contrast, the research in this paper controlled numerous optimizations available in
the PoCC compiler.

Kulkarni et al. [34] introduced a system that used databases to store previously
tested code, thereby reducing running time. They also disabled some optimizations
that did not seem to improve the running time of the kernel. These techniques are
very expensive and therefore only effective when programs are extremely small, such
as those used in embedded domains. Cooper et al. [17] used genetic algorithms to
address the compilation phase-ordering problem. They were concerned with finding
“good” compiler optimization sequences that reduced code size. Their technique was
successful in reducing code size by as much as 40 %. However, their technique is
application-specific, i.e., a genetic algorithm had to be retrained for each new program
to decide the best optimization sequence for that program.

An innovative approach to iterative compilation was proposed by Parello et al. [41]
where they used performance counters at each stage to propose new optimization
sequences. An application was run and performance counter information was measured
in order to identify performance anomalies that could be resolved by applying certain
optimizations. The anomalies and proposed optimizations that could be applied to
resolve them were encoded in a manually constructed decision tree. Even though this
was a very systematic approach, the time required to manually construct this decision
tree took weeks for each benchmark and was specific to a certain targeted architecture.
In contrast, our technique does not need to generate performance counters during each
iteration of optimizing the program, but instead a model is produced that can predict
the best optimization sequences for a program. Also, we use machine learning to

123

746 Int J Parallel Prog (2013) 41:704–750

automatically construct the models used to predict the optimization configurations
that were used.

Cavazos et al. [12] address the problem of predicting good compiler optimizations
by using performance counters to automatically generate compiler heuristics. That
work was limited to the traditional optimizations found in the PathScale compiler.
Despite the numerous transformations considered, the complexity is not comparable to
the restructuring transformations available in state-of-the-art polyhedral frameworks,
such as the one we used in this work.

Park et al. [42] propose a novel program characterization technique, i.e., graph-
based characterization, to use as input to a model that predicts optimizations to apply
to a program. In this work, the authors characterize programs using the program’s
control flow graph (CFG), and they construct prediction models using SVMs with a
shortest path graph kernel. These specialized graph kernels take as input characteri-
zations that preserve the graph-based topology of the program, in contrast to previous
characterization techniques that are represented as fixed-length vectors. The authors
show that this method of characterizing programs is competitive with previous char-
acterization techniques.

Chen et al. [13] developed the CHiLL infrastructure, a polyhedral loop transforma-
tion and code generation framework. Tiwari et al. [53] coupled the Active Harmony
search engine to CHiLL to automatically tune some high-level transformation para-
meters, such as tile sizes. In this paper, we target quite a different search space, i.e., we
balance the trade-off between several possibly contradictory objectives, such as par-
allelization, data locality enhancement, and vectorization, demonstrating our results
on a variety of benchmarks and machines.

Bondhugula et al. [8,9] proposed the first integrated heuristic for parallelization,
fusion, and tiling in the polyhedral model subsuming all the above optimizations into
a single tunable cost-model. Individual objectives such as the degree of fusion or the
application of tiling can be implicitly tuned by minor ad-hoc modifications of Bond-
hugula’s cost model. Pouchet et al. [45] performed empirical search to directly find the
coefficients of the affine scheduling matrix in a polyhedral framework. While these
results showed significant improvements on small kernels, the empirical search needed
up to a thousand runs for larger benchmarks [44]. In this work, we have abstracted
the scheduling matrix behind high-level polyhedral primitives and the associated cost
models for selecting the enabling transformations, reducing the search space to as
little as a few hundred possibilities in place of the billions of possible schedules. This
enabled us achieve on average up to 80 % of the optimization space optimal perfor-
mance in no more than six runs.

7 Conclusion

The problem of improving performance of applications through compiler optimiza-
tions has been extensively studied, in particular, to improve the portability of the opti-
mization process across a variety of architectures. Iterative compilation and machine
learning techniques have been demonstrated as powerful mechanisms to automatically

123

Int J Parallel Prog (2013) 41:704–750 747

compute good compiler flags, improving the speed of the generated program and auto-
matically adapting compilers to each new target architecture.

However, in the multi-core era with increasingly complex hardware, very advanced
high-level transformation mechanisms are required to efficiently map the program
on the target machine. Complex optimization combinations of loop transformations
are needed to implement the most effective orchestration of tiling, parallelization,
and vectorization. While all these optimizations have been studied independently, in
practice, they must be evaluated together to achieve the best performance possible.

A modern loop nest optimizer faces the challenge of sometimes contradictory cost
models, simply because there is no single solution that may maximize parallelism,
vectorization, data locality and still achieve the best performance. Very little work has
been done to date in using learning models for selecting high-level transformations,
to drive a loop nest optimizer that operates on a very rich and complex search space.
Our work is the first to propose the use of learning models to compute effective
loop transformations in the polyhedral model, encompassing tiling, parallelization,
vectorization, and data locality improvement.

In this work, we leverage the power of the polyhedral transformation framework to
automatically build very complex sequences of transformations, enabling tiling and
parallelization transformations on a wide range of numerical codes. To select an effec-
tive optimization in this space, we have implemented a speedup predictor model that
correlates the run-time characteristics of a program (modeled with performance coun-
ters) with the speedup expected from a given polyhedral optimization configuration.
We evaluated our approach using several machine learning algorithms, on a variety of
benchmarks, and two different multi-core machines. For the test suite, the best points
in our optimization search space yield an average 9× speedup (with peaks of up to
28×) with GCC on an Intel Xeon E5620 and 3.6× on Intel Xeon Q9650. Using the
predictive machine learning models, testing at most six candidate optimization con-
figurations on the target machine, we achieve an average speedup of 8.7× on E5620
and 3.2× on Q9650 with GCC as the backend compiler and an average speedup of
4.8× and 3.6× using Intel ICC as the backend compiler.

Acknowledgements This work was funded in part by the U.S. National Science Foundation through
awards 0926688, 0811781, 0811457, 0926687 and 0926127, the Defense Advanced Research Projects
Agency through AFRL Contract FA8650-09-C-7915, the DARPA Computer Science Study Group (CSSG),
the U.S. Department of Energy through award DE-FC02-06ER25755, and NSF Career award 0953667.

References

1. Agakov, F., Bonilla, E., Cavazos, J., Franke, B., Fursin, G., O’Boyle, M., Thomson, J., Toussaint,
M., Williams, C.: Using machine learning to focus iterative optimization. In: Proceedings of the
International Symposium on Code Generation and Optimization (CGO) (2006)

2. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Int. J. Mach. Learn. 6, 37–66
(1991)

3. Almagor, L., Cooper, K., Grosul, A., Harvey, T., Reeves, S., Subramanian, D., Torczon, L.,
Waterman, T.: Finding effective compilation sequences. In: Proceedings of the International Con-
ference on Languages, Compilers, and Tools for Embedded Systems (LCTES), pp. 231–239. New
York (2004)

123

748 Int J Parallel Prog (2013) 41:704–750

4. Anderson, E., Bai, Z., Dongarra, J., Greenbaum, A., McKenney, A., Du Croz, J., Hammerling, S.,
Demmel, J., Bischof, C., Sorensen, D.: Lapack: a portable linear algebra library for high-performance
computers. In: Proceedings of the 1990 ACM/IEEE conference on Supercomputing, Supercomputing
’90, pp. 2–11. IEEE Computer Society Press, Los Alamitos, CA, USA (1990) http://dl.acm.org/citation.
cfm?id=110382.110385

5. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In: Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques (PACT), (2004)

6. Baumgartner, G., Bernholdt, D., Cociorva, D., Harrison, R., Hirata, S., Lam, C.C., Nooijen, M., Pitzer,
R., Ramanujam, J., Sadayappan, P.: A high-level approach to synthesis of high-performance codes for
quantum chemistry. In: Supercomputing (2002)

7. Benabderrahmane, M.W., Pouchet, L.N., Cohen, A., Bastoul, C.: The polyhedral model is more widely
applicable than you think. In: Proceedings of the International Conference on Compiler Construction
(ETAPS CC), LNCS 6011, pp. 283–303 (2010)

8. Bondhugula, U., Baskaran, M., Krishnamoorthy, S., Ramanujam, J., Rountev, A., Sadayappan, P.:
Automatic transformations for communication-minimized parallelization and locality optimization
in the polyhedral model. In: Proceedings of the International Conference on Compiler Construction
(ETAPS CC) (2008)

9. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical automatic polyhedral pro-
gram optimization system. In: Proceedings of the International Conference on Programming Language
Design and Implementation (PLDI) (2008)

10. Bouckaert, R.R., Frank, E., Hall, M.A., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
WEKA-experiences with a java open-source project. J. Mach. Learn. Res. 11, 2533–2541 (2010)

11. Cavazos, J., Dubach, C., Agakov, F., Bonilla, E., O’Boyle, M.F., Fursin, G., Temam, O.: Automatic
performance model construction for the fast software exploration of new hardware designs. In: Interna-
tional Conference on Compilers, Architectures and Synthesis of Embedded Systems (CASES) (2006)

12. Cavazos, J., Fursin, G., Agakov, F.V., Bonilla, E.V., O’Boyle, M.F.P., Temam, O.: Rapidly selecting
good compiler optimizations using performance counters. In: Proceedings of the International Sym-
posium on Code Generation and Optimization (CGO) (2007)

13. Chen, C., Chame, J., Hall, M.: CHiLL: A framework for composing high-level loop transformations.
Tech. Rep. 08–897, U. of Southern California (2008)

14. Chen, Y., Huang, Y., Eeckhout, L., Fursin, G., Peng, L., Temam, O., Wu, C.: Evaluating iterative
optimization across 1000 datasets. In: Proceedings of the 2010 ACM SIGPLAN Conference on Pro-
gramming language design and implementation, PLDI ’10, pp. 448–459. ACM, New York, NY, USA
(2010).10.1145/1806596.1806647

15. Cleary, J.G., Trigg, L.E.: K*: an instance-based learner using an entropic distance measure. In: In Pro-
ceedings of the 12th International Conference on Machine Learning, pp. 108–114. Morgan Kaufmann
(1995)

16. Cooper, K.D., Grosul, A., Harvey, T.J., Reeves, S., Subramanian, D., Torczon, L., Waterman, T.: Acme:
adaptive compilation made efficient. In: Proceedings of the International Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES), pp. 69–77. ACM Press, New York, NY, USA
(2005). doi:10.1145/1065910.1065921

17. Cooper, K.D., Schielke, P.J., Subramanian, D.: Optimizing for reduced code space using genetic algo-
rithms. In: Proceedings of the International Conference on Languages, Compilers, and Tools for Embed-
ded Systems (LCTES), pp. 1–9. ACM Press (1999)

18. Cooper, K.D., Subramanian, D., Torczon, L.: Adaptive optimizing compilers for the 21st century.
J. Supercomput. 23(1), 7–22 (2002)

19. Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Optimization and performance
modeling of stencil computations on modern microprocessors. SIAM Review 51(1) (2009) doi:10.
1137/070693199. http://link.aip.org/link/?SIR/51/129/1

20. Dubach, C., Cavazos, J., Franke, B., O’Boyle, M., Fursin, G., Temam, O.: Fast compiler optimisa-
tion evaluation using code-feature based performance prediction. In: Proceedings of the International
Conference on Computing Frontiers (CF) (2007)

21. Dubach, C., Jones, T.M., Bonilla, E.V., Fursin, G., O’Boyle, M.F.: Portable compiler optimization
across embedded programs and microarchitectures using machine learning. In: Proceedings of the
International Symposium on Microarchitecture (MICRO) (2009)

22. Feautrier, P.: Some efficient solutions to the affine scheduling problem, part I: one dimensional time.
Int. J. Parallel Program (IJPP) 21(5), 313–348 (1992)

123

http://dl.acm.org/citation.cfm?id=110382.110385
http://dl.acm.org/citation.cfm?id=110382.110385
http://dx.doi.org/10.1145/1806596.1806647
http://dx.doi.org/10.1145/1065910.1065921
http://dx.doi.org/10.1137/070693199
http://dx.doi.org/10.1137/070693199
http://link.aip.org/link/?SIR/51/129/1

Int J Parallel Prog (2013) 41:704–750 749

23. Feautrier, P.: Some efficient solutions to the affine scheduling problem, part II: multidimensional time.
Int. J. Parallel Program. (IJPP) 21(6), 389–420 (1992)

24. Franke, B., O’Boyle, M., Thomson, J., Fursin, G.: Probabilistic source-level optimisation of embedded
programs. In: Proceedings of the International Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES), pp. 78–86. ACM Press (2005)

25. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. In: Proceedings of the IEEE 93(2),
216–231 (2005) Special issue on “Program Generation, Optimization, and Platform Adaptation”

26. Fursin, G., Cavazos, J., Temam, O.: Midatasets: creating the conditions for a more realistic evaluation
of iterative optimization. In: In Proceedings of the International Conference on High Performance
Embedded Architectures and Compilers (HiPEAC), pp. 245–260. Springer LNCS (2007)

27. Fursin, G., Miranda, C., Temam, O., Namolaru, M., Yom-Tov, E., Zaks, A., Mendelson, B., Barnard, P.,
Ashton, E., Courtois, E., Bodin, F., Bonilla, E., Thomson, J., Leather, H., Williams, C., O’Boyle, M.:
MILEPOST GCC: machine learning based research compiler. In: Proceedings of the GCC Developers’
Summit (2008)

28. Girbal, S., Vasilache, N., Bastoul, C., Cohen, A., Parello, D., Sigler, M., Temam, O.: Semi-automatic
composition of loop transformations. Int. J. Parallel Program. (IJPP) 34(3), 261–317 (2006)

29. Haneda, M., Knijnenburg, P.M.W., Wijshoff, H.A.G.: Automatic selection of compiler options using
non-parametric inferential statistics. In: Proceedings of the International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), pp. 123–132 (2005)

30. INRIA, The Ohio State University: Polybench, the polyhedral benchmark suite. http://polybench.
sourceforge.net

31. Irigoin, F., Triolet, R.: Supernode partitioning. In: ACM SIGPLAN Principles of Programming Lan-
guages, pp. 319–329 (1988)

32. Kelly, W., Pugh, W.: A unifying framework for iteration reordering transformations. In: IEEEInterna-
tional Conference on Algorithms and Architectures for Parallel Processing (ICAPP’95), pp. 153–162
(1995)

33. Kisuki, T., Knijnenburg, P.M.W., O’Boyle, M.F.P.: Combined selection of tile sizes and unroll factors
using iterative compilation. In: Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques (PACT), p. 237 (2000)

34. Kulkarni, P., Hines, S., Hiser, J., Whalley, D., Davidson, J., Jones, D.: Fast searches for effective opti-
mization phase sequences. In: Proceedings of the International Conference on Programming Language
Design and Implementation (PLDI), pp. 171–182. ACM Press (2004)

35. Lim, A.W., Lam, M.S.: Maximizing parallelism and minimizing synchronization with affine trans-
forms. In: Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pp. 201–214. ACM Press (1997)

36. Long, S., Fursin, G.: A heuristic search algorithm based on unified transformation framework. In:
Proceedings of the International Conference on Parallel Processing Workshops (ICPPW), pp. 137–144
(2005)

37. Monsifrot, A., Bodin, F., Quiniou, R.: A machine learning approach to automatic production of compiler
heuristics. In: Proceedings of the International Conference on Artificial Intelligence: Methodology,
Systems, and Applications (AIMSA), pp. 41–50 Springer, Berlin (2002)

38. Mucci, P.: Papi—the performance application programming interface. http://icl.cs.utk.edu/papi/index.
html (2000)

39. Namolaru, M., Cohen, A., Fursin, G., Zaks, A., Freund, A.: Practical aggregation of semantical pro-
gram properties for machine learning based optimization. In: International Conference on Compilers,
Architectures and Synthesis of Embedded Systems (CASES) (2010)

40. Orozco, D., Gao, G.R.: Mapping the FDTD application to many-core chip architectures. In: ICPP
(2009)

41. Parello, D., Temam, O., Cohen, A., Verdun, J.M.: Towards a systematic, pragmatic and architecture-
aware program optimization process for complex processors. In: Proceedings of the ACM/IEEE con-
ference on Supercomputing (SC), p. 15. IEEE Computer Society (2004)

42. Park, E., Cavazos, J., Alvarez, M.A.: Using graph-based program characterization for predictive mod-
eling. In: 10th IEEE/ACM International Symposium on Code Generation and Optimization (CGO’12).
IEEE Computer Society press, San Jose (2012)

43. Park, E., Pouchet, L.N., Cavazos, J., Cohen, A., Sadayappan, P.: Predictive modeling in a polyhedral
optimization space. In: 9th IEEE/ACM International Symposium on Code Generation and Optimization
(CGO’11), pp. 119–129. IEEE Computer Society press, Chamonix, France (2011)

123

http://polybench.sourceforge.net
http://polybench.sourceforge.net
http://icl.cs.utk.edu/papi/index.html
http://icl.cs.utk.edu/papi/index.html

750 Int J Parallel Prog (2013) 41:704–750

44. Pouchet, L.N., Bastoul, C., Cohen, A., Cavazos, J.: Iterative optimization in the polyhedral model: Part
II, multidimensional time. In: Proceedings of the International Conference on Programming Language
Design and Implementation (PLDI), pp. 90–100. ACM Press (2008)

45. Pouchet, L.N., Bastoul, C., Cohen, A., Vasilache, N.: Iterative optimization in the polyhedral model:
Part I, one-dimensional time. In: Proceedings of the International Symposium on Code Generation and
Optimization (CGO), pp. 144–156. IEEE Computer Society Press (2007)

46. Pouchet, L.N., Bondhugula, U., Bastoul, C., Cohen, A., Ramanujam, J., Sadayappan, P.: Combined
iterative and model-driven optimization in an automatic parallelization framework. In: Proceedings of
the ACM/IEEE Conference on Supercomputing (SC) (2010). p. 11

47. Pouchet, L.N., Bondhugula, U., Bastoul, C., Cohen, A., Ramanujam, J., Sadayappan, P., Vasilache,
N.: Loop transformations: Convexity, pruning and optimization. In: 38th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL’11), pp. 549–562. ACM Press, Austin
(2011)

48. Puschel, M., Moura, J., Johnson, J., Padua, D., Veloso, M., Singer, B., Xiong, J., Franchetti, F., Gacic,
A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.: Spiral: code generation for dsp transforms. In:
Proceedings of the IEEE 93(2), 232–275 (2005) Special issue on “Program Generation, Optimization,
and Platform Adaptation”

49. Ramanujam, J., Sadayappan, P.: Tiling multidimensional iteration spaces for multicomputers. J. Parallel
Distrib. Comput. 16(2), 108–230 (1992)

50. Smith, G.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford
University Press, Oxford (2004)

51. Stephenson, M., Amarasinghe, S.: Predicting unroll factors using supervised classification. In: CGO
’05: Proceedings of the International Symposium on Code Generation and Optimization, pp. 123–134.
IEEE Computer Society, Washington (2005). doi:10.1109/CGO.2005.29

52. Stephenson, M., Amarasinghe, S., Martin, M., O’Reilly, U.M.: Meta optimization: improving compiler
heuristics with machine learning. SIGPLAN Not. 38(5):77–90 (2003) doi:10.1145/780822.781141

53. Tiwari, A., Chen, C., Chame, J., Hall, M., Hollingsworth, J.K.: A scalable auto-tuning framework
for compiler optimization. In: Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS), pp. 1–12. IEEE Computer Society (2009)

54. Trifunovic, K., Nuzman, D., Cohen, A., Zaks, A., Rosen, I.: Polyhedral-model guided loop-nest auto-
vectorization. In: Proceedings of the International Conference on Parallel Architectures and Compila-
tion Techniques (PACT) (2009)

55. Voronenko, Y., de Mesmay, F., Püschel, M.: Computer generation of general size linear transform
libraries. In: Proceedings of the International Symposium on Code Generation and Optimization
(CGO), pp. 102–113 (2009)

56. Vuduc, R., Demmel, J.W., Bilmes, J.A.: Statistical models for empirical search-based performance
tuning. Int. J. High Perform. Comput. Appl. 18(1), 65–94 (2004)

57. Whaley, R.C., Dongarra, J.J.: Automatically tuned linear algebra software. In: Proceedings of the
ACM/IEEE Conference on Supercomputing (SC), pp. 1–27. IEEE Computer Society (1998)

58. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimizations of software and the atlas
project. Parallel Comput. (2000)

59. Wolf, M., Lam, M.: A data locality optimizing algorithm. In: ACM SIGPLAN’91 Conference on
Programming Language Design and Implementation, pp. 30–44. New York (1991)

60. Yotov, K., Li, X., Ren, G., Cibulskis, M., DeJong, G., Garzaran, M., Padua, D., Pingali, K., Stodghill, P.,
Wu, P.: A comparison of empirical and model-driven optimization. In: Proceedings of the International
Conference on Programming Language Design and Implementation (PLDI) (2003)

61. Yotov, K., Pingali, K., Stodghill, P.: Think globally, search locally. In: ICS ’05: Proceedings of the 19th
Annual International Conference on Supercomputing, pp. 141–150. ACM Press, New York (2005).
doi:10.1145/1088149.1088168

123

http://dx.doi.org/10.1109/CGO.2005.29
http://dx.doi.org/10.1145/780822.781141
http://dx.doi.org/10.1145/1088149.1088168

	Predictive Modeling in a Polyhedral Optimization Space
	Abstract
	1 Introduction
	2 Optimization Space
	2.1 Overview of the Approach
	2.2 Polyhedral Model
	2.3 Loop Tiling
	2.4 Loop Fusion/Distribution
	2.5 Wavefronting
	2.5.1 Pre-Vectorization
	2.5.2 SIMD-Level Parallelization
	2.5.3 Thread-Level Parallelization
	2.5.4 Register Tiling

	2.6 Putting it All Together

	3 Analysis of the Performance Distribution
	3.1 Experimental Setup
	3.2 Overview of the Performance Distribution
	3.3 Variability Across Compilers
	3.4 Variability Across Machines
	3.5 Sensitivity to Different Datasets
	3.5.1 Dataset Size

	3.6 Analysis of the Optimal Transformations

	4 Selecting Effective Transformations
	4.1 Characterization of Input Programs
	4.2 Speedup Prediction Model
	4.3 Model Generation and Evaluation
	4.4 1-Shot and Multi-Model Evaluation

	5 Experimental Results
	5.1 Training and Testing Time
	5.2 Evaluation of the Machine Learning Models on Nehalem
	5.2.1 Analysis

	5.3 Evaluation of the Machine Learning Models on Core 2 Quad
	5.3.1 Analysis

	5.4 Multi-Model Evaluation
	5.4.1 Analysis

	5.5 Evaluation of Feature Selection
	5.5.1 Analysis

	5.6 Evaluation of ML Algorithms Parameters

	6 Related Work
	7 Conclusion
	Acknowledgements
	References

