
Int J Parallel Prog (2013) 41:552–569
DOI 10.1007/s10766-012-0235-4

Online Mesh Refinement for Parallel Atmospheric
Models

Claudio Schepke · Nicolas Maillard ·
Joerg Schneider · Hans-Ulrich Heiss

Received: 29 November 2011 / Accepted: 22 November 2012 / Published online: 5 December 2012
© Springer Science+Business Media New York 2012

Abstract Forecast precisions of climatological models are limited by computing
power and time available for the executions. As more and faster processors are used in
the computation, the resolution of the mesh adopted to represent the Earth’s atmosphere
can be increased, and consequently the numerical forecast is more accurate. However,
a finer mesh resolution, able to include local phenomena in a global atmosphere inte-
gration, is still not possible due to the large number of data elements to compute in
this case. To overcome this situation, different mesh refinement levels can be used
at the same time for different areas of the domain. Thus, our paper evaluates how
mesh refinement at run time (online) can improve performance for climatological
models.The online mesh refinement (OMR) increases dynamically mesh resolution in
parts of a domain,when special atmosphere conditions are registered during the exe-
cution. Experimental results show that the execution of a model improved by OMR
provides better resolution for the meshes, without any significant increase of execu-
tion time. The parallel performance of the simulations is also increased through the
creation of threads in order to explore different levels of parallelism.

C. Schepke (B)· N. Maillard
Programa de Pós-Graduação em Computação (PPGC), Instituto de Informática, Universidade Federal
do Rio Grande do Sul (UFRGS), Caixa Postal 15.064, 91.501-970 Porto Alegre, RS, Brazil
e-mail: claudioschepke@unipampa.edu.br

N. Maillard
e-mail: nicolas@inf.ufrgs.br

J. Schneider · H. U. Heiss
Fachgebiet Kommunikations- und Betriebssysteme (KBS), Institut für Telekommunikationssysteme,
Technische Universität Berlin (TU-Berlin), Einsteinufer 17, 10587 Berlin, Germany
e-mail: komm@cs.tu-berlin.de

H. U. Heiss
e-mail: heiss@cs.tu-berlin.de

123



Int J Parallel Prog (2013) 41:552–569 553

Keywords Atmospheric models · Online mesh refinement · Parallel applications ·
High performance computing

1 Introduction

Numerical models have been used extensively in the last decades to understand and
predict weather phenomena and the climate, in daily weather forecasts as well as in
researches on Global Warming [17].These models calculate the values of the physical
conditions of the atmosphere using quantitative methods. To this end, the atmosphere is
represented by a discrete space, a mesh of points obtained through the use of a domain
decomposition technique, on which interactions are made during discrete time steps.

As the domain refinement increases, more points are used in the mesh represen-
tation, and consequently forecasts become more accurate. Therefore, the impact of
various physical factors, that vary in a continuous space, are more visible and taken
into account during the simulation [19].

Atmospheric models generally define the mesh at the beginning of the execution,
before the calculation of the physical properties at the iterative step, in a static approach
[13]. For long numerical simulations it is important that the mesh resolution can be
adapted while the code is running. Thus, spontaneous atmospheric changes that appear
in restricted areas, for a given time during the execution, like storms and hurricanes,
can be better investigated applying more mesh resolution in part of the domain. At the
same time, their impact in the whole mesh domain can be understood better.

A previous work [15], has detailed a mechanism to refine the mesh in climatological
models at execution time. It allows a part of the mesh to increase its resolution when
special atmosphere conditions appear during the simulation. However, the refinement
suffered from load unbalance. In this new work, we build upon [15] to improve the
evaluation of the impact of the online mesh refinement (OMR) on the parallel perfor-
mance, and propose solutions using threads to balance the load and explore different
levels of parallelism. This new solution leads to an increased speed-up.

The remainder of this paper is organized as follows. Section 2 presents the related
work. In Sect. 3 we compare the difference between global and local climatological
models. The static mesh refinement of an atmospheric model is described in Sect. 4.
Section 5 discusses the necessity and the problems associated to the use of high mesh
resolutions in atmospheric models. Section 6 exposes the distributed OMR implemen-
tation. The performance evaluation, experimental results and experimental analysis are
shown in Sect. 7. Section 8 describes a solution to the load unbalance problem of the
OMR implementation and it impact in the performance in the atmospheric model. The
last section presents the conclusion and the future work.

2 Related Work

Mesh refinement at runtime is not a new idea to improve performance for a decomposed
domain. The adaptive mesh refinement (AMR) technique is frequently cited in the
literature as a way to represent complex geometry and to increase locally the resolution
for a thin part of a domain [12]. This technique is used in computational fluid dynamics

123



554 Int J Parallel Prog (2013) 41:552–569

to add fine grid patches to regions of the flow where more resolution is needed, such
as near shocks and detonations.

The AMR can dramatically speed up a computation and/or enable simulations with
a much higher effective resolution as compared to the uniformly refining of the grid
approach. Efficient numerical schemes can be written for overlapping grids since they
are composed of structured grids and Cartesian grids.

There are many applications developed using this technique. PARAMESH is an
example of toolkit designed to provide parallel support with adaptive mesh capability
for a large and important class of computational models, those using structured logi-
cally Cartesian meshes [8]. The PARAMESH package of subroutines is designed to
provide an application developer an easy way to extend an existing serial code into a
parallel code with adaptive mesh refinement.

However, mesh refinement solutions, like PARAMESH, are restricted to structured
grids and differ from the unstructured mesh adopted in many climatological models.

3 Atmospheric Models

There are several climatological models developed today, each one implemented for a
specific proposal. In general, according to the form to represent the atmosphere, these
models can be classified in two categories, differing on their domain: global (entire
Earth) and regional (country, state, etc).

Global models, like GISS ModelE [16], consider the entire surface of the Earth
for modeling and decomposing the domains and are usually used to predict long
climatological periods (months, years). The main limitation of this approach is the
computing power to execute with higher mesh resolution. Global models have normal
spatial mesh resolution of about 0.2 to 1.5 degrees of latitude and therefore cannot
represent very well the scale of regional weather phenomena.

On the other hand, Regional models, like BRAMS [4], simulate only a specific
interesting piece of the Earth atmosphere. They use higher mesh resolution but they
are restricted to limited areas. Therefore, it is necessary to establish the initial entry
conditions to the boundary of the domain. These conditions can be determined from
previous executions of global models.

The way to use the best characteristics of both approaches is offering different levels
of mesh refinement in global models. Thus, it is not necessary to handle boundary
conditions, since the transition among different levels of refinement is done by a
transparent design.

This is the case of the ocean-land atmosphere model (OLAM) [18], which pro-
vides a global grid that can be locally refined, forming a single grid. This feature
allows simultaneous representation (and forecasting) of both, global and local scale
phenomena, as well as bi-directional interactions between scales.

4 Ocean-Land-Atmosphere Model

The OLAM is an atmospheric model to simulate and cover all Earth surface. The
OLAM model consists essentially of a finite volume representation of the full

123



Int J Parallel Prog (2013) 41:552–569 555

compressible nonhydrostatic Navier-Stokes equations over the planetary atmosphere
with a formulation of conservation laws for mass, momentum, and potential temper-
ature, and numerical operators that include time splitting [9]. The finite volumes are
defined horizontally by a global triangular-cell grid mesh and subdivided vertically
through the height of the atmosphere forming vertically-stacked prisms of triangular
bases.

4.1 Global Grid Structure

OLAM’s grid construction begins from an icosahedron inscribed in the spherical Earth,
as is the case for most other atmospheric models that use geodesic grids. The geodesic
grid offers important advantages over the commonly used latitude-longitude grid. It
allows mesh size to be approximately uniform over the globe, and avoids singularities
and grid cells of very high aspect ratio near the poles.The icosahedron is oriented
such that one vertex is located at each geographic pole, which places the remaining
10 vertices at latitudes of ±tan−1(1/2).

Uniform subdivision of each icosahedron triangle into N × N smaller triangles,
where N is the number of divisions, is performed in order to construct a mesh of higher
resolution to any degree desired. The subdivision adds 30(N 2 − 1) new edges to the
original 30 and 10(N 2−1) new vertices to the original 12, with 6 edges meeting at each
new vertex. All newly constructed vertices and all edges are then radially projected
outward to the sphere to form geodesics.

Figure 1 shows an example of the mesh at this step. The projection causes most
triangles to deviate from equilateral shape, which is impossible to avoid [18].

OLAM uses an unstructured approach and represents each grid cell with single
horizontal index [18]. Required information on local grid cell topology is stored and
accessed by means of linked lists.

Fig. 1 Projection of a surface
triangle cell to larger concentric
spheres to generate multiple
vertical model levels

123



556 Int J Parallel Prog (2013) 41:552–569

Fig. 2 Example of local mesh
refinement applied to a selected
part of the globe

4.2 Static Local Mesh Refinement

Local refinement can be specified to cover specific geographic areas with higher res-
olution. The mesh points that represent these areas are subdivided cyclically while
the expected mesh resolution is not achieved. Each cyclical division doubles the
resolution.

The global grid and its refinements define a single grid, as opposed to the usual
nested grids of regional models. Grid refined cells do not overlap with the global grid
cells - they substitute them.

Refinement follows a three-neighbors rule that each triangle must share finite edges
length with exactly three others.

An example of local mesh refinement is illustrated in Fig. 2, where the resolution is
exactly twice that of the original resolution. This is achieved by subdividing each pre-
vious triangle into 2 smaller triangles. For this purpose, auxiliary edges were inserted
at the boundary between the original and refined regions in order to preserve the rule
of the three neighboring triangles for each triangle.

A transition from coarse to fine resolution is achieved by using vertices with more
than 6 edges on the coarser side and vertices with fewer than 6 edges on the finer side
of the transition as can be seen in Fig. 3. In this example each auxiliary line connects a
vertex that joins 7 edges with a vertex that joins 5 edges. However, it is not necessary
that these vertices are concentrated along a band. A more gradual refinement of the
mesh can be obtained by distributing these vertices in a sparse way over a larger area.

The refinement of an OLAM mesh occurs in Earth regions previously defined.
The definition of the region to be refined begins with the choice of a specific geo-
graphic coordinate point. After this, all points included in the area formed by a radius
surrounding that point will be refined.

123



Int J Parallel Prog (2013) 41:552–569 557

Fig. 3 Example of local mesh
refinement transition from
coarse to fine resolution

Fig. 4 Example of mesh refinement area definition to cover a specific region of the Earth surface

Thus, we can say that the refinement depends of a Cartesian coordinate, a radius
of latitude, a radius of longitude and an angle of inclination of the ellipse formed by
using the combination of these two radii. Figure 4 illustrates the distribution of each

123



558 Int J Parallel Prog (2013) 41:552–569

T0
T2T3

T1

T4

Fig. 5 Example of one level mesh refinement applied to a point

of these variables to define a region of refinement and how the choice of the angle
allows you to rotate the ellipse in order to better cover a region of the physical world.

After the choice of the region, each triangle which barycenter belongs to the region
is subdivided into four new triangles, as illustrated in Fig. 5. OLAM allows various
levels of refinement that can be applied in different parts of the domain, that is, a
given domain can be refined several times. Since the resolution of a level of refinement
applied is always double in relation to the previous one, when x multi-level refinements
are adopted, the final level of resolution will always be ini tial_resolution/2x .

4.3 Parallel Implementation

OLAM was developed and parallelized with message passing interface (MPI) [6].
Each OLAM MPI process is responsible for operating the functions of the iterative
step on a given subdomain.The distribution of data among the processes is set in each
one. Each process determines its operating subdomain from the global grid according
to its MPI rank.

The data distribution takes into account the number of triangles (the mesh points
of the domain) after the static mesh refinement to ensure a good load balance. Once
defined the distribution of subdomains among the processes, each process discards the
global mesh, and keeps in memory only its respective part of the global mesh.

5 Finer Mesh Resolution Execution

The OLAM mesh representation is made by decomposing the Earth surface into tri-
angles, according to the requested resolution. The number of triangles for a specific
resolution depends of Earth’s circumference and is given by 20 × (5050/R), where
R is the resolution in Kilometers [14]. Table 1 presents the number of edges, vertices

Table 1 Number of vertices, edges and triangles mesh elements for different mesh resolutions

Resolution Vertices Edges Triangles

100 km 25, 002 75, 000 50, 000

50 km 102, 012 306, 030 204, 020

10 km 2, 550, 252 7, 650, 750 5, 100, 500

5 km 10, 201, 002 30, 603, 000 20, 402, 000

123



Int J Parallel Prog (2013) 41:552–569 559

and triangles for some mesh resolutions. In this table, we can see that the number of
points increases one hundred times if the adopted resolution doubles.

For all the decomposed triangles, there is also a specific number of vertical
atmosphere levels. This number depends of the mesh refinement level. For 200 km
of resolution, we can use around 20 levels, for example, but for higher resolution, this
number needs to be increased, in order to ensure the relationship between resolution
and atmospheric size levels.

Physical data properties of the model are associated to edge and triangle elements
of the mesh, and its specific vertical levels. Ignoring auxiliary data structures, and
considering only physical proprieties, we need at least 30 data structures for a simple
simulation.

If we also consider a long time simulation, in which we need many atmosphere
simulation steps, each one representing a small real elapsed time, even using high
performance architectures, the computational time is not acceptable.

For a parallel execution using at most 32 cores/processors, and execution parameters
of 20 km of mesh resolution, 28 vertical levels, simulating only one day of atmospheric
integrations, where each step represents 60 s of the real elapsed time, we need around
24 h of execution time. That is, for very simple simulation parameters, the simulation
would be almost equal to the real time.

High speed execution of atmospheric models is fundamental to operational activities
on weather forecast and climate prediction, due to execution time constraints—there
is a pre-defined short time window to run a model. The model execution cannot begin
before the arrival of input data, and cannot end after the due time established by user
contracts. Experiences in international weather forecast centers point to a 2 h window to
predict the behavior of the atmosphere in coming days. Operational models worldwide
use the highest possible resolution that allows the model to run during the window on
the available computer system.

Thus, the total execution time elapsed in the simulation is correlated to the number
of elements that represent the domain. However, finer mesh refinement needs to be
adopted only to cover local weather phenomena. In this context, to reduce the execution
time, without loss of precision simulation, different mesh refinement levels can be used.
The best solution to cover local phenomena is to adopt higher mesh resolution in a
global Earth model when it is really necessary, using a run-time mesh refinement.

6 Online Mesh Refinement Implementation

The refinement of meshes at run-time takes into consideration that the domain points
to be refined can be distributed into different processes. Thus, the implementation of
this feature considers that each process must be able to identify whether its respective
subdomain has a region to be refined.

Just as each process is responsible for setting its subdomain in the beginning of the
code execution, each process realizes locally the identification of the area to be refined,
since each point in the domain maintains a reference to geographical coordinates of
the globe.

123



560 Int J Parallel Prog (2013) 41:552–569

For the OMR we stop the execution and refine the distributed mesh on a specific
point or Earth region according to a climatological condition. After this, the iterative
execution proceeds normally.

All distributed processes know the mesh refinement that must be made in its specific
sub-mesh. Each data structure of a mesh point has information about its position on the
globe. Thus, each process knows which points must be refined. After the refinement,
data structures of the new created points will be completed.

7 Performance Evaluation

In order to measure the performance impact of the OMR, we made several experiments.
This section presents the simulation environment, execution parameters, and execution
time measurements.

7.1 Execution Environment

All experimental measurements were obtained using a cluster formed by 6 Sun Fire
X4600 stations, each one composed by 8 quad-core AMD Opteron 2.3 GHz processors
and 128 GB of RAM memory distributed among the nodes of the cluster.

In all executions, we simulated the atmosphere for 24 h ahead. Each timestep sim-
ulates 60 s of the real time of the weather condition. The vertical atmosphere layer is
divided into 28 layers. The number and the size of each one of this layers is chose
according to the parameters adopted in large climatological simulation centers for its
daily weather forecasts.

If a local mesh refinement is called, it is realized 8,700 km around a specific point
of the Earth. The OMR occurred after 12 h of atmosphere simulation.

7.2 Online Mesh Refinement Execution Time Impact

A first test was made in order to analyze the impact of the OMR call on the total exe-
cution time. Figures 6, 7, 8 and 9 present the execution time results of an atmospheric
integration, using a mesh with 100, 67, 50 and 40 km of horizontal mesh resolution,
where an OMR occurs during the execution of the code. The graphics of these fig-
ures show the total execution time and the total time spent to call the OMR, using
1, 2, 4, 8, 16 and 32 processes.

Each column of the graphic represents the total execution time for a determined
number of processes. This time includes the initialization step, iterative step before an
OMR call, OMR execution and the iterative step after an OMR call. We can see that this
time decreases when more processes are used.Consequently, there are performance
gain.

The second measurement (scratched area) of each group of processes pres-ents the
OMR execution time. The time duration of this step is approximately 130, 500, 570
and 800 s for the 100, 67, 50 and 40 km of mesh resolution cases, respectivelly.This
time is a little more than the time spent with the initialization of the model, that is

123



Int J Parallel Prog (2013) 41:552–569 561

Fig. 6 Execution time using
different number of processes
for a 100 km mesh resolution
with OMR call

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

1 2 4 8 16 32

E
xe

cu
tio

n 
T

im
e 

(s
)

Processes

Total
Online Mesh Refinement

Fig. 7 Execution time using
different number of processes
for a 67 km mesh resolution with
OMR call

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

1 2 4 8 16 32

E
xe

cu
tio

n 
T

im
e 

(s
)

Processes

Total
Online Mesh Refinement

115, 400, 415 and 550 s, respectivelly, for the four analyzed cases.The second time
measurement includes all necessary procedures to interrupt the iterative step, to refine
the mesh in each process and to reallocate variables.

The OMR has low impact on the total execution time. The time spent for this refine-
ment is constant independently of the number of processes used in the atmospheric
simulations. The relation between the time in the OMR call and the total execution
time decreases if more high mesh resolutions are used.

123



562 Int J Parallel Prog (2013) 41:552–569

Fig. 8 Execution time using
different number of processes
for a 50 km mesh resolution with
OMR call

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

1 2 4 8 16 32

E
xe

cu
tio

n 
T

im
e 

(s
)

Processes

Total
Online Mesh Refinement

Fig. 9 Execution time using
different number of processes
for a 40 km mesh resolution with
OMR call

 0

 5000

 10000

 15000

 20000

 25000

 30000

1 2 4 8 16 32

E
xe

cu
tio

n 
T

im
e 

(s
)

Processes

Total
Online Mesh Refinement

7.3 Comparison between Static and Dynamic Mesh Refinement

The second test evaluates the execution time impact of a simulation using a runtime
mesh refinement in relation to finer and larger global mesh refinements simulations.
Figure 10 shows a comparison of the parallel execution time (in seconds) of 3 different
configurations using 1, 2, 4, 8, 16 and 32 processes. The first and third columns show
the total execution time using a global mesh resolution of 100 and 50 km respectively.
The second column represents the total execution time for a 100 km grid resolution
where an OMR occurs during the execution of the code.

123



Int J Parallel Prog (2013) 41:552–569 563

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

1 2 4 8 16 32

T
ot

al
 E

xe
cu

tio
n 

T
im

e 
(s

)

Processes

Resolution of 100 Km
Online Mesh Refinement

Resolution of 50 Km

Fig. 10 Execution time using different number of processes for 100, 100 km with OMR and 50 km of mesh
resolution

The results of Fig. 10 show that all configurations have a decrease of the execution
time when a larger number of processes are used. The results demonstrate also that if
we use a double resolution (50 km) instead of a large resolution (100 km), without run
time mesh refinement call, we spend 5 to 8 times more execution time.

The execution time using OMR was always between the 100 km resolution and
the 50 km resolution cases configuration. Thus, the evaluation of the implementation
shows that it is efficient, since not all the surface of the Earth needs to be refined all
the time. In fact, the total execution time increases a little in relation to the 100 km
resolution case.

7.4 Speed up Evaluation of the Iterative Step of the Model

OLAM experimental simulations are made considering the speed up of the iterative
step of the model in parallel simulations. In Figs. 11 and 12 are presented the speed up of
the iterative step before and after an OMR call for a mesh with global resolution of 100
and 50 km, respectively. We range the number of MPI processes among 1, 2, 4, 8, 16
and 32.

In both cases, the white columns presents the speed up before an OMR call and the
scratched columns the speed up after de OMR call. For both cases, the base to calcule
the speed up was the execution time using a single process.

The use of more processes includes more performance in the iterative steps of
the model for both mesh resolution cases. However, the speed up of the iterative
step executed after the OMR call increases less than the speed up of the iterative

123



564 Int J Parallel Prog (2013) 41:552–569

 0

 5

 10

 15

 20

1 2 4 8 16 32

S
pe

ed
 u

p

Processes

Before OMR
After OMR

Fig. 11 Speed up comparison of the iterative step of the model before and after the OMR call for a global
mesh resolution of 100 km

 0

 5

 10

 15

 20

1 2 4 8 16 32

S
pe

ed
 u

p

Processes

Before OMR
After OMR

Fig. 12 Speed up comparison of the iterative step of the model before and after the OMR call for a global
mesh resolution of 50 km

step executed before the OMR call. This occurs because of load unbalance among
the processes. Why, and solutions to solve this issue, are discussed in the next
section.

123



Int J Parallel Prog (2013) 41:552–569 565

8 Improving Load Balance Distribution

The OMR approach leads to unbalanced load distribution after it is called, since the
number of data elements increases in some processes. More data processing is required
on the specific regions of the global domain that were refined. The refined points are
not redistributed among all processes. Some processes may have new data elements
to compute and others not.

8.1 Unbalanced Load Problem

Table 2 presents the number of decomposed elements for a domain with 100 km of
mesh resolution divided in 8 processes before and after the OMR call.

In this table it is possible to see that the number of Vertices, Edges, and Triangles
for the processes 2, 3, 6 and 7 increase after the mesh refinement execution. The
localization of the increased points depends on the place of the Earth atmosphere
where the mesh refinement occurs.

8.2 OpenMP Solution

In order to better distribute the load among the processes, we have added an OpenMP
layer to the MPI program.

OpenMP is a parallel programming interface used to abstract multi-proces-sors
architectures. The interface is also a good solution to explore parallelism in multi-core
systems [3].OpenMP is also a good solution for climatological applications [10,11].

In this work, using OpenMP enables to benefit from thread-based concurrency,
added to the MPI parallelism.Thus, each process divides the load among a specific
number of threads.

Table 2 Unbalancing load after an OMR using 8 processes

Proc. Before online refinement After online refinement

Vertices Edges Triangles Vertices Edges Triangles

0 3,408 9,873 6,468 3,408 9,873 9,873

1 3,394 9,925 6,534 3,394 9,925 6,534

2 3,412 9,952 6,543 5,667 16,549 10,857

3 3,439 10,041 6,605 5,933 17,362 11,404

4 3,421 9,959 6,541 3,421 9,959 6,541

5 3,432 10,042 6,613 3,432 10,042 6,613

6 3,451 10,070 6,622 6,427 18,491 12,067

7 3,452 10,131 6,682 5,952 17,556 11,607

123



566 Int J Parallel Prog (2013) 41:552–569

8.3 Execution Time Using OpenMP Threads

The use of OpenMP threads was evaluated in some atmospheric simulations consider-
ing meshes with initial horizontal resolution of 100 km. Figures 13 and 14 present the
speed up of the iterative step of the model before and after an OMR call, respectively.
In the tests we compare 1, 2, 4 and 8 MPI processes for an atmospheric simulation
using an initial horizontal mesh resolution of 100 km. We run 1, 2, 4 and 8 threads in
each MPI process.

The results show that the use of threads OpenMP increases performance in the
partial iterative steps before and after the OMR execution for all numbers of MPI
processes evaluated.In all cases evaluated in Figs. 13 and 14, with exception of the last
case (8 processes and 8 threads), only 1 workstation was utilized. If 8 MPI processes
and 8 OpenMP threads are executed, then it is necessary to use 2 workstations. Thus,
it is possible to run 8 × 8 threads in distinct cores, but this not increase the speed up
more than the speed up obtained using other number of processes/threads, evaluated
in only workstation.

Table 3 presents comparatively the speed up shown in Figs. 13 and 14.The first col-
umn indicates the kind of the partial iterative execution: 0–12 indicates the simulation
before the OMR, 12–24 points the simulation after the OMR call. The second column
shows the number of MPI processes used in each kind of partial iterative execution.
The range from the third to the seventh column presents the speed up obtained using
1, 2, 4, and 8 OpenMP threads. The initial speed up are based on the sequential execu-
tion of each part of the iterative step. First line uses only OpenMP threads. The third
column uses only MPI processes in the execution. The other mesurements combine
MPI with OpenMP processes in the simulations.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 2 4 8

S
pe

ed
 u

p

Processes

1 Thread
2 Threads
4 Threads
8 Threads

Fig. 13 Speed up of the iterative step executed before the OMR call using different number of OpenMP
threads in a simulation with MPI processes

123



Int J Parallel Prog (2013) 41:552–569 567

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 2 4 8

S
pe

ed
 u

p

Processes

1 Thread
2 Threads
4 Threads
8 Threads

Fig. 14 Speed up of the iterative step executed after the OMR call using different number of OpenMP
threads in a simulation with MPI processes

Table 3 Speed up for the 0–12 h and 12–24 h iterative execution steps

Step Processors 1 2 4 8

0–12 1 1.00 1.85 3.00 4.53
12–24 1 1.00 1.80 3.15 4.36

0–12 2 2.04 3.57 5.81 8.26

12–24 2 2.05 3.48 5.88 8.62

0–12 4 4.05 6.76 11.24 9.70

12–24 4 3.15 4.81 8.35 8.86

0–12 8 7.97 8.16 10.69 13.24

12–24 8 6.18 8.68 10.55 11.11

The results presented in the table show that the second part of the iterative step has
a speed up close to the first part in most of the cases. The results demonstrate that
using more threads improves load balancing for the last part of the iterative step and,
consequently, less total execution time.

9 Conclusions and Future Work

In this paper we have presented OMR as a way to improve the mesh resolution for
climatological models without a significant increase in the execution time. This refine-
ment scheme enables to refine the global mesh of a model during the execution of the
code without rebooting the application. Mesh refinement at execution time is critical

123



568 Int J Parallel Prog (2013) 41:552–569

for climatological models that will cover the impact of local phenomena, inputing
more resolution only if it necessary.

We presented partial and comparative execution time in order to evaluate the over-
head of the OMR. The partial measurement results show that there is a time spent
with the refinement step. However, it pays because we do not need to run the code
considering all Earth surface, with more resolution, all the time. Thus, high resolution
is only adopted when special climatological conditions occur.

We also evaluated a mixed MPI/OpenMP parallel implementation. The code with
OpenMP improves better parallel performance.

We are planning to include other load balancing resources in the OMR in future
work. These solutions involve runtime creation of new processes through the use
of primitives provided by the specification of the norm MPI2 [1,5] and by explor-
ing Graphics Processing Units (GPU) architectures using Compute Unified Device
Architecture (CUDA) [7].

Acknowledgments This work was supported by the Brazilian research foundation Conselho Nacional
de Desenvolvimento Científico e Tecnológico (CNPq)—“National Counsel of Technological and Scientific
Development”.

References

1. Cera, M.C., Pezzi, G.P., Pilla, M., Maillard, N., Navaux, P.: Improving the dynamic creation of processes
in MPI-2. In: Mohr, B., Träff, J., Worringen, J., Dongarra, J. (eds.) Recent Advances in Parallel Virtual
Machine and Message Passing Interface. Lecture Notes in Computer Science, vol. 4192, pp. 247–255.
Springer, Berlin (2006)

2. Chandra, R.: Parallel Programming in OpenMP. Morgan Kaufmann Publishers, San Francisco (2001)
3. Curtis-Maury, M., Ding, X., Antonopoulos, C.D., Nikolopoulos, D.S.: An evaluation of OpenMP on

current and emerging multithreaded/multicore processors. In: Proceedings of the 2005 and 2006 Inter-
national Conference on OpenMP Shared Memory Parallel Programming, IWOMP’05/IWOMP’06, pp.
133–144. Springer, Berlin (2008)

4. Fazenda, A.L., Demerval, S.M., Enari, E.H., Panetta, J., Rodrigues, L.F.: First Time User Guide
(BRAMS Version 4.2) (2011)

5. Gropp, W., Ewing, L., Thakur, R.: Using MPI-2—Advanced Features of the Message-Passing Interface.
The MIT Press, Cambridge (1999)

6. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: High-Performance, Portable Implementation of the MPI
Message Passing Interface Standard. Parallel Comput. 22(6), 789–828 (1996)

7. Kirk, D.B., Hwu, W.W.M.: Programming Massively Parallel Processors: A Hands- on Approach.
Morgan Kaufmann Publishers, San Francisco (2010)

8. MacNeice, P., Olson, K.M., Mobarry, C., de Fainchtein, R., Packer, C.: PARAMESH: A parallel
adaptive mesh refinement community toolkit. Comput. Phys. Commun. 126(3), 330–354 (2000)

9. Marshall, J., Adcroft, A., Hill, C., Perelman, L., Heisey, C.: A finite-volume incompressible Navier-
Stokes model for studies of ocean on parallel computers. J. Geophys. Res. 102(C3), 5753–5756 (1997)

10. Osthoff, C., Grunmann, P., Boito, F., Kassick, R., Pilla, L., Navaux, P., Schepke, C., Panetta, J.,
Maillard, N., Dias, P.L.S., Walko, R.: Improving performance on atmospheric models through a hybrid
OpenMP/MPI implementation. In: The 9th IEEE International Symposium on Parallel and Distributed
Processing with Applications (ISPA 2011). IEEE Technical Committee on Scalable Computing, Busan,
Korea (2011)

11. Osthoff, C., Schepke, C., Panetta, J., Grunmann, P.J., Dias, P.L.S., Kassick, R.V., Boito, F.Z., Navaux,
P.O.A., Lopes, P.P., Fabricio, Souto, R.P.: OpenMP for accelerators performance evaluation on
atmosphere model’s application system. In: Proceedings of XXX Iberian-Latin-American Congress
on Computational Methods in Engineering, 2011, Ouro Preto. Mecanica Computacional Vol. XXX,
pp. -. Asociación Argentina de Mecánica Computacional (AMCA), Ouro Preto, Brazil (2011)

123



Int J Parallel Prog (2013) 41:552–569 569

12. Plewa, T., Linde, T., Weirs, V.G.: Adaptive Mesh Refinement—Theory and Applications. Springer,
Berlin (2003)

13. Schepke, C., Maillard, N., Osthoff, C., Dias, P.: Performance evaluation of an atmospheric simulation
model on multi-core environments. In: Proceedings of Conferencia Latino Americana de Computación
de Alto Rendimiento, pp. 330–332. Instituto de Informática/UFRGS, Gramado, RS, Brazil (2010)

14. Schepke, C., Maillard, N., Schneider, J., Heiss, H.U.: Online mesh refinement in parallel meteorological
applications. In: Proceedings of Conferencia Latino Americana de Computación de Alto Rendimiento,
Colima, Mexico (2011)

15. Schepke, C., Maillard, N., Schneider, J., Heiss, H.U.: Why online dynamic mesh refinement is better
for parallel climatological models. In: 23th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD 2011). IEEE, Vitória, Espírito Santo (2011)

16. Schmidt, G.A., Ruedy, R., Hansen, J.E., Aleinov, I., Bell, N., Bauer, M., Bauer, S., Cairns, B., Canuto,
V., Cheng, Y., et al.: Present-day atmospheric simulations using GISS model E: Comparison to in situ,
satellite, and reanalysis data. J. Clim. 19(2), 153 (2006)

17. Vasquez, T.: Weather Forecasting Red Book. Weather Graphics Technologies, Garland (2006)
18. Walko, R.L., Avissar, R.: The ocean-land-atmosphere model (OLAM). Part I: Shallow-water tests.

Mon. Weather Rev. 136(11), 4033–4044 (2008)
19. Washington, W.M., Parkinson, C.L.: An Introduction to Three Dimensional Climate Modeling, 2nd

edn. University Science Books, Herndon (2005)

123


	Online Mesh Refinement for Parallel Atmospheric Models
	Abstract
	1 Introduction
	2 Related Work
	3 Atmospheric Models
	4 Ocean-Land-Atmosphere Model
	4.1 Global Grid Structure
	4.2 Static Local Mesh Refinement
	4.3 Parallel Implementation

	5 Finer Mesh Resolution Execution
	6 Online Mesh Refinement Implementation
	7 Performance Evaluation
	7.1 Execution Environment
	7.2 Online Mesh Refinement Execution Time Impact
	7.3 Comparison between Static and Dynamic Mesh Refinement
	7.4 Speed up Evaluation of the Iterative Step of the Model

	8 Improving Load Balance Distribution
	8.1 Unbalanced Load Problem
	8.2 OpenMP Solution
	8.3 Execution Time Using OpenMP Threads

	9 Conclusions and Future Work
	Acknowledgments
	References


