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Abstract The OpenUH compiler is a branch of the open source Open64 compiler
suite for C, C++, and Fortran 95/2003, with support for a variety of targets including
x86_64, IA-64, and IA-32. For the past several years, we have used OpenUH to conduct
research in parallel programming models and their implementation, static and dynamic
analysis of parallel applications, and compiler integration with external tools. In this
paper, we describe the evolution of the OpenUH infrastructure and how we’ve used it
to carry out our research and teaching efforts.
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1 Introduction

At the University of Houston, we are pursuing a pragmatic agenda of research into
parallel programming models and their implementation. Our research interests span
language support for application development on high-end systems through embedded
systems. Our practical work considers both the need to implement these languages
efficiently on current and emerging platforms as well as support for the applica-
tion developer during the process of creating or porting a code. These activities are
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complemented by coursework, primarily at the graduate level, that explores the use
of programming languages for parallel computing as well as their design and imple-
mentation.

Starting roughly 10 years ago, we began a program of research into language
enhancements and novel implementation strategies for OpenMP [58], a set of com-
piler directives, runtime library routines and environment variables, which is the de
facto programming standard for parallel programming in C/C++ and Fortran on shared
memory and distributed shared memory systems. We also were interested in learning
how to exploit compiler technology to facilitate the process of OpenMP application
development, with the goals of reducing the human labor involved and helping avoid
the introduction of coding errors. Since that time, our research interests have broad-
ened to encompass a range of parallel programming models and their implementations,
as well as strategies for more extensive support for parallel application creation and
tuning.

In order to enable experimentation, to ensure that we understand the implementation
challenges fully, and to demonstrate success on real-world applications, we strove to
implement our ideas in a robust compiler framework. Moreover, we decided to realize
a hybrid approach, where portability is achieved via a source-to-source translation,
but where we also have a complete compiler that is able to generate object code for
the most widely used ABIs. This permits us to evaluate our results in a setting that is
typical of industrial compilers. Within the context of OpenMP, for instance, our ability
to generate object code helps us experiment to determine the impact of moving the
relative position of the OpenMP lowering within the overall translation, and allows
us to experiment with a variety of strategies for handling loop nests and dealing with
resource contention. It is of great value in our research into feedback optimizations.
Given the high cost of designing this kind of compiler from scratch, we searched for an
existing open-source compiler framework that met our requirements. We chose to base
our efforts on the Open64 [1] compiler suite, which we judged to be more suitable for
our purposes than, in particular, the GNU Compiler Collection [25] in their respective
states of development.

In this paper, we describe the experiences of our research group in building and
using open source compiler based on the Open64 compiler infrastructure. OpenUH
has a unique hybrid design that combines a state-of-the-art optimizing infrastructure
with the option of a source-to-source approach. OpenUH is open source, supports C,
C++, Fortran 95/2003, includes numerous analysis and optimization components, and
offers support for OpenMP 3.0 and Coarray Fortran. OpenUH includes a PTX back-
end from NVIDIA for implementing CUDA, and supports automated instrumentation
as well as providing additional features for deriving dynamic performance information
and carrying out feedback optimizations. It is also the basis for a tool called Dragon
that supplies program information to the application developer and is designed, in
particular, to meet the needs of program maintenance and porting. We hope that this
compiler (which is available at [59]) will complement other existing compiler frame-
works and offer a further attractive choice to parallel application developers, language
and compiler researchers and other users.

The remainder of this paper is organized as follows. Section 2 provides background
on Open64, the basis of our compiler, and the parallel programming models that we
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are working with in our research. In Sect. 3, we describe several of our research
projects which entailed the development and use of OpenUH. Section 4 describes
how OpenUH has been used to support classroom learning of compiler and parallel
language concepts. Section 5 concludes the paper with a discussion of future work in
OpenUH.

2 Background

2.1 Overview of Open64

Open64 is a robust and modern compiler infrastructure which supports C, C++, and
Fortran 95/2003 and includes state-of-the-art analyses and optimizations. The major
modules of Open64 are the multiple language front-ends, the inter-procedural ana-
lyzer (IPA) and the middle-end/back-end, which is further subdivided into the loop
nest optimizer (LNO), global optimizer (WOPT), and code generator (CG). Five lev-
els of a tree-based intermediate representations (IR) called WHIRL exist to support
the implementation of different analysis and optimization phases. They are classi-
fied as being Very High, High, Mid, Low, and Very Low levels, respectively. Open64
also includes two IR-to-source translators named whirl2c and whirl2f which can be
useful for debugging and also, potentially, leveraged for source-to-source compiler
translation.

Open64 originated from the SGI MIPSPro compiler for the MIPSR10000 processor,
and was open-sourced as Pro64 in 2000 under the GNU public license. The University
of Delaware became the official host for the compiler, now called Open64, in 2001 and
continues to host the project today. Over the past 10 years, Open64 has matured into a
robust, optimizing compiler infrastructure with wide contributions from industry and
research institutions. Intel and the Chinese Academy of Sciences partnered early on
to develop the Open Research Compiler (ORC) which implemented a number of code
generator optimizations and improved support for the Itanium target. A number of
enhancements and features from the QLogic PathScale compiler were also merged in,
including support for an x86 back-end.

Open64 has an active developer community including participants from industry
and academic institutions. For example, NVIDIA used Open64 as a code optimizer
in their CUDA toolchain. AMD is active in enhancing the loop nest optimizer, global
optimizer, and code generator. HP has long been active in maintaining the compiler
and supporting related research projects using Open64.

Universities currently working on Open64 projects include, but are not limited
to, University of Houston, Tsinghua University, the Chinese Academy of Sciences,
National Tsing-Hua University, and University of California, Berkeley. For the past
several years, an annual Open64 workshop has been held to provide a forum for
developers and users to share their experiences and on-going research efforts and
projects. As a member of the Open64 Steering Group (OSG), we engage other lead
Open64 developers in the community to help make important decisions for the Open64
project including event organization, source check-in and review policies, and release
management.
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2.2 Parallel Programming Models

2.2.1 OpenMP

OpenMP is a fork-join parallel programming model with bindings for C/C++ and For-
tran to provide additional shared memory parallel semantics. The OpenMP extensions
consist primarily of compiler directives (structured comments that are understood by
an OpenMP compiler) for the creation of parallel programs; these are augmented by
user-level runtime routines and environment variables. The major OpenMP directives
enable the program to create a team of threads to execute a specified region of code
in parallel (omp parallel), the sharing out of work in a loop or in a set of code
segments (omp do (or omp for) and sections), data environment management
(private and shared), and thread synchronization (barrier, critical and
atomic). An explicit asynchronous tasking model is also available to support unstruc-
tured parallelism (task and taskwait), which allows blocks of work (tasks) to be
defined and scheduled for execution on the active thread team. Runtime routines allow
users to detect the parallel context (omp_in_parallel()), check and adjust the number
of executing threads (omp_get_num_threads() and omp_set_num_threads()) and
use locks (omp_set_lock()). Environment variables may also be used to adjust runtime
behavior of OpenMP applications particularly by setting defaults for the current run.
For example, it is possible to set the default thread team size (OMP_NUM_THREADS)
and the default iteration scheduling policy for parallel loops (OMP_SCHEDULE).

Its popularity stems from its ease of use, incremental parallelism, performance
portability and wide availability. Recent research at language and compiler levels,
including our own, has considered how to expand the set of target architectures to
include recent system configurations, such as SMPs based on Chip Multithreading
processors [48], as well as clusters of SMPs [32]. However, in order to carry out such
work, a suitable compiler infrastructure must be available. In order for application
developers to be able to explore OpenMP on the system of their choice, a freely
available, portable implementation was considered to be desirable.

Many compilers support OpenMP today, including proprietary products such as the
Intel compilers, Sun Studio compilers, and SGI MIPSpro compilers. However, their
source code is mostly inaccessible to researchers and they cannot be used to gain an
understanding of OpenMP compiler technology or to explore possible improvements
to it. Several open source research compilers (including Omni [64], Mercurium [6],
Cetus [45], and Rose [49]) have been developed. But none of them translate all of
the source languages that OpenMP supports, and most of them are source-to-source
translators with reduced scope for analysis and/or optimization.

2.2.2 Coarray Fortran

Compiler technology needs to evolve to support parallel programming models for
large-scale distributed systems. Global address space models are attractive because
they provide a familiar programming model. However, there are severe challenges in
getting them to run well at scale. The Partitioned Global Address Space (PGAS) models
enhance GAS by exposing processor-memory affinity, which is critical to efficiently
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Fig. 1 Logical view of memory in CAF

implement GAS models on distributed architectures. Coarray Fortran (CAF) is a PGAS
Fortran extension which has been incorporated into the Fortran 2008 standard. CAF
adds new features to the Fortran language to make Fortran programs execute in parallel
asynchronously. It follows the SPMD (Single Program Multiple Data) model, where
copies of the same program are executed on multiple processing elements with local
memories (referred to as images), which may or may not reside on the same physical
node.

Figure 1 shows the logically shared but partitioned memory view that characterizes
PGAS programming models. Specifying A_coarray(n) without cosubscripts (square
brackets) accesses only the local coarray. This differentiates PGAS from the shared
memory model which does not distinguish between local and remote data. Since the
remote memory access is explicit, it provides a clearly visible marker for potentially
expensive communication operations in the code.

Only objects declared as coarrays can be accessed remotely. Coarrays can be
global/ static or dynamically allocated, but in any case they must exist on all images
(hence, allocation of an allocatable coarray is a collective operation). Coarrays
may be declared with multiple codimensions, in which case the number of images
are logically organized into a multi-dimensional grid. For example, the declaration
real::c(2, 3)[2, 3 : 4, ∗] logically arranges the images into a 2 × 2 × n grid for all
cosubscripted references to the coarray c. A cosubscripted coarray reference generally
indicates a remote memory access. For example, the statement b(5 : 6)[2] = a(3 : 4)
writes to the 5th and 6th element of coarray b on image 2. Similarly, the statement
a(1 : 2) = b(5 : 6)[2] reads from the 5th and 6th element of coarray b on image 2.

CAF provides both a global barrier synchronization statement (sync all) and
a partial barrier synchronization statement (sync images) which may be used to
to synchronize with a specified list of images. Critical sections, locks, and atomic
operations are also part of the language. Additionally, CAF includes several intrinsic
functions for image inquiry such as returning the image index of the executing process
(this_image), the total number of running images (num_images), and the image index
holding a coarray with specified cosubscripts (image_index). Additional features such
as notify/wait, team-based collectives, reductions, and parallel I/O support are being
discussed for inclusion into the Fortran standard.

Having an open-source compiler is important for an emerging language as it pro-
motes sharing of ideas and encourages people to freely experiment with it. There have
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been few public Coarray Fortran implementations to date. Dotsenko et al. developed
CAFC [20], a source-to-source implementation based on Open64 with runtime sup-
port based on ARMCI [56] and GASNet [9]. They used Open64 as a front-end and
implemented enhancements in the IR-to-source translator to generate Fortran source
code to be compiled using GNU compilers. G95 [8] provides a coarray implementation
(with closed-source runtime support). G95 allows coarray programs to run on a single
machine with multiple cores, or on multiple images across homogeneous networks.
In this second mode, images are launched and managed via a G95 Coarray Console.
There has been a recent effort to implement coarrays in GFortran [53], and an updated
design document for this implementation is maintained online. As of this writing, the
gfortran implementation does not yet support for multi-image execution, and coarray
intrinsics are not supported for coarrays with bounds that are determined at runtime.
Rice, more recently, has developed an open source compiler for CAF 2.0 [51] which
uses the ROSE compiler infrastructure.

2.2.3 Performance Tools

In our research, we work with a variety of performance tools for parallel applications.
By combining static analysis from our compiler with dynamic information reported
by these tools, users can more efficiently identify performance bottlenecks in their
codes due to suboptimal data layout, poor memory utilization, communication and
synchronization overheads, etc. Additionally, feedback from tools can be used by the
compiler to direct its optimizations. Many tools are available that can be potentially
used for HPC application development, and most, but not all, focus on detecting
problems in the structure of MPI programs. Existing tools to support some parts of
this process include ParaWise [42], Intel Thread Checker [60], PAPI [10], DynInst [12],
SvPablo [63], INTONE [57], Paraver [61], Vampir [11] and TAU [65] all address some
aspect of performance analysis and tuning. Modeling and prediction tools include
MetaSim [52], PROPHET [23,24], POEMS [5] and DIMEMAS [26]. DIMEMAS
provides postmortem performance prediction for MPI applications.

3 OpenUH Development and Results

The OpenUH [47] compiler is a branch of the open source Open64 compiler suite for
C, C++, Fortran 95/2003, supporting the IA-64, IA-32, Opteron Linux ABI, and PTX
generation for NVIDIA GPUs. Figure 2 depicts an overview of the design of OpenUH
based on Open64. It consists of the front-ends with support for OpenMP 3.0 and Coar-
ray Fortran (CAF), optimization modules, back-end lowering phases for OpenMP and
coarrays, portable OpenMP and CAF runtimes, a code generator and IR-to-source
tools. Most of these modules are derived from the corresponding original Open64
modules. OpenUH may be used as a source-to-source compiler for other machines
using the IR-to-source tools. We have undertaken a broad range of infrastructure
development in OpenUH to support our research in parallel languages, static analy-
sis of parallel programs, performance collection and analysis, and parallel runtime
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Fig. 2 The OpenUH Compiler/Runtime Infrastructure

systems [2,37,38,28,31]. In the following sections we describe how we used OpenUH
to support our research work.

3.1 Support for Scalable OpenMP

A major goal in developing OpenUH was to provide a robust OpenMP compiler for
C/C++/Fortran which can generate high-level source code or optimized binaries. We
improved the underlying Open64 infrastructure for OpenMP, including adding bet-
ter support for IR-to-source output, making the data flow analysis “OpenMP-aware”,
enabling automatic scoping of variables in parallel loops, handling nested parallelism,
and adding performance collection support into the runtime system. We have also
implemented compiler translation strategies for retargeting existing OpenMP applica-
tions to distributed memory systems [34,21].

Anticipating the hardware trends of rapidly increasing degrees of parallelism, a
major thrust of our research has also been exploring strategies for making OpenMP
more scalable. The major bottleneck for OpenMP in this regard is its shared mem-
ory model, for which there is no notion of affinity between shared data and individ-
ual threads. To address this issue, we have used OpenUH to implement support for
thread subteams [33], as well as locality control via data distribution and co-locating
tasks with their associated data [36]. Global barriers can also hinder scalability for
large thread team sizes, so we have also implemented a variety of scalable barrier
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algorithms [55] in our runtime system which may be seleced via a control variable by
the user.

3.1.1 Thread Subteams

From our experience of parallelizing different applications with OpenMP [15], we
found tha the inability to control the assignment of work to subsets of threads in
the current thread team and to orchestrate the work of different threads artificially
limited the performance that we could achieve on large-scale systems. In order to
overcome the first difficulty, we proposed a new clause, onthreads, for work-
sharing constructs that assigns the work to a subteam of the existing threads. The
clause supports flexible worksharing among the logical thread subteams. Addition-
ally, the proposed extension added new library routines to the OpenMP API for creat-
ing and querying subteam information. The code enclosed within a work-sharing
region will be executed by the threads specified in the onthreads threadset,
which consists of some or all of the threads that encounter the construct. Other
threads may proceed past this construct, much as they would if they encountered
an omp single with a nowait. We would consider all threads to have “encoun-
tered” any implicit barrier associated with the construct, but only the threads spec-
ified in the threadset wait on the barrier. If no onthreads clause is present, the
threadset is equal to all threads in the current team (in other words, there is no
change).

We extended the translation by processing the new onthreads clause. The
compiler generates a new function call, ompc_subteam_create, whenever the trans-
lation encounters the clause. This routine creates a new global data structure for
subteam and return its address to a pointer. Note that the subteam structure needs
to be shared by the team of threads in order to synchronize them. We then pass
the pointer into all related OpenMP runtime functions, such as scheduling and bar-
rier. To preserve the backward compatibility, we pass a NULL pointer to these
functions if there is no subteam specified on an OpenMP worksharing directive.
Therefore, the runtime functions are able to distinguish if only a subteam of
threads or the whole team of threads need to participate in the worksharing. Fig-
ure 3 shows an OMP DO construct with the subteam clause specified and its corre-
sponding compiler translation by OpenUH. The source code is generated using the
IR-to-source capability of OpenUH. A subteam structure mp_subteam_7937 is
created and passed into scheduling and barrier functions. The scheduling function
ompc_static_ini t_4 returns an empty workload to threads that are not belonging to
the current subteam. These threads are not waiting in the barrier function ompc_barrier
either.

Our experiments demonstrated that the subteam concept is easy to use and
can greatly enhance the scalability of code. Together with colleagues at NASA
Ames Research Center, we evaluated the performance of four versions of the
NAS BT Multi-zone benchmarks using OpenMP nested parallelism (2 versions),
OpenMP with the subteam implementation, and hybrid MPI+OpenMP [41] on an
SGI Altix system with 512 Itanium 2 processors. Figure 4 presents the results.
The experiments were conducted on an SGI Altix 3700BX2 system with 512
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(a)

(b)

Fig. 3 A compiler translated OpenMP code with the subteam clause. a The original OpenMP program
with subteam. b The corresponding compiler translated code

Fig. 4 Comparison of subteams with equivalent versions of BT multizone benchmark

Itanium 2 processors, which is one of the 20 nodes comprising the Columbia
supercomputer installed at the NASA Ames Research Center. Our experiments
demonstrated that the subteam and hybrid versions are close in performance since
both enable a similar data layout and reuse the data efficiently. Moreover, the
code for the subteam version turned out to be much simpler than the other
versions.
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3.1.2 Locality Language Extension

A major limitation for OpenMP relating to scalability is that its memory model assumes
a flat shared memory space with uniform access time. Given the fact that memory
systems for large-scale parallel systems are generally hierarchical and exhibit non-
uniform access time, we believe that it is important to introduce new features to
OpenMP to manage the data layout and co-locate tasks with data to exploit locality.
We have developed extensions to allow the the programmer to specify a parallel region
mapping with a collection of locations, determine an OpenMP work-sharing construct
to be executed by a set of locations, and allocate an OpenMP task on a specific location.
By specifying the locations in a program, user can control where a task is executed,
bind threads with hardware, and specify data layout with respect to them. A location is
a logical construction for grouping a set of co-located tasks and their associated data.
The proposed extension entails a new environment variable, OMP_NUM_LOCS, which
defines the number of locations used in the application. The execution of parallel work
and the layout of shared data is done with respect to a specified set of locations, using
the onLoc clause and the distribute directive. We refer the reader to [37] for
a more detailed description.

We have developed support for the proposed extensions in the OpenUH compiler.
Runtime support for thread binding and locality management has been incorporated
into the OpenMP runtime using libnuma, a library in Linux systems for supporting
NUMA systems. We have tested the implementation on an SGI Altix NUMA system
(part of the NASA Columbia supercomputer) and a 48-core AMD workstation for
two selected NAS Parallel Benchmarks (NPB) (BT and SP). The OpenMP versions of
NPB3.3 is used as a baseline for performance comparison. We analyzed how support
for data layout management (with the distribute directive) and affinity specifi-
cation in parallel loops (with the onLoc clause) can impact performance, tests we
refer to as data-transposition and loop-affinity respectively. The OpenUH compiler
was installed on both the SGI Altix and the 48-core AMD system. Figures 5 and 6

Fig. 5 Performance comparison on the SGI Altix using the OpenUH compiler
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Fig. 6 Performance comparison on the 48-core AMD system using the OpenUH compiler

show the percentage performance improvement of the new versions over the baseline
version for the Class B and C problems at various thread counts. The “aggregate”
values in the figures show the combined effects of expressing data layout and affinity
with our extensions. Negative values indicate performance degradation. For the SGI
Altix system (see Fig. 5), the results showed performance improvement at large thread
counts (32) from expressing loop affinity with our directives. However, we observed
substantial performance degradation (20 %) from data transposition for SP and no
improvement for BT. On the 48-core AMD system (Fig. 6), there is no performance
gain from applying loop affinity; in fact, negative effects are observed for the Class C
problem. On the other hand, we do observe performance improvement from applying
data transposition for both BT and SP. The improvement for BT is less than 5 %, but
for SP it increases substantially when the number of threads is larger than 8. The larger
problem (Class C) exhibits close to 80 % performance improvement over the baseline
version at 48 threads.

The notion of data layouts via distribution and affinity with loop iterations with
onLoc allows a user to carefully optimize data layout with the data access pattern
and, thus, achieve performance gain on large NUMA systems From the experiments,
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Fig. 7 Overhead measurements for the different barrier algorithms in OpenUH runtime

we observe significant performance impact from different data layouts on the NUMA
system, especially for larger data sets. However, there is still considerable discrepency
in the performance impact for multi-core systems versus distributed shared memory
systems. We are working on improving the implementation to achieve better perfor-
mance portability across different parallel architectures.

3.1.3 Barrier Enhancements

Another feature we have added to enhance the overall performance of OpenMP code is
to make available several different implementations of barrier operations in the runtime
library [55]. We have extended our runtime to accept a user-specified barrier algorithm
best suited for the application’s needs on a specific architecture and given number of
threads. The algorithms supported are blocking, central, dissemination, tour and tree.
Figure 7 shows the time (in microseconds) of the different barrier algorithms in a SGI
3600 Altix system up to 256 threads. After evaluating the different barrier algorithms
with two fluid dynamic applications: GenIDLEST and ASPCG, we found out that
the best barrier algorithm depends on the application characteristics (i.e. memory
intensity) and the total number of threads. Table 1 shows these results.

3.2 Support for OpenMP Tasking Model

OpenUH also includes support for OpenMP 3.0 tasks. This consists of front-end sup-
port ported from the GNU C/C++ compiler, back-end translation we implemented
jointly with Tsinghua University, and an efficient task scheduling infrastructure we
have developed in our runtime library. We have implemented a configurable task pool
framework that allows the user to choose at runtime an appropriate task queue organi-
zation to use. This framework also allows for fast prototyping of new task pool designs.
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Table 1 Best barrier
algorithms for ASPCG
and GenIDLEST

Number of threads ASPCG GenIDLEST

2 Tournament Blocking

4 Dissemination Blocking

16 Tournament/tree Dissemination

32 Tournament Tournament

64 Tournament –

128 Dissemination –

Fig. 8 Speedup with tasking runtime on SGI Altix 350 system

Furthermore, the user may control the order in which tasks are removed from a task
queue for greater control over task scheduling. We have merged these recent improve-
ments in our runtime (including improved nested parallelism and tasking support) into
the official OpenMP 3.0 branch in the Open64.net source repository.

Figure 8 shows the results from the Strassen benchmark comparing our tasking
runtime, based on the Portable Coroutines Library, with the Nanos runtime and Cilk
on an SGI Altix 350 consisting of eight nodes. Each node is an SMP with two Ita-
nium2 processors running at 1.6 GHz with 16 GB of main memory (128 GB total).
All implementations were compiled with GCC 4.2.3 using—O2 optimization lev-
els. In all of our tests, our runtime performs as well as or better than Nanos, and
in some cases it performs better than Cilk. Recently, we added full support for
nested parallel regions and also revamped the task implementation after determin-
ing that the use of the Portable Coroutines Library incurred more overhead than
what is necessary. The use of coroutines provided more scheduling flexibility since
tasks can easily be switched from one thread to another. Thus it provides a useful
mechanism for supporting untied task migration, a feature which to our knowledge
is not well supported in the major vendor implementations. The downside is that
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Fig. 9 Performance of NPB BT-MZ with tasking runtime on dual Nehalem E5520 machine

creating a coroutine with its own stack (64K by default) for every task was very
expensive, and this would more often than not offset its benefits. Removing this over-
head resulted in significant (often an order of magnitude) improvements in execution
times. We are currently investigating more efficient mechanisms for migrating untied
tasks.

Recent performance results for our tasking implementation are shown in Fig. 9
using a version of the NAS Parallel Benchmarks BT-MZ implemented with OpenMP
tasks. Results are taken from a system with dual 2.27 GHz Nehalem E5520 and
32 GB memory capable of 16 threads. Each core has 32 KB L1 and 256 KB L2
caches with each processor sharing 8MB L3 cache. The benchmark was compiled
with both commercial and open source compilers. The following optimization flags
were used: (OpenUH) uhcc compiler,—O2—LNO; (GNU C compiler) gcc 4.6.1,—
O3—fargument-noalias-global; (Oracle) suncc 5.11, -xO3; (PGI) pgcc 11.7, -fast; and
(Intel) icc 12.0.0, -O3 -fno-alias.

Additionally, we have implemented a configurable task pool framework that allows
the user to choose at runtime which specific task pool organization to employ. We
currently have four different task pools implemented that utilize distributed, hierar-
chical, and hybrid queue organizations. Each of these may impact task creation, task
scheduling, or both. This has provided a lighter weight tasking implementation and
easy experimentation of the impacts of using various the task pool organizations with
a given application. This framework also allows a quick implementation of new task
pool designs. Furthermore, the user may control the order in which tasks are removed
from a task queue for greater control over task scheduling. For most implementations
we reviewed, tasks are generally removed from queues in LIFO order (though when
“work-stealing” it occur in FIFO order). This results in what is effectively a depth-
first scheduler, and it appears to be a good default option as it works well for codes
exhibiting data locality. However, we found that for some codes (e.g. the Fibonacci,
Floorplan, and NQueens kernels) where data locality isn’t as much a concern, it is
best to employ a breadth-first scheduler (i.e. tasks are always removed in FIFO order).
For more details on the runtime implementation for tasks in OpenUH, the reader may
refer to [43].
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3.3 Coarray Fortran Compilation

In a joint project between UH and Total, we have investigated CAF as a viable program-
ming model for production Oil and Gas applications. In contrast to other open-source
implementation efforts, our approach is to use a single, unified compiler infrastruc-
ture to translate, optimize and generate binaries from CAF codes. CAF support in
OpenUH [22] comprises three areas: (1) an extended front-end that accepts the coar-
ray syntax and related intrinsic functions, (2) back-end optimization and translation,
and (3) a portable runtime library.

3.3.1 Front-End

We modified the Cray Fortran 95 front-end that comes with OpenUH to support our
coarray implementation. Cray had provided some support for CAF syntax, but its
approach was to perform the translation to the underlying runtime library in the front-
end. It accepted the [ ] syntax in the parser, recognized certain CAF intrinsics, and
it targeted a SHMEM-based runtime with a global address space. In order to take
advantage of the analysis and optimizing capabilities in the OpenUH back-end, we
needed to preserve the coarray semantics into the back-end. To accomplish this, we
adopted a similar approach to that used in Open64/SL Fortran front-end from [20],
where co-subscripts are preserved in the IR as extra array subscripts. We also added
support for CAF intrinsic functions such as this_image,num_images,image_
index, and more as defined in the Fortran 2008 standard.

3.3.2 Back-End

We have in place a basic implementation for coarray lowering in our back-end and
are in the midst of adding an analysis/optimization phase. The current implementation
will generate communication based on remote coarray references. Suppose the Coarray
Lowering phase encounters the following statement:

A(i, j, 1 : n)[q] = B(1, j, 1 : n)[p] + C(1, j, 1 : n)[p] + D[p] (1)

This means that array sections from coarrays B and C and the coarray scalar D are
brought in from image p. They are added together, following the normal rules for array
addition under Fortran 90. Then, the resulting array is written to an array section of
coarray A on process q. To store all the intermediate values used for communication,
temporary buffers must be made available. Our translation creates 4 buffers t1, t2, t3,
and t4 for the above statement. We can represent this statement in the following way:

A(i, j, 1 : n)[q] ← t1 = t2← B(1, j, 1 : n)[p] + t3← C(1, j, 1 : n)[p]
+t4← D[p] (2)

For each expression of the form t ← R(. . .)[. . .], the compiler generates an allo-
cation for a local communication buffer (LCB) t of the same size as the array section
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R(. . .). The compiler then generates a GET runtime call. This call will retrieve the
data into the buffer t using an underlying communication subsystem (either ARMCI
or GASNet, as specified by the user). The final step is for the compiler to generate a
deallocation for buffer t . An expression of the form L(. . .)[. . .] ← t follows a similar
pattern, except the compiler generates a PUT runtime call.

get( t2, B(1, j, 1:n), p )
get( t3, C(i, j, 1:n), p )
get( t4, D, [p] )
t1 = t2 + t3 + t4
put( t1, A(i, j, 1:n), q )

The above pseudo-code depicts the communication pattern generated in the initial
lowering phase for the statement representation given in (2). A subsequent optimiza-
tion will convert GET and PUT calls to non-blocking optimization and use data flow
analysis to overlap communication with computation and potentially aggregate mes-
sages, similar to work described in [17] which was also done in an Open64-based
compiler.

Fairly early in the back-end processing, a F90 lowering phase is carried out in which
F90-supported elemental array operations are translated into loops. We make use of
the higher-level F90 array operations, supported by the very high WHIRL IR in our
compiler, for generating block communication in our translation. The implemented
translation strategy is as follows:

1. Lower CAF Intrinsics: Calls to this_image and num_images are replaced
with loads of external symbols representing the runtime-initialized variables
_this_image and _num_images, respectively.

2. Lower Co-indexed References: A co-indexed coarray variable signifies a remote
access. ARRAY and ARRAYSECTION nodes in the compiler IR are processed
to determine if they represent a co-indexed array reference. A temporary local
communication buffer (LCB) is allocated for either sending (if it is a write) or
receiving (if its read) the accessed elements.

3. Symbol Table Cleanup: After coarrays are lowered, their corresponding type in
the WHIRL symbol tables are adjusted so that they only contain the local array
dimensions.

One of the key benefits of the CAF programming model is that programs are
amenable to aggressive compiler optimizations. The back-end also consists of a
prelowering phase which normalizes the IR emitted from the front-end to facil-
itate dependence analysis. This will enable many optimizations, including hoist-
ing potentially expensive coarray accesses out of loops, message vectorization
where the Fortran 90 array section syntax is not specified by the programmer,
and generating non-blocking communication calls where it is feasible and prof-
itable.
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3.3.3 Runtime

The implementation of our supporting runtime system relies on an underlying com-
munication subsystem provided by ARMCI [56] or GASNet [9]. We have adopted
both the ARMCI and GASNet libraries for most communication and synchronization
operations required by the CAF execution model. This work entails memory manage-
ment for coarray data, communication facilities provided by the runtime, and support
for synchronizations specified in the CAF language. We have also added preliminary
implementation of reductions in the runtime.

CAF lacks many of the features provided by MPI such as non-blocking commu-
nication. Since remote communication is a major performance bottleneck on dis-
tributed memory systems, the implementation is responsible for hiding latency by
reducing communication or overlapping it with computation. We have implemented
optimizations in the CAF runtime to address this. Because CAF has a relaxed con-
sistency memory model, we get perform optimizations to cache remote coarray data
and prefetch data. A get-cache is used to reduce the number of remote reads, and
non-blocking prefetching is used to increase communication-computation overlap. To
improve remote write performance, we make all remote writes automatically non-
blocking.

3.3.4 Evaluation Using Seismic Code

Total performs seismic exploration to find oil both on land and beneath the sea. Sound
energy waves are created on the surface using dynamites. Sound waves travel at dif-
ferent velocity in different kind of materials. The timings of the reflected waves are
recorded using geophones and hydrophones. The timings are processed to create seis-
mic profiles using different mathematical models. The programs that are used to eval-
uate our implementation’s performance are part of this process.

The experiments are performed on a cluster of 330 compute nodes (2,640 cores)
which have a peak performance of 29.5 TFLOPS. Each node has 2 Intel Nehalem quad-
core CPUs, with each core operating at a frequency of 2.8 GHz. The nodes are diskless
and have 24 GB memory. The interconnect is QDR Infiniband on 8X PCIe 2.0 in a fat
tree topology. The upload and download bandwidth of the interconnect is 40 Gbps.
It uses a shared parallel file system. The MPI version of the program are executed
using Intel MPI version 12. MPI uses 2-sided non-blocking send and receive calls,
mpi_isend and mpi_irecv. The compiler flag -fp-model precise is used to ensure that
floating point operations conform to IEEE standard. Compiler optimization level—O3
is used for both UHCAF (the OpenUH implementation of CAF) and MPI. In order to
isolate performance over the communication network, we ran these experiments with
only one process per SMP node.

The Titled Transverse Isotropic (TTI) Wave Equation code models an-isotropic
media and requires six 3-D matrices to store the timing data, which is subdivided to
be processed by each image. After each iteration the ghost cells is exchanged. Due to
huge memory requirement, the program cannot be executed with less than 16 images.
The Open MPI version uses traditional assumed shape array declarations instead of
dynamic allocation (to prevent performance impact). The program is executed twice
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Table 2 Total execution time
(seconds) for 16 GB domain size

Buffer (GB) # Processes UHCAF Open MPI Intel MPI

2.08 16 2084.81 3149.93 2128.65

1.15 32 1094.02 1559.49 1172.55

0.61 64 519.54 866.08 528.76

0.26 128 276.01 449.17 271.15

with Intel MPI, using the xhost flag, which tells the Intel compiler to optimize for the
specific hardware.

Table 2 compares the total execution time of the TTI program for the OpenUH
CAF implementation and various MPI implementations. The matrix dimensions are
1, 024× 2, 048× 2, 048 with 4 ghost points. The buffer size in the table is the sum of
all the communication buffer of all processes. Note that it does not include file IO. The
buffer size in the table is the sum of all the communication buffer of all processes. The
CAF performance outperforms the Open MPI implementation by a significant margin,
and yields similar performance on this code to the tuned Intel MPI implementation.

3.4 Compiler Analysis for Parallel Programs

Traditionally, compiler analysis has dealt with sequential programs. The non-
determinism introduced by parallel programming models and the sheer complexity
of parallel architectures has made effective static analysis for parallel programs a sig-
nificant challenge. We have developed new analyses in OpenUH to enable the compiler
the reason about the parallelism expressed in applications and expose these results to
users and tools. In this section, we describe extensions to the OpenUH cost model
that we developed for OpenMP parallel loops as well as extensions to the data flow
analysis for shared memory parallelism.

3.4.1 Cost Models for Parallel Programs

OpenUH includes a set of cost models inherited from Open64 loop nest optimizer
(LNO) [68] that can be used to estimate, in CPU cycles, the cost of executing singly
nested loop (SNL) nests. SNL loop nests comprise perfectly nested loop nests, and
imperfect ones that are eligible to be transformed into perfect ones. The compiler
uses its cost models to choose a combination of different loop level optimizations,
including transformations such as arbitrary loop interchange, tiling and outer loop
unrolling. The cost model may also guide automatic parallelization. There are three
major models: the processor model, the cache model, and the parallel model. The
processor model is used to estimate the CPU cycles needed to execute one iteration
of an SNL loop, without considering latencies from the memory hierarchy, while
taking into account register spilling and dependencies between memory operations.
The cache model helps predict cache misses the associated penalty cycles required to
execute inner loops. The parallel model is used to predict the costs of parallelizing a
given loop, taking into account overheads from the fork/join operations.
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Fig. 10 Equations of cost model for OpenMP
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Fig. 11 Modeling schedule(static,n) for matrix-matrix multiply on 4 threads

We extended the existing parallel model to model explicit parallel constructs in
OpenMP programs, which we called an OpenMP cost model. OpenUH models the
cost for each encountered parallel regions, which may in turn contain multiple work-
sharing regions and synchronization constructs. The formulas used for this are shown
in Fig. 10, and a more detailed explanation of the models can be found in [46]. We
evaluated our cost model using a classic parallel matrix-matrix multiplication (MMM)
kernel, which has also been widely used in previous research [67,69] due to its impor-
tance in scientific numerical computation. The results of modeling OpenMP with
schedule clause is given in Fig. 11 using array size 1,000×1,000 with 4-thread exe-
cution. Only static scheduling results are shown because dynamic and guided
scheduling have very similar results. While our model has clear room for improve-
ment in terms of absolute accuracy, its ability to capture relative performance using
varying iteration chunk sizes for the loop schedule is sufficient to help guide OpenMP
compilation or provide hints back to the user.

We have also worked to create a framework for performance modeling of hybrid
OpenMP and MPI applications [4,3]. We designed our model to capture the communi-
cation and computational overheads introduced by the OpenMP and MPI programming
models. Our methodology is to combine static information about the application and a
system profile to model expected application performance. We used the OpenUH com-
piler to create an application signature via static analysis of the source code. Then, we
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used the Sphinx benchmark and Perfsuite to generate profiles that detail performance
information for various communication operations and overheads due to paralleliza-
tion on the system. The static information is saved into XML format to allow easy
inspection by developers and to also allow other performance and analysis tools to
exploit it.

3.4.2 Parallel Data Flow Analysis

In past work [35,38], we have designed and implemented an extension to the data
flow analysis framework (PDFA) in OpenUH to describe data flow between concur-
rently executing threads in an shared memory parallel regions. For this work, we
implemented a Parallel Control Flow Graph (PCFG) for representing OpenMP pro-
grams in order to enable aggressive optimizations, while guaranteeing correctness.
The PCFG is not unlike the Program Execution Graph and the Synchronized Control
Flow Graph proposed by other researchers [7,14]. The distinction between our PCFG
and their flow-graph is that ours is based upon the relaxed memory consistency model
of OpenMP, and its barrier and flush synchronizations instead of event-based synchro-
nizations (such as signal-wait). We have also added support for Parallel SSA (PSSA)
form, an extension of SSA that represents reaching definitions for shared variables
within parallel regions. We incorporate ψ- and π -functions into our representation,
based in part on work by Lee et al. [44].

Data flow analysis for UPC was performed earlier in Open64 in the Berkeley UPC
compiler [16], but this was concerned with intra-thread data flow. We are currently
expanding on our OpenMP PDFA framework so that it may be used for data flow
analysis of PGAS implementations such as Coarray Fortran. In this context, we are
interested in dependencies that exist for statements executing on different images, and
exploring how static analysis can be used to reduce communication and synchroniza-
tion costs.

3.5 Instrumentation and Performance Analysis

OpenUH provides a complete compile-time instrumentation module covering differ-
ent compilation phases and different program scopes. We have designed a compiler
instrumentation API that can be used to instrument a program. It is language indepen-
dent to enable it to interact with performance tools such as TAU [50], VampirTrace and
KOJAK [54] and support the instrumentation of Fortran, C and C++. The instrumen-
tation module in OpenUH can be invoked at six different phases during compilation,
which come before and after three major stages in the translation: inter-procedural
analysis, loop nest optimizations, and SSA optimizations. For each phase, the fol-
lowing kinds of user regions can be instrumented: functions, conditional branches,
switch statements, loops, call sites, and individual statements. Each user-region type
is further divided into subcategories when possible. For instance, a loop may be of
type do-loop, while-loop. Conditional branches may be of type if-then, if-then-else,
true-branch, false-branch, or select. MPI operations are instrumented via PMPI so that
the compiler does not instrument these call sites. OpenMP constructs are handled via
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runtime library instrumentation, where it captures the fork and joint events, implicit
and explicit barriers. Procedure and control flow instrumentation is essential to relate
the MPI and OpenMP-related output to the execution path of the application, or to
understand how constructs behave inside these regions.

3.5.1 Selective Instrumentation

We take advantage of the interprocedural analysis within the compiler to reduce the
number of instrumentation points. We adapted the inlining methodology to enable
selective instrumentation, for which we have defined a cost model in the form of pro-
cedures scores. The instrumentation algorithm locates procedures that are significant
and are infrequently called and have large bodies. We call a procedure significant
if it contains many callsites and is well connected in the callgraph. Our cost model
consists of three metrics in the form of instrumentation scores. The first metric com-
putes the weight of the procedure using the compilers control flowgraph, which is
defined as PUweight = (5 × total basic blocks) + total statements + total callsites.
As can be seen, this metric puts emphasis on procedures with multiple basic blocks.
If run- time information is known, the PUweight formula will use the number of
times or effective number of basic blocks, statements and callsites invoked at runtime.
The other metric we use is the frequency with which a procedure is invoked, tak-
ing their position within loop nests into account. The formula used is: PUloop_score
= (100 − loopnest level) × 2,048. This formula gives higher scores to procedures
invoked with fewer nesting levels. The third metric is a score that quantifies how
many calls exist within a procedure. PUcallsite_score = (callsites in callee)× 20,482.
This formula gives a small score to procedures invoked as leaf nodes in the call-
graph or that have few calling edges. The constants of the formulas were determined
empirically based on the inlining algorithm of the compiler which was tuned to avoid
under or over inlining. Our assumption here is that important procedures are con-
nected with others, and thus are associated with several edges in the callgraph. It is
important to note that we will not count callsites to procedures that are not going
to be instrumented. The overall score used to decide whether we will instrument a
procedure is as follows: I nstrumentationScore = PUweight + PUloop_score +
PUcallsi te_score.

Our strategy for computing this score means that we will favour procedures with
large bodies, invoked few times and with multiple edges connecting them to other
procedures in the callgraph. We avoid the instrumentation of small procedures invoked
at high loopnest levels and that are leaf nodes in the callgraph. With this score we then
define a threshold that can be changed depending on the size of the application, in
order to avoid over or under-instrumentation. Also, we generalize our approach to take
into consideration the lowest score that a procedure has from its different callsites.
If a score for a procedure is below a pre-defined threshold, the procedure will not
be instrumented. Instrument Procedure < Threshold < Do not Instrument When this
method is applied to the NAS benchmarks, we were able to reduced significantly the
overhead for profiling. Figure 12 shows the overhead of using selective instrumentation
versus full procedure instrumentation using TAU in a Altix 3600 system using four
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Fig. 12 The overhead of selective instrumentation versus full instrumentation in the NAS OpenMP parallel
benchmarks

threads. We can see that our methodology reduces the overall profiling overhead in
the code.

3.5.2 Compile-Time Instrumentation: A Case Study

In this section, we present some performance numbers gathered in the tuning envi-
ronment. The OpenUH compiler selectively instruments the GenIDLEST with APIs
connected with performance tools TAU and KAJAK. The functionality provides a
great convenient way to gather and analyze performance data with little overhead. By
using the environment, the purpose of the work is to understand why the performance
the OpenMP version of GenIDLEST is slower than the corresponding MPI program on
a distributed shared memory system. The OpenMP version is slower by a factor of 2.5
times when we used 8 and 16 threads. The procedure diff_coeff and pc_implicit form
part of the main computational phase and they consume most of the computational
time in our profiling. We then further apply a do loop level instrumentation auto-
matically using OpenUH, and we found that there are two main computational loops
taking significant amount of time in the procedure diff_coeff up with eight OpenMP
threads.

Using the performance algebra from CUBE (which is integrated with OpenUH),
we can see that the metric that most varies among the different loops are the exception
and flush counters. Exception and flush counters indicate that the memory access
exceptions happens due to page faults and requires system handling. We believe that
the reason is that there are much more remote memory accesses in the OpenMP version
that over saturation of the NUMA link to fetch data. Delays in the interconnect access
are probably the cause of exceptions and make the processor to flush data or context
switch. To optimize the code we applied the data privatization and data placement
strategy and the performance of the procedure is greatly improved. Figure 13 shows the
performance after privatization and data placement strategy is applied, which is similar
to the performance show in for the MPI version. By conducting the optimization, the
procedure gains 10 times speedup, and it improves the overall application performance
by 20 %.
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Fig. 13 Timings for GenIDLEST procedures before and after privatization. It also contains the timings for
the MPI version of the code

3.5.3 OpenMP Collector API

The OpenMP Collector API was proposed as a standard means of enabling perfor-
mance tools to interact with OpenMP implementations [40]. The collector’s event-
based interface provides bi-directional communication between the OpenMP runtime
library and performance tools, thereby overcoming the lack of standard interfaces in
the runtime layer. A performance tool that utilizes the collector interface may gather
information about a program’s execution from the runtime system by providing call-
back handlers for specific OpenMP collector events. The runtime library will notify
the collector tool when the execution reaches a specific point that corresponds to the
registered OpenMP collector event.

We have implemented the collector tool API for OpenMP applications within our
runtime [13,30]. Performance tools may issue requests to the runtime library as the
application is running to query important state information. To satisfy these requests,
we have added support for (1) initiate/pause/resume/stop event generation, (2) respond-
ing to queries for the ID of the current/parent parallel region, and (3) responding to
queries for the current state of the calling thread. By running an application with a
performance tool that uses this API, the user can uncover important information about
their program, for example synchronization costs. The goal of this work is to provide
a mechanism to collect the OpenMP events with minimal overhead. Figure 14 shows
the overhead of our current implementation of the collector API with the NAS parallel
benchmarks with different number of threads. The overhead is minimal is below 2 %
in most of the benchmarks.

3.5.4 Optimization Framework Based on Collector API

It is often straightforward to develop a shared memory parallel program using OpenMP,
difficult to get good performance. be difficult. Deep understanding about a program’s
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Fig. 14 The overhead of the OpenMP collector API for the NAS parallel benchmarks with different number
of threads

dynamic behavior, particularly with respect to its data accesses, is needed in order to
improve its behavior. Information on data accesses may enable the compiler, or the
application developer, to improve data locality on a NUMA system and avoid more
subtle performance problems such as those caused by false sharing. False sharing
occurs when two or more threads access data on the same cache line nearly simulta-
neously and one of the accesses writes data. The cache line will be invalidated when
it is written to, and must be refetched from main memory before other threads may
use data on the same line. Thus false sharing can lead to substantial performance
degradation. Yet it can be very hard for the application developer to detect. In [29], we
showed that the OpenMP collector interface introduced above is useful for directing
performance data collection by starting and stopping hardware performance counter
at specific points. As a result, it can be the starting point for a variety of strategies to
collect and exploit data pertaining to dynamic OpenMP program behavior in order to
improve the code.

We have designed a collector-based dynamic optimization framework, shown in
Fig. 15, that uses the collected performance data as feedback to affect the runtime
behavior of the program, and have utilized it to help optimize data accesses in an
OpenMP code. The framework utilizes the collector interface to communicate with
the OpenUH OpenMP runtime and direct the performance monitoring and program
optimization. It uses various open source libraries to collect performance data and
apply optimization strategies.

The collector tool coordinates the optimization activity and is thus at the heart of
the framework. This component utilizes the collector interface to communicate with
the OpenMP runtime and gain insight about a program’s execution. The performance
monitoring component utilizes the processor’s hardware counters to investigate the
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Fig. 15 Dynamic optimization framework using the collector interface

performance characteristics of an application. It uses the libpfm library to access a
processor’s specific features, such as the DEAR [39] that is available on the Itanium2
processor, in order to pinpoint the specific location in the program that is causing
performance problems.

We have demonstrated its use by creating the means to track the data layout on a
NUMA platform and identify arrays that involve many non-local data accesses; we
have also used it to accurately detect memory accesses that give rise to false sharing,
which often incurs a high penalty. Our solution requires two phases, one to gather
the required performance data and other information that enables the system to map
this data to program constructs, and a subsequent phase that uses this information to
apply the desired optimizations. In [66], we described how used this framework to help
identify false sharing and alleviate its impact to improve scalability and the reader can
refer to this paper for a more detailed discussion. In Fig. 16, we see speedup results
for several codes in the Phoenix [62] benchmark suite. Our framework was able to
identify false sharing problem existed for histogram, linear_regression, reverse_side,
string_match, work_count. Significant improvements were obtained for histogram and
linear_regression using our framework, while modest improvements were obtained
for string_match and work_count.

4 OpenUH in Teaching and Learning

We have used our compiler infrastructure to support our instructional efforts in a grad-
uate course offered to Computer Science students. In that context, the richness of this
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(a) (b)

Fig. 16 Alleviating false sharing problem using a dynamic optimization framework. a The speedup of the
original program. b The speedup after adjusting the memory alignment

infrastructure has made it a valuable resource. For example, we have illustrated our
discussion of the roles and purposes of various levels of intermediate representation
by showing how OpenUH represents selected constructs and simple executable state-
ments. We are able to get students to apply certain features and then output source code.
Even though some help is needed to explain the structure of this output code, it offers
insight into the manner in which the compiler applies transformations. Moreover,
students have routinely successfully carried out minor adaptations to the compiler,
or retrieved specific information from its internal structures. Advanced topics such
as Hashed SSA representation for indirect memory operations [19], and SSA par-
tial redundancy elimination [18] can be understood more concretely with the help of
OpenUH’s trace functionality.

Support for parallel computing via efficient implementations of parallel program-
ming models and parallelization strategies is a common theme in our compiler courses.
For this purpose, we have used OpenUH to illustrate how parallelism can be repre-
sented and analyzed with a modern compiler infrastructure. Students have explored
compilation techniques for shared memory models and PGAS models using OpenUH.
Because OpenUH shares a common code base with other available compilers based on
Open64, familiarity with OpenUH has also helped students study other Open64-based
programming model implementations including Berkeley UPC compiler[17] and the
HICUDA compiler [27].

5 Future Work

In this paper, we have described our development of the OpenUH compiler and how we
have used it to support our research in supporting programming models for high per-
formance computing. Active development in OpenUH is on-going. We are currently
developing support for the latest OpenMP 3.1 standard, and exploring new imple-
mentations for mapping parallel work to hierarchical and potentially heterogeneous
parallel systems. We are also working on new IRs for representing task dependence
graphs, applying transformations on them, and executing them efficiently with our
runtime task scheduler.

Compiler techniques for PGAS languages is an important area of research that we
are heavily involved in. In addition to CAF, a UPC implementation is underway in
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OpenUH and should be available by the end of 2012. We will be exploring analyses
and transformations for PGAS languages that can be used for both CAF and UPC
programs compiled with OpenUH. We are also studying strategies for analyzing and
optimizing hybrid codes (e.g. programmed with PGAS languages and OpenMP).

A third major thrust of our future work will be continued development of infrastruc-
ture to interface the OpenUH compiler with program analysis and performance tools.
We envision a “glass box” paradigm, in which infrastructure is in place for easily
sharing information between the compiler and tools in a cohesive development envi-
ronment.
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