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Abstract This paper provides an overview and an evaluation of the Cetus source-
to-source compiler infrastructure. The original goal of the Cetus project was to create
an easy-to-use compiler for research in automatic parallelization of C programs. In
meantime, Cetus has been used for many additional program transformation tasks.
It serves as a compiler infrastructure for many projects in the US and internation-
ally. Recently, Cetus has been supported by the National Science Foundation to build
a community resource. The compiler has gone through several iterations of bench-
mark studies and implementations of those techniques that could improve the parallel
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performance of these programs. These efforts have resulted in a system that favorably
compares with state-of-the-art parallelizers, such as Intel’s ICC. A key limitation of
advanced optimizing compilers is their lack of runtime information, such as the pro-
gram input data. We will discuss and evaluate several techniques that support dynamic
optimization decisions. Finally, as there is an extensive body of proposed compiler
analyses and transformations for parallelization, the question of the importance of the
techniques arises. This paper evaluates the impact of the individual Cetus techniques
on overall program performance.

Keywords Automatic parallelization · Compiler infrastructure ·
Source-to-source translation · Performance

1 Introduction

Cetus is an infrastructure for research on compiler optimizations for multicores, with
an emphasis on automatic parallelization. We have created a compiler infrastructure
that supports source-to-source transformations, is user-oriented, easy to use, and pro-
vides the most important parallelization passes as well as the underlying enabling
techniques.

This paper provides an overview of Cetus. A more in-depth description is found
in [13]. We will put emphasis on the description on new Cetus capabilities; in partic-
ular, we will discuss the important issue of making optimization decisions at runtime.

Cetus is already in use by a number of research groups in the US and world-
wide [2,3,5,11,17,21,27,33,34]. In our ongoing work, we are applying the infrastruc-
ture for creating translators that convert shared-memory programs written in OpenMP
into other models, such as message-passing and CUDA (for Graphics Processing
Units) [20].

This paper also pursues the question of the importance of the individual optimi-
zation techniques in a parallelizer. Previous studies of this question have discussed
the effectiveness of automatic parallelization and restructuring techniques on the Per-
fect Benchmarks [7,14]. The techniques analyzed included reduction substitution,
recurrence substitution, induction variable elimination, scalar expansion, forward
substitution, stripmining, and loop interchange. The studies found that 50 % of the
programs showed a respectable improvement from autoparallelization and that the
scalar expansion technique proved to be the most effective, followed by reduction
substitution. Other work aimed at evaluating the overall performance of parallelizing
compilers in terms of improved loop timings [19,26,29] and the number of loops that
can be parallelized [9].

Building on the methodologies applied in these previous studies, the present paper
comprehensively evaluates modern autoparallelizers and their underlying techniques
for today’s multicores. We present overall program performance results for the NAS
Benchmarks when parallelized by Cetus, by Intel’s ICC compiler, and by hand. We
evaluate the effectiveness of dynamic optimization decision support and measure the
importance of the individual analysis and transformation techniques in Cetus. A key
idea of our methodology is the use of a customizable empirical tuning system [24],
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which is part of our parallelizer. Used for dynamic optimization decision support, this
system can navigate through a large search space of optimization variants and identify
the best. Used for our evaluation study, the same system supports the comprehensive
exploration of compiler techniques that can be applied to individual loops in our pro-
gram suite. Furthermore, by exploring combinations of techniques in many variants,
this methods can identify interactions between techniques.

2 Components of Cetus

Cetus consists of a C parser, an internal representation, and a set of analysis and
transformation passes with emphasis on automatic parallelization. In this section we
overview the internal representation and the passes currently available in the Cetus
compiler.

2.1 Internal Representation

Cetus’ internal program representation (IR) is implemented in the form of a Java
class hierarchy. A high-level representation provides a syntactic view of the source
program to the pass writer, making it easy to understand, access and transform the
input program. For example, the Program class type represents the entire program
that may consist of multiple source files. Each source file is represented as a Trans-
lationUnit. Other base IR object types are Statement, Declaration and Expression.
Specific source constructs are represented in the IR by classes that are derived from
these base classes, e.g., ExpressionStatement represents a Statement that contains an
Expression, and an AssignmentExpression represents an Expression that assigns the
value of the right-hand side to the left-hand side. Figure 1 illustrates how the input
program is represented in Cetus. There is complete data abstraction, and pass writ-
ers only manipulate the IR through access functions. Important features of the IR
include:

– Traversable objects: All Cetus IR objects are derived from a base class Travers-
able. This class provides the functionality to iterate over lists of objects in a generic
way.

– Iterators: Breadth-first, depth-first and flat iterators are built into the functionality
to provide easy traversal and search over the program IR.

– Symbol table: Cetus’ symbol table interface provides information about identifi-
ers and data types. Its implementation makes direct use of the information stored
in declaration statements in the IR. There is no separate and redundant symbol
table storage.

– Annotations: Comments, pragmas, directives, and other auxiliary information
about IR objects can be stored in Annotation objects. An annotation may be asso-
ciated with a statement (e.g., an OpenMP directive belonging to a for statement)
or may stand independently (e.g., a comment line).
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Fig. 1 An input program and its internal representation in Cetus. (Full internal representations down to
expressions are omitted)

Table 1 Major passes
implemented in Cetus

General passes Parallelization passes

Symbolic analysis Induction variable recognition/substitution

Points-to/alias analysis Reduction recognition/transformation

Function inlining Scalar/array privatization

USE/DEF chain analysis Data dependence analysis

Miscellaneous Loop parallelizer

2.2 Analysis and Transformation Passes

The main capability of the Cetus compiler is automatic parallelization, and many of
its passes were developed to support this functionality. Advanced program analysis
and transformation techniques are required to achieve good automatic parallelization.
These techniques range from general analysis, such as alias analysis, to parallelization-
specific techniques, such as privatization. We overview the passes implementing these
techniques in two categories, general passes and parallelization passes, as summarized
in Table 1. General passes support automatic parallelization as enabling techniques.

2.2.1 Symbolic Analysis

Like its predecessor Polaris [6,22], a key feature of Cetus is its ability to analyze
the represented program in symbolic terms. This ability is implemented in terms of a
powerful expression manipulator and range analysis, which propagates value ranges
of variables through the program. The ability to manipulate symbolic expressions
is essential when designing analysis and transformation algorithms that deal with
real programs. For example, a data dependence test can easily extract the necessary
information if array subscripts are normalized with respect to the relevant loop indices.
Cetus supports such expression manipulations with tools that simplify and normalize
symbolic expressions. Figure 2a shows examples of these capabilities.

Range analysis provides an environment in which the values of two symbolic
expressions can be compared at any program point. This environment consists of
the range propagation pass, which collects value ranges of integer-typed variables,
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(a)

(b)

Fig. 2 Symbolic expression simplification and normalization provided in Cetus (a) and example usages
of symbolic range analysis (b)

and the manipulation interfaces. The latter enables value comparisons or manipula-
tions, such as constant propagation/substitution and bounding values of expressions.
Figure 2b shows a code section, its range environment, and an example usage that
bounds expressions. Range analysis and its manipulation techniques are widely used
in Cetus passes. They enable the passes to obtain and reason about compile-time
information available in the program.

2.2.2 Points-to and Alias Analysis

Pointer variables in the C language complicate all aspects of compiler analysis and
transformations; alias analysis is a necessary prerequisite for other passes’ correct per-
formance. The alias analysis pass implemented in Cetus was built on top of points-to
analysis [16], with some variations from the original algorithm: The analysis pass in
Cetus does not provide context-sensitive results, and heap-allocated objects are han-
dled conservatively. We identified that disproving alias relationships among arrays is
most important and developed a simple but effective analysis. A full description of
our points-to analysis pass is provided in [12].

Alias analysis is performed in two steps. First, the points-to analysis collects points-
to relations at each program point, interprocedurally. The resulting points-to relations
contain mappings from pointer variables to the dereferenced memory locations.
Second, an alias set for each variable is created from the points-to relations. A variable
is alias-free if the returned set is empty. Figure 3 illustrates these steps for the given
code example.

2.2.3 Function Inlining

Cetus provides function inlining in place of complete interprocedural analysis and
transformations. Aggressive function inlining can decrease readability. We also found
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Fig. 3 Example of alias analysis. The analysis result shows the points-to relation and the alias sets available
immediately before the loop. (b,a,P) means b probably points to the memory location named a

that the parallel coverage tends to be less than when using selective inlining. Cetus
provides flexible support for inlining. This support can be utilized by the users of
Cetus, by Cetus transformation passes, and by the tuning framework. While Cetus
allows the clients to perform aggressive inlining, it also provides a rich set of com-
mand line options as well as an API for selective inlining. Inlining can be performed
inside selected functions and code blocks. Similarly, selected functions can be marked
as candidates of inlining at their call sites. Cetus also provides pragma annotations for
selective inlining.

2.2.4 USE/DEF Chain Analysis

The use-def chain computation is a flow-sensitive and context-insensitive inter-proce-
dural analysis, based on the program summary graph [10]. At a high level, the algorithm
proceeds as follows: The pass first executes reaching-definition and upward-exposed
use analysis on each procedure to generate the program summary information. The
initial analysis is done on the following code segments: between the procedure entry
and the first call site, between call sites, and between the last call site and the end
of the procedure. Second, use and def lists are placed at procedure entry, exit, and
call sites. Third, use and def information is propagated along edges in the program
summary graph; the edges associate formal and actual procedure parameters. Fourth,
reaching definition analysis is executed again using the computed program summary
information. Finally, the use-def and def-use chains are computed using the reach-
ing definition analysis result and the upward-exposed use information. Cetus’ alias
information is used during the use-def chain computation.

2.2.5 Induction Variable Recognition and Substitution

Induction variable recognition and substitution is one of the techniques that remove
data dependences on scalar variables. An induction statement has a recurrence form,
iv = iv + expr. This statement needs to be replaced by a form that does not
induce a data dependence. If the right-hand side in the statement can be expressed as
a closed-form expression that does not contain iv, the dependence will be removed.
Cetus detects and substitutes induction variables where expr is either loop-invari-
ant or another induction variable. The pass visits every statement in a loop nest and
symbolically computes at each statement the increments of induction variables since
the entry to the loop nest. It then adds the increments to every use of the induction
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Fig. 4 Induction variable recognition and substitution. Cetus can handle generalized induction variables,
where the increment is another induction variable. In this case, k is incremented by the loop variable i

variables and removes the induction statements. Figure 4 shows the original code with
an induction statement and the transformed code without the induction statement.

2.2.6 Reduction Recognition and Transformation

Reduction operations are used in many computational applications. They commonly
take the formrv = rv + expr. Recognizing such operations is key to successfully
auto-parallelizing many loops. A data dependence analyzer will report a dependence
on a reduction operation unless it is marked as a reduction operation. Cetus’ reduc-
tion variable analyzer detects additive reduction variables that satisfy the following
criteria:

– First, the loop contains one or several assignment expressions of the form
rv = rv + expr, where rv is either a scalar variable or an array access, and
expr is typically a real-valued, loop-variant expression.

– Second, rv appears nowhere else in the loop.

The result of this recognition pass is used in the loop-parallelization pass which
ignores the data dependences carried by the reduction statements. In addition, a reduc-
tion transformation pass is invoked to convert parallel loops containing recognized
reductions into parallel forms: Scalar variables in reduction statements are simply
marked within an OpenMP clause while reduction operations on array variables are
converted into a form with local summation and synchronized global update. Figure 5
shows an example.

2.2.7 Scalar and Array Privatization

Identifying private variables in a loop is an important step an automatic parallelizer
has to perform. A private variable is a variable that is used as a temporary variable in a
loop; it is written first and used later in the loop. Array sections are used as temporary
locations for private array variables. Private variables do not need to be exposed to the
other threads at runtime, so the data dependence analyzer can safely assume these vari-
ables do not have dependences. We implemented a simple but effective array privatizer
in Cetus, which can handle array sections containing symbolic terms; it is a simpli-
fied version based on the technique described in [30]. The array privatizer traverses a
loop nest from the innermost to the outermost loop while collecting defined (written),
used, and upward-exposed (used but not defined since the loop entry) array sections
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Fig. 5 Input code and the resulting code after reduction recognition and transformation. qqreduce is
initialized as a private copy for each thread to store the local sums ([:] notation indicates “entire array”).
Scalar reductions are marked as such with an OpenMP clause; array reductions are transformed explicitly

or scalar variables. Next, it identifies private variables by checking if there are no
upward-exposed uses for the variables. To improve the accuracy, the privatizer makes
use of Cetus’ symbolic range analysis. For example, when computing upward-exposed
uses, the intersection of two must-defined sections [1 : m]∩[1 : n] is [1 : min(m, n)];
knowledge of the symbolic relationship n ≤ m allows the result to be simplified to
[1 : n].

2.2.8 Data Dependence Analysis

Data dependence analysis is a memory disambiguation technique that tries to identify
data references accessing the same memory location during program execution and
characterize dependences between those references. Array data dependence analysis
involves the process of analyzing array subscripts in order to disprove that two com-
putations access the same elements of an array. In a loop, these subscripts are usually
functions of the loop index variables. Data dependence tests try to find integer solu-
tions to systems of equations defined under loop and direction vector constraints to
analyze the dependences between array accesses.

Cetus implements an array data dependence analyzer. An information-collec-
tion wrapper interfaces with the IR to collect array access-related and loop-related
information. It currently handles all canonical loops of the form for (i=lb;i<
ub;i+=inc). Advanced symbolic range analysis (Sect. 2.2.1) is used to simplify
loop-related information and array subscripts in order to obtain simple affine expres-
sions that can be evaluated for dependence. The wrapper feeds into a data dependence
test framework that currently uses the Banerjee-Wolfe inequalities to return direction
vector information for the dependences [1,32]. Cetus also contains the range test [8]
as an alternative dependence test.

All dependences identified within a loop nest are appended to the program data
dependence graph, which is attached to the program’s IR. This information is then
available to all Cetus analysis and transformation passes through appropriate interface
routines.
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2.2.9 Loop Parallelizer and Code Generator

The loop parallelization pass analyzes the results of parallelization-enabling passes
and marks loops that do not carry any data dependences. Data dependences on scalar
variables and array variables are analyzed differently by this pass. For scalar variables,
the information produced by the reduction and privatization passes is used to eliminate
dependences; for array variables, the data dependence graph is searched to determine
dependences. A loop is marked as parallel if no scalar variable carries dependences
and all dependence arcs in the graph show non-loop-carried dependences with respect
to the loop.

The final step of automatic parallelization is code generation for a specific target
language. Cetus generates OpenMP program from the input program and the analyzed
result. This final step is straightforward, because the internal annotations inserted by
the passes are similar to OpenMP directives.

2.2.10 Dynamic Optimization Decision Support

A key challenge for optimizing compilers is to decide where and when to apply their
techniques, given limited knowledge about the program’s input data and runtime envi-
ronment. In many programs or program sections, eager parallelization will lead to
performance degradation instead of speedup. This is especially true for small, inner
loops; it also holds for transformation techniques that apply significant code changes,
such as reduction parallelization, tiling, and subroutine inlining. For subroutine inlin-
ing, recent work [18] reports how to reduce negative effects of inlining with respect
to interprocedural parallelization.

Profitability Tests: Cetus includes several methods to deal with this issue. By default,
the compiler uses a simple performance model, eliminating small parallel loops that
are likely to cause overheads. The model estimates a loop’s workload as the product
of the number of statements and loop iterations. Loops with workloads that are less
than a threshold do not get parallelized. If the workload expression cannot be evalu-
ated at compile-time, the technique uses an OpenMP IF construct, which decides at
runtime on parallel or serial execution. We evaluate this heuristic, which we refer to
as model-based profitability test.

Cetus also supports a profitability test that is based on profiling. The basic idea is
to use profiled runtime of a sequential execution and a parallel execution of a parallel
loop and to decide whether the loop should be executed in parallel after the profiling.
A parallel loop is executed in three different phases: grace phase where the loop is
executed in parallel, profile phase where the loop is profiled several times both in
serial and in parallel, and stable phase where the loop is executed either serially or
in parallel, based on the profile results. Users can vary the behavior of each phase
through Cetus options. One limitation of this method is its sensitivity to variations in
the loop execution time over the course of the program execution.

Empirical Tuning: Improved runtime decision making in Cetus comes through an
automatic tuning capability, which searches through the space of all (or a customizable
set of) optimization techniques and loops, and finds the combination that performs the
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best at runtime. This process is done in an offline optimization manner, similar to
profile-based compilation. Like profile-based optimization, the tuning process uses a
training data set, which is representative of but different from the production data set.

Cetus uses a methods called window-based empirical tuning [23]. A problem with
most approaches that try to find the best combination of all possible optimizations
for all sections of a program is that tuning times can be very long. This is because
optimization techniques tend to interact and thus all combinations of techniques on
all loops would need to be tried for finding the best combination. Cetus’ tuner only
considers the interactions of techniques within windows, which are code sections in
close proximity and optimization techniques that are likely to interact. Specifics of
this method are described in [24]. The user can customize the search space by defining
optimization techniques and their interactions that should be tuned; this usually hap-
pens at compiler setup time. We also use this customization feature to exhaustively
explore the optimization techniques studied in this paper.

3 Performance Evaluation

We present two sections of measurements: overall performance and the performance
of individual techniques. Overall performance measurements compare speedups over
the sequential versions of the Cetus-parallelized programs versus hand parallel and
versus automatically tuned programs; we also measure the importance of dynamic
optimization decision support. For evaluating the impact of individual techniques, we
started from the fully optimized programs; then we disabled one compiler technique
at a time, and measured the reduced performance. Before presenting these results, we
briefly describe the used benchmarks and the experiment setup.

3.1 Benchmarks Characteristics

The NAS Parallel Benchmarks (NPB) are a set of programs designed to help eval-
uate the performance of parallel supercomputers. The benchmarks are derived from
Computational Fluid Dynamics (CFD) applications. They consist of five kernels and
three pseudo-applications. We used two classes of problems in the evaluation—Class
W and Class A. Class W was used as a training data set for the window-based tuning
system, while class A served as a production data set. The classes of problems in NPB
differ mainly in the sizes of principle arrays, which generally affect the number of
iterations of contained loops [4,31]. As a real OpenMP application, the NPB suite is
ideal for benchmarking parallelizing compilers. Another advantage of the suite is its
availability in efficient hand implementations of C code [28]. We used this suite as the
input to our automatic parallelizer after turning off the OpenMP runtime library calls
and ignoring the OpenMP directives.

3.2 Experiment Setup

We conducted experiments using a single-user x86-64 machine with two 2.5 GHz
Quad-Core AMD 2380 processors and a 32 GB memory, running Red Hat Enterprise
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Fig. 6 Overall Performance of the parallelizing compilers on NPB suite using A dataset. Cetus Untuned
shows performance for compiler-parallelized code using Cetus. Model-based Tuned represents the speedup
for the automatically parallelized programs using model-based profitability test available in Cetus. Pro-
file-based Tuned represents the speedup for the automatically parallelized programs using profile-based
profitability test available in Cetus. Empirically Tuned shows speedup for tuned programs using the win-
dow-based tuning system. Hand Parallel shows speedup for original NPB programs. ICC Parallel shows
speedup for parallelized code using “-parallel” ICC flag; other versions were compiled with the “-openmp”
flag to enable only the OpenMP translation

Linux. We used the Intel ICC compiler version 11.1 with “-O3” optimization, both as
a back-end code generator for Cetus and as an autoparallelizer that we compare Cetus
to in the experimental results.

3.3 Overall Evaluation of Tuned Autoparallelization

We measure the speedup of automatically parallelized programs by Cetus and ICC and
compare it to the hand-parallelized programs as well as the tuned programs using win-
dow-based tuning, model-based as well as profile-based profitability testing. Figure 6
shows the speedups of the NPB programs using dataset A.

We produced the serial codes of the Benchmarks using the backend compiler (ICC)
without the OpenMP parallel option. Hand Parallel refers to the original parallel
benchmarks. Cetus Untuned is the automatically parallelized code without tuning.
Empirically Tuned presents transformed programs that are improved using the win-
dow-based tuning system. Model-Based uses Cetus’ model-based profitability test.
Profile-Based uses Cetus’ profile-based profitability test. ICC Parallel shows speedup
using the ICC autoparallelization option (“-parallel” flag).

Despite a conservative profitability test, ICC could not guarantee non-degrading
performance. Cetus with its model-based profitability test outperforms ICC in all pro-
grams that show noticeable speedup. Window-based tuning adds substantially to this
speedup, matching or exceeding the hand-parallelized performance in two cases. In
CG and SP, the parallel coverage exceeds 90 % and the results show a speedup on both
Cetus Untuned and Cetus Tuned versions; SP Tuned outperforms the hand parallel
version. One important reason is that the hand parallel version parallelizes loops at
the second level, while the Cetus tuner selects the outer loop to be parallel. Another
reason is that Cetus Untuned parallelizes profitable small loops that were considered
inefficient by the programmer of the parallel code.
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Fig. 7 Performance contribution of individual optimization techniques on NPB benchmarks using dataset
A. The selected base case is the best tuned version (all on). One technique at a time is turned off for the
versions labeled with the specified techniques; all other techniques remain fixed

While investigating the effect of inlining on parallel coverage, we found that the
performance of BT and EP is significantly improved by inlining as we will show later.
IS’ low parallel coverage explains the lack of parallel speedup.

In FT, LU, and MG, the parallel coverage is around 50 %. However, performance is
low since most parallel regions are inner loops and the tuner serializes them to avoid
parallel loop overhead.

3.4 Effectiveness of Individual Optimization Techniques

In this section, we discuss the contributions of individual optimization techniques
to the overall performance. Also, we study the effect of interactions among optimi-
zation techniques on performance. We select the best tuned version as a base case
(All-Tuned), then we turn off one technique at a time and measure the execution time.
Figure 7 shows the speedup results for this experiment. We gain the following insights
from the figure.

– Among the parallelism-enabling techniques, scalar and array privatization is the
most important, affecting five programs significantly. Reduction parallelization
has a pronounced effect in two programs, while induction variable substitution
does not show a clear impact. These results are consistent with the study of an
earlier generation of parallelizers [7], which found the simpler versions of these
techniques (scalar privatization and scalar reduction recognition) to also be highly
effective. Other work [15] has pointed out the importance of induction variable
substitution. One reason for this discrepancy is that the NPB programs are already
parallel, with most induction variables already being replaced.

– Among the analysis techniques, symbolic analysis is most important, followed by
inlining. It affects almost all programs in a very significant manner. Inlining is
also highly effective in many programs. We have mentioned earlier the importance
of tuning the inlining transformation. If applied eagerly, inlining may degrade the
performance of individual code sections. This is a significant finding, as many
compilers offer subroutine inlining only as a global option. Alias Analysis appears
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to affect most of the benchmarks; the compiler assumes very conservative all-to-all
aliases when the technique is disabled.

– The locality enhancement techniques do not show a significant effect in these mea-
surements. As discussed further in [24], these techniques are partly substituting;
disabling them individually does not make a significant difference.

4 Conclusions

We have provided an overview of Cetus, a source-to-source compiler infrastructure
for C programs. Using the NAS Parallel Benchmarks, we have evaluated the compiler
in various dimensions.

Overall, the compiler is able to gain significant speedup in four of the eight pro-
grams. Our results are also significant, as they produce similar findings to previous gen-
erations of parallelizers on previous parallel computer architectures. Previous studies
also found success in approximately 50 % of science/engineering applications. Even
though the underlying architectures have changed dramatically, today’s autoparallel-
ization techniques for these architectures are equally successful.

Cetus improves over the parallelizer of Intel’s ICC compiler by 166 % on aver-
age. We also compared with hand-parallelized programs. In only two benchmarks, the
hand-optimized version significantly outperforms the Cetus’ results. In one case, the
automatically parallelized program performs the best.

One aspect of parallelizers has become more critical, however. Good decisions
about the application of optimization techniques need runtime information. We have
presented several techniques that help with dynamic decision support. Cetus includes
an automatic tuning capability, which improves by 156 % over eager compile-time
parallelization, and by 71 % over a compiler-inserted profitability test, on average.

The evaluation of individual parallelization techniques showed that advanced ver-
sions of those techniques found to be important in previous generations of compilers
are also among the most important optimizations in Cetus.

The development of Cetus has primarily focused on automatic parallelization of C
programs; the experiments in this paper investigated the performance of Cetus with
regard to parallel optimization. As Cetus represents a general source-to-source com-
piler infrastructure, its suitability for other compilation tasks is being evaluated in
ongoing work. Among the current evaluation projects are also the study of the sen-
sitivity to diverse environment and architecture parameters, the importance of which
has been demonstrated [25].
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