
Int J Parallel Prog (2014) 42:198–218
DOI 10.1007/s10766-012-0210-0

Removal of Conflicts in Hardware Transactional
Memory Systems

M. M. Waliullah · Per Stenstrom

Received: 14 December 2011 / Accepted: 18 July 2012 / Published online: 10 August 2012
© Springer Science+Business Media, LLC 2012

Abstract This paper analyzes the sources of performance losses in hardware trans-
actional memory and investigates techniques to reduce the losses. It dissects the root
causes of data conflicts in hardware transactional memory systems (HTM) into four
classes of conflicts: true sharing, false sharing, silent store, and write-write conflicts.
These conflicts can cause performance and energy losses due to aborts and extra
communication. To quantify losses, the paper proposes the 5C cache-miss classifi-
cation model that extends the well-established 4C model with a new class of cache
misses known as contamination misses. The paper also contributes with two tech-
niques for removal of data conflicts: One for removal of false sharing conflicts and
another for removal of silent store conflicts. In addition, it revisits and adapts a tech-
nique that is able to reduce losses due to both true and false conflicts. All of the
proposed techniques can be accommodated in a lazy versioning and lazy conflict res-
olution HTM built on top of a MESI cache-coherence infrastructure with quite modest
extensions. Their ability to reduce performance is quantitatively established, individ-
ually as well as in combination. Performance and energy consumption are improved
substantially.

Keywords Transactional memory · Contamination misses ·
Intermediate checkpointing · Manycore

M. M. Waliullah (B)
INRIA, IRISA, Rennes, France
e-mail: waliullah.mridha@gmail.com

P. Stenstrom
Chalmers University of Technology, Goteborg, Sweden
e-mail: pers@chalmers.se

123

Int J Parallel Prog (2014) 42:198–218 199

1 Introduction

The shift to multicores has caused an acute need of new approaches to reduce the
efforts in designing parallel programs. Transactional memory (TM) [12] is a promis-
ing approach to extract parallelism with potentially less effort. It does so by providing
primitives to mark code blocks as atomic in a composable manner. Unlike traditional
locking schemes such atomic blocks can be executed in parallel by offloading pro-
grammers from dependency analysis between atomic blocks.

The literature contains TM proposals for implementation in hardware on top of
existing hardware (HTM), in software on top of existing hardware (STM), or in
software using hardware acceleration [11]. Deployment of STM systems in practice
remains questionable due to performance overheads. On the other hand, while HTM
can be built on top of standard MESI cache-coherence protocols with a reasonable cost
[19,21,25] they are prone to performance and energy losses caused by data conflicts
triggered by accesses to the same cache block.

This paper begins with dissecting the root causes of data conflicts in HTM sys-
tems and their impact on performance. In the process of dissecting the root causes of
data conflicts, we find that one class of conflicts—true sharing conflicts—cannot be
avoided as it is caused by inherent communication among threads. The second class
of conflicts—false sharing conflicts—is artifactual and shows up because conflicts are
detected at the granularity of cache blocks rather than words. Two other classes of
conflicts that we identify, and that can be avoided, are silent store conflicts [14] and
write-write conflicts.

Conflicts are detrimental to both performance as well as energy consumption as
they result in aborts that lead to wasted execution and additional cache misses. A
second objective of the paper is to seek for methods for analyzing performance losses
due to data conflicts. In this process, we note that transactional execution results in
a new type of cache misses that stem from the fact that a speculatively modified, or
contaminated, block has to be invalidated if the transaction is aborted. To this end, we
propose the 5C cache-miss classification model that extends the well-established 4C
model [7] with a new class of cache misses known as contamination misses.

Equipped with the root causes of data conflicts, the third objective of the paper is
to propose techniques that can remove conflicts and their impact on performance and
energy consumption. For false sharing conflicts we propose a scheme, inspired from
Chen and Dubois [5], that uses two block sizes—one for conflict detection and one for
transfers—to reduce the number of false sharing conflicts and to bring down the num-
ber of cold misses. As for silent store conflicts, we propose a scheme for silent store
detection and elimination for transactional memory protocols by adapting previously
proposed schemes aimed at cache coherence protocols [14]. While true conflicts can-
not be removed, as they are inherent in parallel programs, their impact on performance
can be reduced. To this end, we revisit a scheme earlier proposed by Waliullah and
Stenstrom [26] for a TCC-like environment [10] that dynamically inserts a checkpoint
before a conflict and rolls back to that checkpoint instead of to the beginning to reduce
the amount of wasted work and its associated contamination misses. Our modified
scheme leverages the eager conflict-detection capability of MESI protocols to achieve
a high precision in insertion of checkpoints.

123

200 Int J Parallel Prog (2014) 42:198–218

TILED CMPs

L1 Core

L1 Core

L1 Core

L1 Core

L1 Core

L1 Core

Shared L2

CMP CLUSTER SR SW RCONF STD FIELDS

KMAP

1 2 n

Fig. 1 Baseline architectural overview

We show how the techniques can be integrated in a MESI-based lazy versioning
and lazy conflict resolution HTM protocol with modest extensions. We consider the
individual as well as the combined performance gains of the techniques. We find that
these techniques individually as well as in combination are very effective in reduc-
ing the impact of data conflicts on performance. In summary, the paper makes the
following contributions:

• A framework for reasoning about the root causes of data conflicts in transactional
memory systems and a taxonomy for data conflicts.

• A new cache-miss classification scheme—the 5C model—in which a new type of
cache misses, contamination misses, comprises the 5th C.

• Integration of three techniques in a MESI cache protocol to remove or lessen the
impact of data conflicts on performance and energy.

Section 2 establishes the architectural model and the framework for reasoning about
the root causes of data conflicts and their impact on performance. Section 3 presents
the 5C miss-classification model. Section 4 presents our proposed techniques and
how they can be incorporated in the baseline system. The experimental methodology
is described in Sect. 5 followed by our experimental findings in Sect. 6. We end the
paper by putting our work in context to related work in Sect. 7 before concluding in
Sect. 8. A preliminary version of this paper appears in [27]. This paper extends it, in
particular with a detailed analysis of the reduction of energy consumption using the
improvement techniques proposed in the paper.

2 Architectural Framework and Its Characterization

2.1 Baseline Architectural Framework

We consider a cluster-based chip multiprocessor that has a number of processor cores
with private L1 caches connected via a split-transaction bus to a shared L2 cache.
Cache coherence among private caches is maintained with a snoop-based MESI cache
coherence protocol. This system is a building block in a scalable tiled CMP architec-
ture. This paper focuses on HTM within a single cluster. Figure 1 gives an architectural
overview of our baseline system.

Our baseline HTM protocol, called LL-MESI, supports lazy version management
[2,4,10,22] and lazy conflict resolution [4,10,25] and is built on top of the MESI

123

Int J Parallel Prog (2014) 42:198–218 201

coherence protocol. We choose lazy protocols as it uncovers more parallelism and is
less prone to pathologies [23]. To maintain lazy versioning each cache line is extended
with two bits: an SR (speculative read) and an SW (Speculative write) bit [10,19]. Con-
flicts are detected eagerly by the MESI coherence messages but are resolved lazily.
Lazy conflict resolution is supported by allowing L1 caches to buffer speculatively
modified copies of a memory block. Each L1 cache keeps the memory updates from
respective core until the running transaction commits. If a remote core requests such a
memory block the protocol ensures to provide the original version (not speculatively
modified) of the block. We dedicate a victim buffer to store speculatively modified
lines should it be evicted from L1 cache.

LL-MESI records all the conflicting information during the lifetime of a transaction
in a bit map (KMAP) per node (core + L1) with as many bits as the number of nodes.
If a snoop request reaches a remote node where the line is modified a write conflict
signal is sent to the requester. On receiving the write conflict signal, the requester
records the remote node as a possible ‘killer’ of the transaction by setting the corre-
sponding bit in KMAP before performing the read or write. When a node commits,
all transactions that have marked it in their KMAP will abort. A commit operation is
carried out by sending a COMMIT message on the bus—no write set is broadcast.
As a result, KMAP allows LL-MESI to perform commits very quickly by avoiding
expensive global commit actions carrying the write sets.

Apart from the SR and SW bit, an RCONF (Read CONFlict) bit is associated with
each cache line. RCONF indicates that the cache line is speculatively read and a con-
flict exists with a remote writer. Upon receiving a write conflict signal, in addition
to recording the conflict in KMAP, the RCONF bit is also set for the cache line. On
abort, in addition to sending an ABORT message on the bus, all the cache lines with
the SW bit set have to be invalidated. RCONF bits allow selectively invalidating only
those lines that are modified by other transactions. The abort message enables other
transactions to reset the aborting node from their KMAP. All transactional metadata,
e.g., SR, SW, RCONF, KMAP are reset on both abort and commit.

2.2 Classification of Data Conflicts

While TM can expose concurrency, data conflicts (conflicts for short) force transac-
tions to abort and serialize which lead to performance and energy losses. We explore
the root causes of conflicts next. Conflicts are detected when a transaction speculatively
read from a location that is speculatively modified by another non-committed trans-
action. Conflict detection can be done lazily when a transaction commits or eagerly
when it occurs as it is done in our baseline. Upon detection, a conflict can be resolved
immediately (eager resolution) or deferred until a transaction commits (lazy resolu-
tion). For the eager resolution a conflicting transaction can be stalled to avoid a squash
but in lazy resolution execution of conflicting transactions have to be squashed. In
both cases performance is hampered.

Since conflicts are detected on the granularity of cache lines, they come in
two flavors—essential (or true) andnon-essential conflicts —in analogy with cache
misses/invalidations in a cache coherence protocol [9] as shown in Fig. 2.

123

202 Int J Parallel Prog (2014) 42:198–218

Fig. 2 Classification of
conflicts

Conflicts

Essential (True)
Conflicts

Non-essential
Conflicts

False Sharing
Conflicts

Silent Store
Conflicts

Write-Write
Conflicts

A conflict is an essential (or true) conflict if any of the conflicting accesses to the
same block refer to the same word in the memory and a new value is communicated.
A true conflict cannot be avoided as it is triggered by communication inherent to the
parallel program. However, the effect of true sharing conflicts can be reduced which
will be considered in Sect. 4.2.

A conflict is a non-essential conflict if no real communication is made between
conflicting transactions. Non-essential conflicts can be further classified into three
different categories: false sharing conflicts, silent store conflicts, and write-write con-
flicts. A conflict is referred to as a false sharing conflict if the conflicting access pair
refers to different words in the same cache line. False sharing conflicts can be elimi-
nated by reducing the conflict detection granularity. Our experiments in later sections
show that a significant amount of false sharing conflicts is introduced for commonly
used cache line sizes.

A silent store conflict is a non-essential conflict where the write causing the conflict
does not change the original value [14]; hence, no communication of new values hap-
pens. Silent store conflicts can be avoided by simply ignoring certain protocol actions.
A conflict is considered a write-write conflict if the conflict is caused by two transac-
tions writing to the same location and no read is performed by any transaction prior to
the write. While most existing HTM protocols take action [23] on such conflicts they
could be ignored.

Section 4 presents techniques to remove or lessen the impact of the conflicts and
Sect. 6 quantitatively establishes how common the different conflicts are and to what
extent their impact can be lessened by the proposed techniques.

3 A New Miss Classification Model

Many lazy versioning HTM designs [10,15] use private caches as temporary storage
for speculatively modified data. On commit the data is made part of the consistent state
while an abort causes speculatively modified (contaminated) lines to be invalidated.
Re-executing the aborted transaction causes losses in performance as well as energy
because of two reasons. First, the aborted transaction has to abandon the execution
already done. Second, all cache lines that have been speculatively modified by the
aborted transaction have to be invalidated. When these lines are accessed again, either
when the aborted transaction is re-executed or later, they will cause extra cache misses
that result in losses in performance and energy. This is a new type of cache miss

123

Int J Parallel Prog (2014) 42:198–218 203

resulting from contamination of cache blocks in the process of speculative modifica-
tions in a transaction. We call them contamination misses and they form the 5th C in
our proposed 5C cache-miss classification model that extends the commonly used 4C
model [7] (compulsory, capacity, conflict and coherence misses) with an extra miss
category. To quantify the amount of contamination misses generated under different
HTM protocols is important in order to understand major sources of inefficiency.

In the miss classification method defined by Dubois et al. [9], a miss for a block is
classified based on the reason it was evicted from the cache. In the context of a lazy ver-
sioning transactional memory system, a miss to a block happens because it was earlier
replaced (capacity or conflict miss, collectively called replacement misses), invali-
dated (coherence miss) or because the block was contaminated and locally invalidated
when a transaction aborted (contamination miss). Of course, if it is evicted because
of a replacement and the replacement could have been avoided it could have been
evicted because of invalidations. In the following definition of a contamination miss,
replacement misses have precedence over coherence misses, which have precedence
over contamination misses if all are possible.

A miss is defined as contamination miss if the following conditions are fulfilled:

(a) The block is evicted (locally invalidated) because it is contaminated by a trans-
action that is aborted.

(b) There is no coherence invalidation request pending for the block when (a) is
performed.

While it may seem to suffice to only establish that the block was evicted because it was
contaminated, it may actually happen that a coherence invalidation request is pending
for the block. This might happen in a lazy conflict resolution HTM protocol where
coherence invalidation for a speculatively read block is processed lazily. In Sect. 6,
we will quantify the relative fractions of misses using the 5C model.

4 Performance Improvement Techniques

4.1 Multiple Cache-Line Granularities (MCG)

It is well known that trading off the cache line size is important to reap maximum per-
formance from a cache memory hierarchy. In uniprocessor systems, larger cache lines
exploit spatial locality to reduce misses whereas they also increase the probability of
wasting space by bringing more data into the cache than needed. In multiprocessor
systems, false sharing is introduced and the number of false sharing misses typically
grows with the cache line size [9]. In a TM system, false sharing introduces the prob-
lem of false sharing conflicts. The performance impact of false sharing conflicts can
be considerably higher than those of false sharing misses because a false sharing con-
flict may lead to re-execution of the entire transaction. Hence, trading off the cache
line size in a TM system is more important than in a conventional cache coherent
system.

To reduce the number of false sharing conflicts one must maintain conflict detec-
tion at a finer granularity which would call for smaller line sizes. However, smaller

123

204 Int J Parallel Prog (2014) 42:198–218

cache lines increase the number of cold misses. A way out of this dilemma, inspired
by Chen and Dubois [5], is to support two line sizes: a larger line size, which is a mul-
tiple of the smaller line size, for transfer of non-shared blocks and a smaller line size
for coherence invalidation. We call the technique as multiple cache-line granularity
(or MCG for short). In the rest of the discussion, we refer to the larger blocks
as transfer blocks and the smaller blocks as invalidation blocks. An invali-
dation block that is subject to an access request or a coherence message is
called the critical block. Cache line metadata is maintained in invalidation block
level.

In the proposed technique, when a memory access misses in L1, the L1 controller
requests for the transfer block (i.e., multiple invalidation blocks with an indication of
the critical block) if none of the invalidation blocks that are part of the transfer block
exists in the cache. Otherwise, it requests only the critical block. Any other L1 cache
that has the critical block forwards it along with other valid invalidation blocks that
are part of the transfer block. If no L1 cache responds, L2 serves the request. An extra
signal, SingleLine, is used which is set if any of the L1 caches has an updated copy
of any of the invalidation blocks in the transfer block. If SingleLine is not set, the L2
cache transfers all the invalidation blocks that are part of the transfer block; otherwise
L2 transfers only the critical block.

One alternative to MCG is sub-blocking and maintaining metadata for detecting
conflicts at the sub-block level. MCG requires more space for tagging every small
block whereas in sub-blocking a single tag entry is used for the entire block (analo-
gous to the large block in MCG). However, all other transactional metadata have to
be associated with each sub-block. The technical difficulty for sub-blocking in our
baseline is that we allow a cache line to be available in the L1 caches for transactional
accesses when the line is in the modified state in another L1. This is possible because
of KMAP and RCONF bits. In a sub-blocking mode when a cache line is in the modi-
fied state it can modify any word without sending any coherence message. That makes
it impossible to update RCONF bits in other L1s at the sub-block level. The second
benefit of MCG over sub-blocking is the provision for adapting the size of the block
in case of data sharing. In MCG, if any part of the transfer block is modified in any
L1 only the critical block is served and two different nodes can work on two different
invalidation blocks without any communication. In sub-blocking, the entire block has
to be transferred even if another node is using a different sub-block.

4.2 Intermediate Checkpointing (IC)

Intermediate checkpointing (or IC for short) is a technique originally proposed by
Waliullah and Stenstrom [26] that aims at reducing the amount of work that has to be
discarded when a transaction aborts. The execution of a transaction is divided into two
segments with respect to a conflict—safe execution and unsafe execution as shown in
Fig. 3. Safe execution starts from the beginning of an execution until the transaction
performs a conflicting access and the rest of the execution is referred to as unsafe
execution. Ideally, an aborted transaction needs to squash only the unsafe part of the
execution.

123

Int J Parallel Prog (2014) 42:198–218 205

Fig. 3 Safe and unsafe
execution

Tx2

Unsafe

Safe
Wd

Rd

Rb

Wd

Commit

Tx1

Ra

Wb

Tx2Tx1

Checkpoint

Ra

Wb

Wd

Rd

Rb

Wd

Rd

Rb

Wd

Squash

Commit

Commit

As shown in Fig. 3, all of the execution of Tx2 need not be squashed; only the
unsafe portion as shown in the right part of the figure must be squashed.

In the original intermediate checkpoint proposal [26] checkpoints are inserted to
protect the safe execution from squashes. Each execution segment separated by check-
points is called a subtransaction. An aborted transaction restarts from the beginning
of the earliest subtransaction that is unsafe. To be able to restart from the checkpoint,
an undo log (iLog) is used to store old values in case a subsequent subtransaction
modifies the same location. For example, location d in Fig. 3 is modified in both sub-
transactions separated by the checkpoint and if the transaction is restarted from the
checkpoint the second write to location d has to be undone.

To support IC in the baseline requires that each cache block is associated with a
pair of SR and SW bits for each subtransaction, a set of registers for each subtrans-
action, an undo log (iLog), and a mechanism for deciding when to take a checkpoint.
Fortunately, it was shown in [26] that supporting as few as two subtransactions reap
most of the benefits. In addition, an undo log is used assuming that locations are
modified in subsequent subtransactions. As we will experimentally show in Sect. 6,
this is not always the case and we will also evaluate an implementation of IC without
an undo log. In a design without an undo log, modifications must be safely tracked
so that the transaction rolls back to a safe point in case of an abort. A valid flag is
associated with each checkpoint. If a subtransaction modifies a location that is mod-
ified in a previous subtransaction all previously taken checkpoints are invalidated.
In that case, any conflict in these subtransactions leads to re-execution of the entire
transaction.

In [26] a history-based prediction scheme is used for determination of a conflicting
access and a checkpoint is inserted before performing such an access. We employ
two techniques for inserting checkpoints. A conflicting location can be accessed in
two scenarios: (1) no other transactions have yet speculatively modified the location;
(2) other transactions have already speculatively modified the location. In scenario 1,
coherence messages will not raise any conflict and our system takes checkpoint only
if the history-based prediction [26] flags the access as a potential conflicting access.
In scenario 2, the coherence message will raise a conflict and our system inserts a
checkpoint before the access point.

123

206 Int J Parallel Prog (2014) 42:198–218

4.3 Suppressing Silent Store (SSS)

Every write to a shared location is potentially a source of aborts in transactional mem-
ory systems. Silent store [14] is a well-known phenomenon where the value carried
with the modification is the same as the old value. Earlier studies [14] note that a silent
store can be performed without invoking any cache protocol action but their impact
on transactional memory systems is not studied.

The proposed suppressing silent stores technique (SSS for short) works as follows.
First, if a write hits and the block is in shared state and the new value is found to be
the same as the old value then the store operation is ignored. Neither is any coherence
message sent nor is the SW bit set. Second, if the write misses in the cache a write
request is sent (assuming a write-allocate cache protocol). Silent store detection can
happen first when the block is returned. If the store is silent it can be ignored and need
not set the SW bit. Hence, this will avoid conflicts with future readers.

4.4 Putting It All Together

Combining all the three techniques in the same HTM environment can be done straight-
forwardly. The first technique, MCG, reduces false sharing conflicts by using smaller
line sizes to detect conflicts but use larger transfer sizes to reduce the number of replace-
ment misses. The second technique, IC, reduces the wasted work due to essential as
well as non-essential conflicts by not squashing safe execution. The third technique,
SSS, removes silent store conflicts by suppressing protocol actions for silent stores.

The techniques are expected to improve HTM performance in isolation and in
combination. However, the scope for boosting performance by these techniques is not
orthogonal. For example, while MCG can eliminate false sharing conflicts, IC can
reduce the wasted work due to such conflicts. Therefore, the combined effect of these
techniques is not expected to be fully additive. In Sect. 6, we experimentally study
their performance in isolation and in combination.

5 Experimental Methodology

To evaluate our techniques we extend the baseline system in Sect. 2.1 with structures
and protocol actions described in Sect. 4. The implementation is based on Simics
[16], a full system functional simulator. The memory hierarchy simulation module for
TM simulation tracks all the memory transactions at the clock-cycle granularity. The
system is configured as a CMP that contains sixteen in-order processor cores inter-
connected via a split-transaction bus. A snoop-based MESI protocol is employed for
maintaining coherence among the L1 caches. There are two independent buses—one
for snoop and another for data. Snoop responses are synchronized with the request
whereas data transfers are asynchronous. The bus width for data transfer is 32 bytes.

Each core has a 64-KByte private L1 cache, which is also used for version manage-
ment. As far as the cache-line size, we consider two default sizes: 32 and 64 bytes. We
refer to the baseline with 32 and 64-byte cache lines as Baseline32 and Baseline64,

123

Int J Parallel Prog (2014) 42:198–218 207

Table 1 Architectural parameters

Parameters Values

Processors 16 in-order cores each running at 2 GHz

L1 parameters 64 KB, 4-way, 32/64 byte line size, LRU replacement, 2 cycles access latency

L2 parameters 2 MB, 16-way, 32/64 byte line size, Random replacement, 40 cycles access latency

Bus bandwidth 64 GB/s

Memory latency 200 cycles

OS & arch. Solaris 10 & Sparc V9

Compiler Gcc 4.1.2, -O2

Table 2 Application parameters
Applications Parameters

Genome -g256 –s16 –n16384

Intruder -a10 –l4 -n 2048 –s1

Kmeans -m40 -n40 -t0.05 -i random-n2048-d16-c16.txt

Labyrinth -i random-x16-y16-z3-n32.txt

SSCA2 -s13 –i1.0 –u1.0 –l3 –p3

Vacation -n2 –q90 –u98 –r8192 –t4096

Yada -a20 –i633.2

respectively. An 8-entry victim buffer stores evicted lines that are speculatively mod-
ified (SW). The assumed processor and bus clock frequency is 2 GHz, which means
that the peak bandwidth of the split transaction bus is 64 GBytes/second. Table 1
summarizes the architectural parameters of the experimental system.

For the MCG mechanism, we use 32 bytes as invalidation line size and 64 bytes
as transfer line size. In case of IC with an iLog, it uses 128-entry buffer. We present
results for IC both with and without the iLog buffer. Based on the observations in [26],
the IC implementation inserts a single checkpoint.

We use the STAMP [18] benchmarks that comprise eight applications written with
transactional semantics. Simics’ magic instruction is used to annotate begin and end
of transactions. The input parameters used follows the recommendations given in
[18]. Due to the inconsistent behavior reported in previous studies [21] we exclude
the application Bayes from our experiments. Another application, Labyrinth, copies
a shared maze in local data structure at the beginning of each transaction. This leads
to a potential conflict even if two transactions work on two independent segments in
the maze. As indicated in the source code, early release of the read set is the trick
to avoid it. However, our HTM design does not support early release. Early release
is a mechanism where a subset of reads are removed from speculative read set if
the computational correctness is not hampered even if the values of those memory
locations are changed by other cores before commit. To avoid serialization, we have
modified the original source code so that the shared maze is accessed on demand. The
detailed application parameters are given in Table 2.

123

208 Int J Parallel Prog (2014) 42:198–218

To reduce the impact of simulation variability and specific scheduling effects we
use the methodology described in [1] by Alameldeen and Wood. For each configu-
ration, we run five simulations where each run uses memory latency within the 5 %
range of the actual parameter (200 cycles). We then take the average of the results.

6 Experimental Results

6.1 Baseline Performance Characteristics

We first analyze the performance of the baseline system for the two cache-line sizes.
In the diagrams of Fig. 4a, b, the left and right bars for each application represent
results for a 32-byte cache-line size (Baseline32) and a 64-byte cache-line size (Base-
line64), respectively. Figure 4a shows the execution time of the STAMP applications
for Baseline32 (left) and Baseline64 (right) while the latter is normalized to Base-
line32. Execution time is further decomposed into three categories. Squash represents
wasted cycles due to squash, Commit represents cycles spent on successfully com-
mitted transaction and NonTX represents cycles spent on non-transactional execution.
The number below each bar is the standard deviation of the execution time across the
five runs with different memory latencies. As we can see, the standard deviation is
in general very low. We see that three applications (Intruder, Yada, and Labyrinth)
suffer from a huge number of squashes which have a detrimental effect on execution
time. Two different trends are visible. Firstly, applications that suffer from squashes
in Baseline32 deteriorate further in Baseline64. Secondly, the applications that do not
suffer from squashes benefit from 64-byte cache lines.

Fig. 4 a Normalized execution time breakdown of the applications. For each configuration we run five
simulations as described in Sect. 5 and then take the average. Relative standard deviation (in percentage)
is given at the bottom of the respective bar. b Conflict breakdown of the three applications that suffers
significantly from squashes. In both diagrams, left and right bars of each application represent Baseline32
and Baseline64, respectively

123

Int J Parallel Prog (2014) 42:198–218 209

Figure 4b depicts a breakdown of the wasted work (called Squash in Fig. 4a) in the
three applications that suffer significantly from squashes. In the diagram, True Shar-
ing represents percentage of wasted cycles due to true sharing conflicts, False Sharing
represents percentage of wasted cycles due to false sharing conflicts, and Silent Store
and write-write represent that of silent store and write-write conflicts, respectively.

We can see that going from 32- to 64-byte cache lines the ratio of false sharing
conflicts increases significantly which explains the first trend in Fig. 4a. As we will
confirm later, the second trend is due to the reduced number of 3C (compulsory,
capacity, and conflict) misses for 64-byte cache lines compared to the 32-byte cache
lines. The diagram shows a very little impact of silent store conflicts and zero impact
of write-write conflicts. The results clearly show that conflicts are a serious contribu-
tor to performance losses in the baseline HTM system and reinforce the need for the
techniques to reduce it.

6.2 Cache Miss Classification and the Frequency of Contamination Misses

To provide a deeper insight into the performance differences of Baseline32 and Base-
line64, we examine the relative frequency of different categories of cache misses
using the 5C cache model introduced in Sect. 3. Figure 5a shows cache miss break-
down in both baselines. The left and the right bars in each cluster represent results for
Baseline32 and Baseline64, respectively. The misses are classified into three major
categories—the bottom section lumps together cold, capacity and conflict misses (3C),
the middle and the top section represent coherence and contamination misses, respec-
tively. As expected, contamination misses only appear in the applications that suffer
from squashes (Intruder and Yada, in particular). Another important confirmation is
that the 3C (cold, conflict and capacity miss) component is reduced as we go from
a 32-byte system to a 64-byte system. This observation is leveraged in the MCG
technique.

Figure 5b shows the performance losses due to contamination misses. Again, the
left and the right bars in each cluster represent results for Baseline32 and Base-
line64, respectively. The figure depicts the percentage of the execution time that is
spent on serving contamination misses. As we can see, performance losses due to
contamination misses in Intruder and Yada are quite substantial even in the tightly

Fig. 5 a Miss rates in the 5C model. b Performance penalties of contamination miss

123

210 Int J Parallel Prog (2014) 42:198–218

coupled bus-based system with low (on-chip) miss latencies that we assume. Con-
tamination misses can be more costly in multi-chip systems that experience higher
latencies. Even though the contamination miss rate in Baseline64 as seen in Fig.
5a is significantly higher than in Baseline32 for Yada the performance penalty bars
look similar. This is because the penalties are normalized to the execution time of
the respective baselines. The goal here is to show the significance of contamination
misses.

6.3 Performance Analysis of MCG

To get the benefit of both large cache lines (fewer 3C misses) and small cache lines
(fewer false sharing conflicts) we adopt the mechanism where data transfer is done
in 64-byte chunks and invalidations use 32-byte lines. In Fig. 6a, the left bars repre-
sent the execution time of Baseline32 and the right bars represent the execution time
of Baseline32 enhanced with MCG. The right most single-bar shows the geometric
mean of the execution time of the MCG technique where the percentage of improve-
ment over the baseline appears at the top. Figure 6b represents similar numbers for
Baseline64.

In Fig. 6a we see that the execution time is reduced by between 4 and 15 % across
the applications (on average 8 %). In the enhanced MCG system, using 32-byte inval-
idation line size the conflict behavior is the same as in Baseline32 but 64-byte transfer
line sizes exploit spatial locality and provides a performance boost. In Fig. 6b, MCG
in this case results in an average performance improvement of 24 %. As expected,
the more dramatic improvement stems from the fact that 64-byte cache lines in this
baseline result in lots of false sharing conflicts of which quite many are eliminated in
the MCG enhancement by using 32-byte invalidation granularity. We also see lower
execution time for SSCA2 which does not exhibit any false conflicts. We observe
lower conflict misses for this application in the enhanced system. Our conjecture is

Fig. 6 a Execution time of MCG normalized to the Baseline32. b Execution time of MCG normalized to
the Baseline64. For each application, the left bar represents execution time of the baseline and the right bar
represents the enhanced system. For each configuration we run five simulations and then take the average.
Relative standard deviation (in percentage) of enhanced system is given at the bottom of the respective bar

123

Int J Parallel Prog (2014) 42:198–218 211

Fig. 7 a Execution time of IC normalized to the Baseline32. b Execution time of IC normalized to the
Baseline64. For each application, the left bar represents execution time of the baseline and the right bar
represents the execution time of the enhanced system. For each configuration we run five simulations and
then take the average. Relative standard deviation (in percentage) of the enhanced system is given at the
bottom of the respective bar

that it is an effect of a smaller granularity of cache line management that utilizes cache
space appropriately.

6.4 Performance Analysis of IC

We analyze the impact of intermediate checkpointing (IC) on the performance losses
caused by conflicts for the three applications that suffer from significant number of
squashes. Even though the technique is effective for all applications conflicts in other
applications are not significant to have an impact on overall execution time. In Fig. 7a
the left and right bars for each application represent the execution time on Base-
line32 without and with IC-with-iLog, respectively. The rightmost single bar shows
the geometric mean of the execution time for Baseline enhanced by IC-with-iLog.
The average reduction in execution time is depicted on the top of the bar. The data
assuming Baseline64 is shown in Fig. 7b.

In the figure, we see that for all the three applications, IC reduces the execution time
in both baselines. On average, we see 8 and 13 % reduction of the execution time in
Baseline32 and Baseline64 respectively. We have also experimented with IC without
iLog. We see that the execution time for Intruder remains the same but for Labyrinth
and Yada no improvement over the baseline is observed. The reason is that these two
applications have large transactions and modify certain cache lines before and after
the IC. To get benefit from IC in such situations requires an iLog.

6.5 Performance Analysis of SSS

Figure 8 represents the normalized execution time in systems that implement SSS.
Figure 8a represents results for Baseline32 and Fig. 8b represents the results for
Baseline64. We see that in general there is no significant performance impact by
implementing SSS. This is not so surprising considering the very low amount of silent
store conflicts observed in Fig. 4b. One interesting aspect of SSS is that it can degrade

123

212 Int J Parallel Prog (2014) 42:198–218

Fig. 8 a Execution time of SSS implemented and normalized to the Baseline32. b Execution time of SSS
implemented and normalized to the Baseline64. In each cluster, left bar represents execution time of the
baseline and right bar represents the enhanced system. For each configuration we run five simulations and
then take the average. Relative standard deviation (in percentage) of enhanced system is given at the bottom
of the respective bar

Fig. 9 Execution time of enhanced systems in isolation and in combination

performance if a transaction has to abort after suppressing silent store. In that case,
SSS will just delay the abort instead of rescuing the transaction. We conclude that
for the set of applications studied, essential and false-sharing conflicts are the most
important root causes.

6.6 Combined Effect of the Techniques

Finally, we combine the techniques and study their impact on performance on Base-
line32 and Baseline64. Figure 9a represents the execution time of each of the tech-
niques in isolation and in combination normalized to that of Baseline32 and Fig. 9b
represents the same data for Baseline64. For each application, the four bars correspond
to (from left to right) the execution time of SSS, IC, MCG and the Baseline with all
the techniques, respectively. For each configuration we run five simulations and then
take the average. As we see in the previous results standard deviation of the runs is
within 5 % of the average.

We see that combining the techniques we get on average 10 % reduced execution
time for Baseline32 and 28 % reduced execution time for Baseline64. We get more
performance in Baseline64 because of the enormous amount of false sharing conflict
in that baseline.

123

Int J Parallel Prog (2014) 42:198–218 213

Table 3 Components of Eq. 1

Components Expansion/description

Cbit,pr Nrows(0.5Cd,Q1 + Cbit)

Cbit,r/w Nrows(0.5Cd,Q1 + Cbit) + Cd,Qp + Cd,Qpa

Nbit,pr 0.5(Nhit + Nmiss + snoop_count) (T · m + St + 8 · L · m) · 2

Nbit,r 0.5(Nhit + Nmiss) (T · m + St + 8L · m) · 2

Nbit,w 0.5Nr-miss (T · 1 + St + 8L · 1) · 2 + 0.5Nw-hit (St + Wavg,data) · 2

Nrmiss Number of read misses

Nw-hit Number of write hit

Wavg,data Average size of write

T Number of tag bits

m Associativity

St Number of status bits

L Line size

CA Total number of cache accesses

6.7 Impact on Energy Consumption

In this subsection we analyze the impact on energy for the proposed improvement
techniques. We model the dynamic energy consumption in our systems in two steps:
first, we calculate the energy consumption in the memory system including caches and
interconnects (Em) based on the activity and then estimate the energy consumption
in the cores (Ec) based on an assumed ratio of the energy calculated in the previous
step. To calculate Em we use an energy dissipation model proposed by Kamble and
Ghose [13]. Conceptually, the model considers total gate-level transitions caused by
runtime activities for a given organization of caches and interconnects. In case of read
operations, it considers parallel access of tag, data, and status bits of all lines in a set
along with tag comparison and data steering. Write operations are modeled as a nor-
mal read followed by a write. In accordance with the model, we calculate the energy
consumption in our memory systems in three steps:

First, Eq. 1 is used to calculate energy dissipated in the bit lines due to pre-charging,
readout, and writes. Components of the equation are further expanded or described in
Table 3.

Ebit = 0.5V2
dd[Nbit,pr · Cbit,pr + Nbit,w · Cbit,r/w + Nbit,r · Cbit,r/w

+m (8 · L+T+St) CA(Cg,Qpa + Cg,Qpb + Cg,Qp)] (1)

Second, Eq. 2 is used to calculate energy dissipated in word lines due to assertion
of the word select line drivers to perform the read or write.

Eword = V2
dd · CA · m(L · 8 + T + St)(2 · Cg,Q1 + Cwordline) (2)

123

214 Int J Parallel Prog (2014) 42:198–218

Table 4 Components of Eq. 3

Components Expansion/description

Eaddr-out 0.5 · V2
dd(Nout,a2m · Cout,a2m)

Edata-out 0.5 · V2
dd(Nout,d2m · Cout,d2m)

Nout,a2m 0.5 · (Nr-miss + Nw-miss + Nwb_req) · 32

Nout,d2m 0.5 · Nw-miss · Wavg,data + 0.5 · Nwb_req · 8L

Nout,a2m Number of transitions on the memory-side address drivers

Cout,a2m Capacitive loads on the memory-side address drivers

Nout,d2m Number of transitions on the memory-side data line drivers

Cout,d2m Capacitive loads on the memory-side data line drivers

Equation 3 is used to calculate energy dissipated in the interconnects via address
line dissipations and data line dissipations. Components of the equation are further
expanded or described in Table 4.

Eintercon = Eaddr-out + Edata-out (3)

Finally, we add Eqs. 1–3 to calculate energy consumed in the memory system and
the interconnect (Em). In our calculation, we consider all capacitive loads as a single
unit. We use Em to estimate the total energy E = Em / (1 − R) where R is the fraction
of total energy dissipated in cores and (1 − R) is the fraction of total energy dissipated
in caches and interconnects. In the following discussion we further elaborate on our
estimation procedures where subscript B and O indicates the respective parameters
for the baseline and optimized system configuration.

After calculating EmB (energy consumption in caches and interconnects for the
baseline configuration) we estimate the energy per instruction in the baseline cores
(EinstB) using the formula EinstB = EcB/NB where EcB = EB · R and NB is the
total number of instructions executed in the baseline configuration and EB is the total
energy consumption in the baseline configuration. Finally, the energy consumption
of the optimized configuration is obtained by the formula EO = EinstB · NO + EmO,
where NO is the number of instructions executed in the optimized configuration. For
simplicity, we assume that all instructions consume the same amount of energy and
consider the total number of executed instructions regardless of type. Since the ratio,
R, could vary from different systems depending on the type of processors, we present
results for multiple R values in the range of 0.1–0.9.

In Figure 10, the Y axis shows energy consumption of the enhanced system relative
to the baselines (Baseline32 in Fig. 10a and Baseline64 in Fig. 10b) as a function of
the percentage of energy consumed in the processor cores out of the entire system.

We see that for both baselines, the combined scheme consumes significantly lower
energy than the respective baselines over the entire range of the fractions (R). Consid-
ering the geometric mean of energy consumption we can see that it is fairly constant
and independent of the fraction of energy consumed in the processor cores versus
the memory system although a slight increase (decrease) can be seen for Baseline32

123

Int J Parallel Prog (2014) 42:198–218 215

Fig. 10 Energy consumption of combined scheme normalized to the baselines

(Baseline64). This is because the enhanced system has a lower memory and network
activity compared to Baseline32 and slightly higher activity compared to that of Base-
line64. On average, we save approximately 10 and 30 % energy for Baseline32 and
Baseline64, respectively. We also estimate the power consumption of our enhanced
system. We observed that the power consumption is within a ±5 % range of the base-
lines for all applications. Consequently, the reduced energy is mainly due to a shorter
execution time for the applications on the enhanced system.

7 Related Work

Several studies have been published in the past to reduce false sharing misses in inval-
idation-based cache coherence protocols. Chen and Dubois [5] partition the address
block into several invalidation blocks to make invalidation granularity lower than
the transfer granularity. Dahlgren et al. [8] propose sequential hardware prefetching
to exploit spatial locality. In their proposal, k consecutive blocks are prefetched on
a cache miss. These studies try to exploit spatial locality and remove false sharing
misses in conventional cache-coherent infrastructures. This study revisits these issues
in the context of transactional memory systems.

Intermediate checkpointing to reduce wasted work has been proposed by Waliullah
and Stenstrom [26]. In that work, intermediate checkpointing is analyzed in a TCC-like
HTM design space. In this work, we have analyzed it in the context of MESI-based
HTM designs. The new opportunity is to use eager conflict detection to make more
accurate insertions of checkpoints. We also studied the impact of the undo log on the
efficiency. Colohan et al. [6] propose another similar work in the context of thread
level speculation. In that work, the authors propose sub-threading by inserting check-
points after a fixed number of instructions and do not take conflicting accesses into
account. One can also compare nested transaction [17,20] with intermediate check-
pointing. While nested transaction is a software concept intermediate checkpointing
is a dynamic hardware technique that optimizes execution of transactions.

Silent store in the context of transactional memory is captured in the transactional
value prediction (TVP) scheme proposed by F. Tabba et al. [24]. In the TVP scheme,
a transaction is allowed to proceed even if a read hits a line that is stale in the cache. A
store is performed without sending any exclusive write request. Correctness is ensured

123

216 Int J Parallel Prog (2014) 42:198–218

by validating all memory operations before commit. The validation is done by com-
paring the consumed data with the latest version. In the process, the effect of false
sharing and silent store is nullified. While TVP is built on top of a revised TM protocol
that ignores cache coherence messages for conflicts our scheme is built on top of a
standard MESI cache coherence protocol.

Bobba et al. [3] introduce a framework for reasoning about performance tradeoffs
between HTM systems with respect to version and conflict resolution management.
They identify seven performance pathologies that help in selecting an optimal strategy
for version and conflict management. Once that strategy is established, the resulting
HTM system can still suffer from conflicts that result in performance losses. The
framework presented in this paper helps understanding the root causes of the remain-
ing conflicts so that proper optimizations can be applied.

8 Concluding Remarks

This paper studies the root causes of data conflicts in hardware transactional-memory
systems (HTM). Four classes of conflicts are identified: true sharing, false sharing,
silent store, and write-write conflicts. In order to quantitatively establish the losses in
performance, we extend the 4C model for cache miss classification with a new cate-
gory called contamination misses. We consider several techniques to address the root
causes of conflicts in HTM systems. In particular, we contribute with a technique to
reduce the number of false sharing and silent store conflicts and revisit intermediate
checkpointing to reduce the impact of conflicts regardless of root cause.

Overall we find that true and false sharing conflicts can have a significant impact
on performance on HTM systems whereas conflicts due to silent stores and write-
write conflicts are not common. While most of the performance losses stem from
re-execution of transactions due to aborts, extraneous communication in servicing
contamination misses is another important source. The proposed techniques can be
integrated with modest efforts. By especially supporting finer-grain cache line sizes
for conflict detection and intermediate checkpointing we show that on average perfor-
mance can be improved by 10 % on a baseline with 32-byte cache lines and 28 % on
a baseline with 64-byte cache lines.

Acknowledgments This research is partially sponsored by the SARC and the VELOX project funded
by the EU. Most of the work is done when the first author was at Chalmers as a PhD student. The authors
are members of HiPEAC—a Network of Excellence funded by the EU. The first author is an ERCIM
postdoctoral fellow at INRIA.

References

1. Alameldeen, A.R., Wood, D.A.: Variability in architectural simulations of multi-threaded workloads.
In: Proceedings of the 9th Annual International Symposium on High-Performance Computer Archi-
tecture, Anaheim, CA, 8–12 Feb 2003

2. Ananian, C.S., Asanovi’c, K., Kuszmaul, B.C., Leiserson, C.E., Lie, S.: Unbounded transactional mem-
ory. In: Proceedings of the 11th International Symposium on High-Performance Computer Architecture
(HPCA’05), pp. 316–327, San Francisco, CA, Feb 2005

123

Int J Parallel Prog (2014) 42:198–218 217

3. Bobba, J., Moore, K.E., Yen, L., Volos, H., Hill, M.D., Swift, M.M., Wood, D.A.: Performance pathol-
ogies in hardware transactional memory. In: Proceedings of the 34th International Symposium on
Computer Architecture, June 2007

4. Ceze, L., Tuck, J., Cascaval, C., Torrellas, J.: Bulk disambiguation of speculative threads in multi-
processors. In: Proceedings of the 33rd International Symposium on Computer Architecture, June
2006

5. Chen, Y.S., Dubios, M.: Cache protocols with partial block invalidations. In: Proceedings of 7th Inter-
national Parallel Processing Symposium, CA, USA, April 1993

6. Colohan, C.B., Aliamaki, A., Steffan, J.G., Mowry, T.C.: Tolerating dependences between large spec-
ulative threads via sub-threads. In: Proceedings of the 33rd International Symposium on Computer
Architecture, pp. 216–226, Boston, MA, June 2006

7. Culler, D.E., Gupta, A., Singh, J.P.: Parallel Computer Architecture: A Hardware/Software
Approach. Morgan Kaufmann Publishers Inc., California (1998)

8. Dahlgren, F., Dubois, M., Stenstrom, P.: Sequential hardware prefetching in shared-memory multipro-
cessors. IEEE Trans. Parallel Distrib. Syst. 6(7), 733–746 (1995)

9. Dubois, M., Skeppstedt, J., Ricciulli, L., Ramamurthy, K., Stenstrom, P.: The detection and elimina-
tion of useless misses in multiprocessors. In: Proceedings of the 20th International Symposium on
Computer Architecture, San Diego, CA, USA (1993)

10. Hammond, L., Wong, V., Chen, M., Hertzberg, B., Carlstrom, B., Davis, J., Prabhu, M., Wijaya, H.,
Kozyrakis C., Olukotun, K.: Transactional memory coherence and consistency. In: Proceedings of the
31st Annual International Symposium on Computer Architecture, pp. 102–113, München, Germany,
19–23 June 2004

11. Harris, T., Larus, J., Rajwar, R.: Transactional memory. Synthesis Lectures on Computer Architecture,
vol. 5, no. 1, June 2010

12. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-free data structures.
In: Proceedings of the 20th International Symposium on Computer Architecture, pp. 289–300 May
1993

13. Kamble, M.B., Ghose, K.: Analytical energy dissipation models for low power caches. In: Proceedings
of the International Symposium on Low Power Electronics and Design, pp. 143–148, Aug 1997

14. Lepak, K.M., Bell, G.B., Lipasti, M.H.: Silent stores and store value locality. IEEE Trans. Comput.
50(11) (2001)

15. Lupon, M., Magklis, G., Gonzalez, A.: FASTM: a log-based hardware transactional memory with fast
abort recovery. In: Proceedings of the 18th International Conference on Parallel Architectures and
Compilation Techniques, 12–16 Sept 2009

16. Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg, J., Larsson, F.,
Moestedt, A., Werner, B.: Simics: a full system simulation platform. IEEE Comput. 3(5), 50–58 (2002)

17. McDonald, A., Chung, J., Carlstrom, B.D., Minh, C.C., Chafi, H., Kozyrakis, C., Olukotun K.: Archi-
tectural semantics for practical transactional memory. In: Proceedings of the 33rd annual international
symposium on computer architecture, Boston, MA, 17–21 June 2006

18. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: stanford transactional applications for
multi-processing. In: Proceedings of the International Symposium on Workload Characterization,
September 2008

19. Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., Wood D.A.: LogTM: log-based transactional
memory. In: Proceedings of the 12th Annual International Symposium on High Performance Com-
puter Architecture (HPCA-12), pp. 258–269, Austin, TX, 11–15 Feb 2006

20. Moravan, M.J., Bobba, J., Moore, K.E., Yen, L., Hill, M.D., Liblit, B., Seift, M.M., Wood, D.A.:
Supporting nested transactional memory in LogTM. In: Proceedings of the 12th International Con-
ference on Architectural Support for Programming Languages and Operating Systems (ASPLOSXII),
pp. 359–370 (2006)

21. Negi, A., Waliullah, M.M., Stenstrom, P.: LV*: a low complexity lazy versioning HTM infrastructure.
In: Proceedings of 10th IEEE IC-SAMOS, July 2010

22. Rajwar, R., Herlihy, M., Lai, L.: Virtualizing transactional memory. In: Proceedings of the 32nd Inter-
national Symposium on Computer Architecture, pp. 494–505, June 2005

23. Shriraman, A., Dwarkadas, S.: Analyzing conflicts in hardware-supported memory transactions. Int.
J. Parallel Program 9(1), 33–61 (2010)

24. Tabba, F., Hay, A.W., Goodman, J.R.: Transactional value prediction. In: Proceedings of the ACM
SIGPLAN Workshop on Transactional Computing, Feb 2009

123

218 Int J Parallel Prog (2014) 42:198–218

25. Tomić, S., Perfumo, C., Kulkarni, C., Armejach, A., Cristal, A., Unsal, O., Haris, T., Valero, M.:
EazyHTM: eager-lazy hardware transactional memory. In: Proceedings of the 42nd International Sym-
posium on Microarchitecture, New York, Dec 2009

26. Waliullah, M.M., Stenstrom, P.: Intermediate checkpointing with conflicting access prediction in trans-
actional memory systems. In: Proceedings of the 22nd IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Miami, FL, USA, April 2008

27. Waliullah, M.M., Stenstrom, P.: Classification and elimination of conflicts in hardware transactional
memory systems. In: 23rd International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD’2011), Vitória, Espírito Santo, Brazil, Oct 2011

123

	Removal of Conflicts in Hardware Transactional Memory Systems
	Abstract
	1 Introduction
	2 Architectural Framework and Its Characterization
	2.1 Baseline Architectural Framework
	2.2 Classification of Data Conflicts

	3 A New Miss Classification Model
	4 Performance Improvement Techniques
	4.1 Multiple Cache-Line Granularities (MCG)
	4.2 Intermediate Checkpointing (IC)
	4.3 Suppressing Silent Store (SSS)
	4.4 Putting It All Together

	5 Experimental Methodology
	6 Experimental Results
	6.1 Baseline Performance Characteristics
	6.2 Cache Miss Classification and the Frequency of Contamination Misses
	6.3 Performance Analysis of MCG
	6.4 Performance Analysis of IC
	6.5 Performance Analysis of SSS
	6.6 Combined Effect of the Techniques
	6.7 Impact on Energy Consumption

	7 Related Work
	8 Concluding Remarks
	Acknowledgments
	References

