Int J Parallel Prog (2012) 40:262-289
DOI 10.1007/s10766-011-0187-0

LALP: A Language to Program Custom FPGA-Based
Acceleration Engines

Ricardo Menotti - Joao M. P. Cardoso -
Marcio M. Fernandes - Eduardo Marques

Received: 2 February 2011 / Accepted: 20 August 2011 / Published online: 4 October 2011
© Springer Science+Business Media, LLC 2011

Abstract Field-Programmable Gate Arrays (FPGAs) are becoming increasingly
important in embedded and high-performance computing systems. They allow perfor-
mance levels close to the ones obtained with Application-Specific Integrated Circuits,
while still keeping design and implementation flexibility. However, to efficiently pro-
gram FPGAs, one needs the expertise of hardware developers in order to master hard-
ware description languages (HDLs) such as VHDL or Verilog. Attempts to furnish a
high-level compilation flow (e.g., from C programs) still have to address open issues
before broader efficient results can be obtained. Bearing in mind an FPGA available
resources, it has been developed LALP (Language for Aggressive Loop Pipelining),
a novel language to program FPGA-based accelerators, and its compilation frame-
work, including mapping capabilities. The main ideas behind LALP are to provide a
higher abstraction level than HDLs, to exploit the intrinsic parallelism of hardware
resources, and to allow the programmer to control execution stages whenever the com-
piler techniques are unable to generate efficient implementations. Those features are
particularly useful to implement loop pipelining, a well regarded technique used to

R. Menotti (<) - M. M. Fernandes
Departamento de Computagdo, Universidade Federal de Sdo Carlos, Sdo Carlos, Brazil
e-mail: ricardomenotti @acm.org

M. M. Fernandes
e-mail: marcio@dc.ufscar.br

J. M. P. Cardoso

Departamento de Engenharia Informética, Faculdade de Engenharia,
Universidade do Porto, Porto, Portugal

e-mail: jmpc@acm.org

E. Marques

Inst. Ciéncias Matemdticas e Computacdo, Universidade de Sdo Paulo, Sdo Carlos, Brazil
e-mail: emarques @icmc.usp.br

@ Springer

Int J Parallel Prog (2012) 40:262-289 263

accelerate computations in several application domains. This paper describes LALP,
and shows how it can be used to achieve high-performance computing solutions.

Keywords Loop pipelining - Compilers - Reconfigurable computing - FPGA

1 Introduction

In order to attend the growing demand for high performance of certain embedded
systems, programmable devices such as FPGAs can be used as alternative solutions
or extensions to von-Neumann based processors. FPGA-based systems are able to
achieve performance levels close to ASICs, with the advantages of flexibility and pro-
grammability. However, the typical development process employed for reconfigurable
devices is similar to the one used for ASICs, demanding hardware background.

Most computing problems of practical use have been implemented in software to be
executed in General Purpose Processors (GPPs). In an attempt to use this large quantity
of algorithms, researchers have developed high-level synthesis techniques and tools
[1]. The goal of high-level synthesis is the generation of specialized hardware archi-
tectures from an algorithm described in a high level language, such as C, Java, or some
variant of them. However, the generation of architectures from high-level descriptions
rarely results in optimal systems, since imperative languages do not explicitly expose
parallelism among operations. Other characteristics of such languages impose diffi-
cult barriers for synthesis tools, as described in many papers such as [2]. In addition,
modern FPGAs have an increasing set of sophisticated resources that can be used to
substitute the basic operations performed by GPPs. Digital Signal Processing (DSP)
and reconfigurable memory blocks are examples of such resources.

Many efforts trying to achieve a direct mapping of algorithms into hardware con-
centrate on loops since they often represent the most computationally intensive regions
of application codes. A particularly useful technique for this purpose is loop pipelin-
ing, which is usually adapted from software pipelining techniques [3]. The application
of this technique is strongly related to instruction scheduling, which often prevents
an optimized use of the resources present in modern FPGAs. Most of the high-level
compilation tools, such as Garp C [4], MATCH [5] and the Snider’s compiler [6], deal
with loops by using software pipelining techniques based on Rau’s Iterative Modulo
Scheduling [7]. The technique rearranges the order of instructions taking into account
machine resources and dependence constraints. The resulting schedule of instructions
contains a prologue, a kernel, and an epilogue. Another approach, also based on soft-
ware pipelining, is kernel identification, a technique relying on loop unrolling to find
patterns upon which a kernel is built, and then executed in fewer cycles [8]. In addition,
pipelining vectorization techniques [9] have also been used for this purpose, but they
are usually restricted to regular loops.

State of the art research frameworks for high-level synthesis (e.g., SPARK [10])
and tools used to build hardware acceleration modules (e.g., C2H from Altera [11])
reveal that the obtained results concerning loops are not optimal, and that there is still
room for improvements. Thus, in an attempt to alleviate the problem (i.e., to achieve
loop implementations with higher performance), this paper proposes a novel domain

@ Springer

264 Int J Parallel Prog (2012) 40:262-289

specific language called LALP (Language for Aggressive Loop Pipelining), and its
corresponding compilation framework. The first version of LALP and its compilation
flow have been previously introduced in [12, 13]. The language allows programmers to
describe sequential code and loop computations using C-like syntax. The compilation
framework is able to generate optimized hardware structures for the execution of loop
computations, targeting a platform based on reconfigurable hardware.

It can be argued that this approach bridges the gap between lower and higher
abstraction levels. However, it presents the advantages of a higher abstraction level
than existing HDLs (e.g., VHDL, Verilog), and still allowing the programmer to con-
trol scheduling at the clock cycle level (but without the low level notion of clock
signals). In addition, this approach allows textual description of important features
(generated by front-end analysis tools), enabling the exploration of deep pipelining
levels, with different loop control mechanisms (e.g., a single centralized counter per
loop, or distributed counters and control).

The remainder of this paper is organized as follows. The next section presents the
basic ideas of a scheme called Aggressive Loop Pipelining, the underlying technique
targeted by LALP. This domain specific language was specially developed to support
it, and is described in Sect. 3. A framework developed to map LALP semantics into
FPGA structures is described in Sect. 4, followed by some experimental results in
Sect. 5. The paper is concluded with a discussion about related work in Sect. 6, and
final remarks in the last section.

2 Aggressive Loop Pipelining

In recent years new techniques for loop pipelining have been used to avoid the limita-
tions imposed by the basic operation primitives [14, 15]. Those data-driven approaches
suggest that unconventional loop pipelining schemes may better exploit the avail-
able resources in reconfigurable architectures, and so increase their performance. The
basis of the approach described in this paper, called Aggressive Loop Pipeline (ALP),
adapts some of the ideas proposed in [14] for execution in FPGA platforms. However,
instead of a data-driven scheme, the ALP technique attempts to achieve the maximum
throughput using counters to furnish the iteration space in loops, and shift-registers to
synchronize operations [16]. By doing so, it avoids the need of a centralized control
based on finite state machines, a key difference from traditional approaches to loop
pipelining. By using the ALP scheme, operations in the loop body are executed at
clock cycles according to the paths taken during execution, and optimal loop pipelin-
ing can be achieved. The major reason for this is the fact that traditional loop pipelining
techniques statically assign operations to each stage of the FSM (finite state machine)
that controls the loop. In order to do so, they either need to consider the critical path
latency of the loop body (too conservative), or to take into account all possible paths
that can be taken (too complex).

Consider the example in Fig. 1, which shows a loop body (a), and the corresponding
diagram for the ALP execution (b). As depicted, the execution datapath has a counter
component (CNT) mimicking the for statement of the source code. i.e., updating
the i value, and testing for the stop condition. The parameter step has two functions.

@ Springer

Int J Parallel Prog (2012) 40:262-289 265

Fig. 1 Example of aggressive
loop pipelining: a segment of 0yl
code; b hardware structure PN

<N—s i, step

CNT

for(i=0;i<N;i++) {

(@) B EX

The straightforward one is to define the number of cycles between consecutive updates
of the parameter i. The more critical one is to define the pipeline stage in which an
instruction is to be executed, in some sense similar to the use of predicate registers,
employed by some software pipelining techniques. By adding pipeline stages to the
datapath structures executing the loop body it is possible to pipeline even loops with
conditional constructs. In principle, cascade registers are used to propagate both the i
and step values. A possible optimization of the scheme would be the duplication of
the counter component (enabled by the original szep signal), avoiding the cascading
of the i value to deep levels of the execution datapath. It should be noticed, however,
that in any case register cascading could be economically implemented by using the
native support to shift-registers present in most FPGAs.

3 LALP Domain Specific Language

In order to facilitate the application of the ALP technique, we defined LALP, a domain
specific language. The main idea of LALP is to allow the user to program highly
efficient hardware engines without the required details of HDLs such as Verilog or
VHDL. Being LALP a domain-specific language, it does not need the overall flexi-
bility ensured by typical HDLs. On the other hand, LALP exposes to the user some
of the intrinsic advantages of using contemporary FPGAs, such as concurrent exe-
cution, a large number of hardware units, and configurable memories. Statements in
LALP are intrinsically concurrent, with sequencing being ensured by control and data
dependences, or by using explicit synchronization points, if necessary.

The language allows the use of directives (in the form of specific constructs) to guide
synchronization and the pipeline generation. The LALP compiler uses these directives
to determine, whenever possible, the number of clock cycles and other parameters that
will ensure the correctness of the code being executed. When directives are omitted,
the compiler tries to infer those parameters. Note, however, that whenever the LALP
compiler is unable to determine the clock cycles that would ensure correctness, it
warns the user about that.

@ Springer

266 Int J Parallel Prog (2012) 40:262-289

The language has a C-like syntax, which was chosen due to its familiar grammar
and widespread use. The current implementation of LALP supports basic constructs
such as declaration of types, scalar and array variables, arithmetic expressions, logic
expressions, for loops, and sync qualifiers. Support for function calls are still absent,
but this is not a significant issue to evaluate the potential of the techniques being
developed.

3.1 Basic Features

The main component of LALP is a module. Each module will result in a hardware
engine to be implemented in FPGAs. LALP modules have parameters that can be
of types in (input) or out (output). These parameters specify the interfaces to the
environment or system where the hardware engine resultant from the module will be
integrated. The body of a module specifies the required computations. Data types,
constants and declarations can also be expressed before a module. An example of a
module with two outputs (sum and done) and one input (init) in shown bellow:

// constants and data types can be expressed here
dotprod_alp(out int sum, out bit done, in bit init) {
// declarations can be expressed here

// computations are expressed here

}

[S

LALP currently allows the programmer to define scalar and uni-dimensional array
variables. All data types are specializations of the fixed (fixed-point) data type. Inte-
gers can be defined with a variable number of bits, signed or unsigned. Although real
numbers can be defined (represented as fixed-point types), the current version of the
compiler does not as yet using floating-point data types. Future extensions should
address this issue, and also include support for floating point data types. The example
below illustrates the declaration of int, uint, uint8, and bit data types. The typedef
keyword is used for this purpose, although a straightforward declaration using just
fixed(...) could also be employed.

typedef fixed(32, 1) int;
typedef fixed(32, 0) uint;
typedef fixed(8, 0) uint8;
typedef fixed(1, 0) bit;

I Y

int a; // similar to: fixed(32, 1) a;

In LALP, constants can be declared using the keyword const as in const N = 32.
When declaring scalar and array variables one can also initialize them as illustrated
in the example below. In this example, f is an array of N int values, with the first two
elements being equal to 0 and 1, respectively.

1 |int f[N] = {0, 1};
int a = 0;

S

@ Springer

Int J Parallel Prog (2012) 40:262-289 267

LALP does not support if-then and if-then-else constructs. There is, however, sup-
port for assignments whose input comes from one of two sources, as illustrated in the
example below.

I lmax=a<b?b: a;

LALP allows the use of predicated-based constructors in order to specify con-
ditional execution of operations, or the dependences on a triggering condition. The
code segment below shows an example of a predicate triggering one of two possible
assignments. This example produces a hardware implementation equivalent to the one
obtained in the previous example.

1 [pl=a<b;
2 |max = a when !pl;
3 |max = b when pl;

Another example showing the use of predicates based on triggering conditions is
shown below. In this case, the assignment to the diff variable is done 3 clock cycles
after the generation of the len.step event.

1| diff = val — valpred when len.step@3;

3.2 Implementing Loops in LALP

The key features of LALP appear in the support for loop execution, in the form of for
loops, and sync qualifiers. Loops are implemented using a counter statement, which
includes attributes that can be used in other LALP statements. Those attributes corre-
spond to ports of the correspondent counter hardware component, and are presented
in Table 1.

Sync qualifiers are expressed as @n, being n the number of clock cycles needed
to trigger an action, e.g., to perform an operation. As an example to show the use of
counters and sync qualifiers, consider the following C code statements extracted from
an ADPCM decoder implementation:

for (len=0; len<DATASIZE; len++) {
diff = val — valpred;
if (diff < 0)

sign = §;
else
sign = 0;

©® 9 U A W -

The code below shows a possible LALP implementation for the C code just
presented.

@ Springer

268

Int J Parallel Prog (2012) 40:262-289

Table 1 Attributes of the counter component

Name Function
Generics bits number of bits of input, output and termination
steps number of clock cycles per output update (default: 1)
increment increment/decrement value (default: 1)
down counting direction (default: 0, increment)
condition stop condition (default: 1, <=)
Ports input used to load the initial value
termination end value of counting
clk clock signal
clk_en enable execution
reset re-initiate counting
load load initial value
step used to synchronize operations
done signalizes the end of counting
output current value of counting

counter (len=0; len<DATASIZE; len++@10);
= val — valpred when len.step@3;
sign = diff < 0 ? 8 : 0 when len.step@4;

woE W —
L&
=y
-
-
|

In the first statement (line 1), counter implements a for loop that will update the
value of len every ten cycles. The second statement (line 3) specifies a subtraction,
with the result being registered in the third cycle of every loop iteration. Similarly,
the conditional assignment in the last statement (line 4) occurs in the fourth cycle of
every loop iteration, exemplifying the handling of data dependences by means of the
sync qualifier: diff is defined in step@3, and used in the next clock cycle (@ values
taken from a broader context).

Currently, while and do-while loops do not have specific LALP constructs. Future
studies will address possible extensions. However, for some of these loop types a
counter-based scheme could also be also used.

When implementing an algorithm in LALP, it is assumed in principle that all instruc-
tions in the loop body can be executed in parallel, i.e., one new iteration starts and
completes in one clock cycle (the default behavior of the counter statement). Thus, the
programmer is responsible for determining intra- and inter-dependences, i.e., depen-
dences between instructions from the same and from distinct iterations, respectively.
In both cases, the sync qualifier is used to ensure the correct order of values being
produced and consumed. Note, however, that the mapping tool is able to determine
the location and values of some of the sync qualifiers. Although this task is currently as
much as possible automated, it can be said that in some cases it is still useful to allow
programmers to make changes by means of sync qualifiers. As an aid to the process

@ Springer

Int J Parallel Prog (2012) 40:262-289 269

1 il = 0;

2 for (i = 0; i < num_fdets; i++) {
3 for (j = 0; j <N; j++) {

4 fO = dct-io_ptr[0+il];

5 f1 = dct_io_ptr [8+il];

6

7 il++;

s }

9 il += 56;

10 }

11 il = 03

12 for (k = 0; k < Nxnum_fdcts; k++) {
13 e

14 }

Fig. 2 C code example with nested loops

of assigning sync qualifiers to dependent statements, the Graphviz [17] visualization
tool is currently being used. It shows graph structures representing computations in a
given LALP module, with possible scheduling information to help, whenever needed.

LALP also allows nested loops, which can be implemented by using distinct counter
statements, and corresponding step signals for each loop. A simple example of a for
loop nesting is presented bellow:

for (i=0;i<N;i++) {
for (j=05jM j++) {

aux = A[iVHj];

T Y N T

The corresponding LALP implementation of the nested loops presented above is
shown below:

counter (i=0; i<N; i++@j.done);
j.init = i.step
counter (j=0; jM;, j++);

index = isMkj;

A.address = index;
aux = A;

©® N9 U A W o -

Some loops taken from a DCT (Discrete Cosine Transform) implementation (Fig. 2)
can be programmed as in the LALP code fragment shown in Fig. 3. Note that counters
related to the inner loops start executing based on the value of the indexing variable
of the counter related to the outermost loop. In this case, the first counter increments
its indexing variable, i, by 64, every 72 clock cycles. This in turn will enable the start
of a new iteration of the second loop, which is directly dependent on the new values
of 1 being produced. A similar behaviour applies to the third loop, which is directly

@ Springer

270 Int J Parallel Prog (2012) 40:262-289

1| counter (i=0; i<num_fdcts; i+=64072);
2|i.clk_en = init;

3| i_plus_-8 =1 4+ 8§;

4 counter (j=i; j<i-plus-8; j++@9);

5 j.clk_en = init;

6 j.load = i.step;

7 j-plus_64 = j + 64;

8 counter (il=j; il<j-plus_-64; il1+=8);

9 il.clk_en = init@2;

10 il.load = j.step;

11 dct_io_ptr.address = il;

12 f0O = dct-io_-ptr.data_out when (j.step@3);
13 fl = dct-io_-ptr.data_out when (j.step@4);
14

15| counter (k=0; k<num_fdcts; k++);

16| k.clk_en = i.done@l7;

17

Fig. 3 LALP example with nested loops

Fig. 4 C code for Dotprod

1 |#define N 2048

2 |int x[N], y[N];

3

4 |int dotprod() {

5 int i, sum = 0;

6 for (i=0; i<N; i++)
7 sum += x[i] * y[i];
8 return sum;

o}

dependent on the value j, the indexing variable of the second counter. This example
shows the possibility of using more LALP counters than the actual number of loops
in the original C code, based on the existence of other counter-based functionalities
in the code (see variable i1 in Fig. 2 and its correspondent counter in Fig. 3).

3.3 LALP Examples

For illustration purposes, the implementation of three hardware blocks using LALP is
shown in this section: Dotprod, Max, and Sobel. Dotprod is a simple example showing
the basic implementation of a loop accessing vectors of integers. Max was chosen to
illustrate the use of conditional code in LALP, while Sobel exemplifies a more complex
piece of code, often used as an image operator.

The function Dotprod performs the dot product of two integer vectors, as shown in
the C source code in Fig. 4.

A possible implementation of the Dotprod function using LALP is shown in Fig. 5.
As can be seen, integer and bit data types are type defined to the £ixed LALP type,
taking as parameters the number of storage bits, and the sign option, respectively. In the
module code itself, a few LALP specific constructs are noticeable. The first one is the
counter statement, which defines a for loop dependent on its indexing variable i. In

@ Springer

Int J Parallel Prog (2012) 40:262-289 271

const DATAWIDTH = 32;
const N = 2048;

typedef fixed(DATAWIDTH, 1) int; // 1 means signed
typedef fixed(1l, 0) bit;

dotprod_alp (out int sum, out bit done, in bit init) {

© W N e AW N e

int x[N], y[N];

10 int acc;

11 fixed (16, 0) 1i;

12 }

13 counter (i=0; i<N; i+t+el);
14 x.address = i;

15 y.address = i;

16 acc += x x y when i.step@l;
17 sum = acc;

18 done = i.done@2;

19 }

Fig. 5 Dotprod description in LALP

principle, all instructions directly or indirectly dependent on i can be simultaneously
executed. Obviously this is not always possible, so synchronization delays can be
inserted. That is the case of the acc += x * y operation, where the assignment
to acc must wait 1 cycle after i has been redefined, and so allowing time for the
multiplication completion. This delay is specified by means of the when step@l
qualifier. As pointed out before, the actual value of the @ qualifier may be compiler
inferred (Sect. 4.2).

A possible optimization can be done with little modifications in the LALP code for
dotprod, in this case specifying a multiplier with 6 pipeline stages. This can be done
by changing the LALP statement that computes the value of acc, as shown bellow.

1 acc += X *@0 y when i.step@7;

In case the input data from local memories (identified as x an y) is registered, a
possible LALP solution would include two additional @ sync qualifiers, as shown
below:

1 acc += (x@1) @6 (y@l) when i.step@S§;

As part of the compilation flow, a control/data flow graph (CDFG) is generated and
scheduled, as shown in Fig. 6. In that graph, double-edged nodes represent registered
operations. It can be seen that instructions are grouped in either of three execution
cycles, for parallel execution within the respective cycle.

The second example, Max, determines the maximum value in a vector of integers.
The LALP code is similar to the one presented for dotprod, especially in terms of read-
ing a vector of integers. The main difference worth being illustrated is the conditional
processing inside de loop (counter statement), as shown bellow.

@ Springer

272 Int J Parallel Prog (2012) 40:262-289

o
o © -

<4+ O

—

v o———

C

e

Fig. 6 Scheduled CDFG for Dotprod

counter (i=0; i<N; i+=1);

v.address = i;

a=v; // the same as a = v.data_out;
b = awhen (a >b) & (i.step@2);
maxval = b;

L T S

Now the implementation of a Sobel image operator is presented, which is based on
the original C source code illustrated in Fig. 7. The operator traverses an input image,
here represented as a single-dimension array, using windows of 9 pixels to calculate
resultant pixels. A possible LALP version of the Sobel image operator is presented in
Fig. 8.

The original for 1oop is represented in the LALP version with the counter
statement in line 20. The indexes related to the 8 load operations from array in (see
Fig. 7) are represented by the 8 assignments to variable addr (see Fig. 8). Those
assignments are scheduled to different clock cycles by means of the @ sync qualifi-
ers. Variable addr is then assigned to the memory address port identified as input
(line 29). The values related to those array references are then read and assigned to 8
different variables at consecutive clock cycles (lines 30-37), which are also scheduled
using @ sync qualifiers. Lines 38 and 39 implement the calculations of H and V
using the previously loaded values, in this implementation using multipliers with 6
pipeline stages (identified by *@6). Following the code related to the if constructs in

@ Springer

Int J Parallel Prog (2012) 40:262-289 273

1 |#define cols 10

2 |#define rows 10

3 |[#£define N cols*rows

4

5 | char in [N];

6 | char out [N];

7

s | void sobel () {

9 int H, O, V, i;

w| int i00, i01, i02;

u| int i10, i12;

12| int i20, i21, i22;

13 for (i = 0; i < colsx(rows—2)—2; i++) {
14 100=in [i]; i0l=in[i +1]; i02=in[i +2];
15 i10=in[i+ cols]; il2=in[i+ cols+2];
16 i20=in[i+2xcols]; i2l=in[i+2+cols+1]; i22=in[i+2xcols +2];
17 H=- i00 — 2xi01 — i02 +

18 + 120 + 2xi21 + i22;

19 V=- i00 + i02

20 — 2%i10 + 2xil12

21 - i20 + i22;

22 if (H<O0)

23 H = —H;

24 if (V<0)

25 VvV = -V;

26 O=H+V;

27 if (O > 255)

28 O = 255;

29 out [i + 1] = (char)O;

30 }

31|}

Fig. 7 Sobel C source code

the original C code, there is the LALP code responsible for saving the resulting com-
putations (Otrunk) in the array stored in the local memory identified as output.
At this stage, the i values output from the counter component would have passed
through a 19-level shift-register (¢ sync qualifier included in line 45), before reach-
ing the memory address port. Once again, the actual values of the @ qualifiers may
be compiler inferred, as discussed in Sect. 5.4.

4 Mapping LALP Code into Hardware

Transforming LALP source code into a synthesizable hardware description is accom-
plished by means of a compilation framework, whose main tasks are represented in
Fig. 9. The front-end takes as input a program implemented in LALP, and after pars-
ing it, generates the corresponding CDFG (Control-Data Flow Graph), as described
in Sect. 4.1. The next stages are responsible for the core mapping tasks, and include
scheduling, balancing, and synchronization of operations. In these stages, a number
of analysis and modifications are performed over the CDFG, using the algorithms
described in Sects. 4.2 and 4.3. During the final steps of the compilation flow, the
back-end generator (Sect. 4.4) selects components from an existing VHDL library,
and wires them according to the constraints specified in the scheduled CDFG. The
resulting VHDL description is then ready for RTL (Register Transfer Level) synthe-
sis. Auxiliary input (e.g., C code) and output (DOT Graphviz) files are also shown in

@ Springer

274 Int J Parallel Prog (2012) 40:262-289

1| const DATAWIDTH = 16;

2 | const ROWS = 10;

3 | const COLS = 10;

4 | const SIZE = ROWSxCOLS;

5

6 | typedef fixed(DATAWIDTH, 1) int; // signed 16 bits
7 | typedef fixed(1l, 0) bit;

s | typedef fixed(8, 0) byte; // unsigned 8 bits

9

10 | sobel(in bit init, out bit done) {

11

12 int H, O, V, Hpos, Vpos, Otrunk;

13 int i, addr;

14 int 100, i01, i02;

15 int il0, i12;

16 int 120, i21, i22;

17 byte input [SIZE];

18 byte output [SIZE];

19 }

20 counter (1i=0; i<78; i4+=108);

21 addr = i;

22 addr = (i) + 1 when i.step@l;

23 addr = (i) + 2 when i.step@2;

24 addr = (i) + COLS when i.step@3;

25 addr = ((i) + COLS) + 2 when i.step@4;

26 addr = ((i) + COLS) + COLS when i.step@5;

27 addr = (((i) 4+ COLS) 4+ COLS) + 1 when i.step@6;
28 addr = (((i) + COLS) + COLS) + 2 when i.step@T7;
29 input.address = addr;

30 i00 = input when i.step@2;

31 i01 = input when i.step@3;

32 i02 = input when i.step@4;

33 il0 = input when i.step@5;

34 il2 = input when i.step@6;

35 i20 = input when i.step@7;

36 i21 = input when i.step@8;

37 i22 = input when i.step@9;

ss| H = ((—i00)4(=2 %@6 i01))+(((—i02)+i20)+(2 %06 i21+i22));
30| V= ((—i00)+i02)+(((—=2 *@6 i10)+2 %06 i12)+((—i20)+i22));
10 Hpos =H < 0 7 —H : H;

41 Vpos =V <0 7?7 -V :V;

42 O = Hpos + Vpos;

43 Otrunk = O;

44 Otrunk = 255 when O > 255;

45 output.address = 1@19;

46 output.data_-in = Otrunk;

a7 done = i.done@19;

as | }

Fig. 8 Sobel LALP implementation

Fig. 9, but those are mainly used to help the programmer in the process of creating
and optimizing LALP code.

4.1 CDFG Generation

The CDFG is built based on operations and operands present in the LALP source
code. After the CDFG generation, the compiler performs the core stages of the mapping

@ Springer

Int J Parallel Prog (2012) 40:262-289 275

LALP Front-End
behavioral | — (CDFG Generation)

Source Code | m = =
(C, Java, etc) >

Scheduling
— Balancing

j Synchronizing
l
l

LALP-S
=== ructura — < &@%
—
)
— boT
Back-End Graphviz
Generators
VHDL VHDL (VHDL, Graphviz,
Library _) LALP-S) __}
—| P
—
Fig. 9 The complete compilation flow
Detect Synchronize

Backward Edges
scC |=>» P =>»| ASAP |=> =>| Balance
Operations

Fig. 10 Core stages of the mapping process

process, as represented in Fig. 10. For scheduling purposes, it is necessary to identify all
back edges, which are responsible for recurrences, i.e. dependences between instruc-
tions from distinct iterations. The presence of recurrences may impose limitations to
the rate of iterations execution. While conservative assumptions may unnecessarily
degrade performance, poor analysis can result in wrong results being produced.

In order to identify back-edges and circuits in the CFDG, the strongly connected
components (SCC) in the graph are first detected [18], helping to reduce the complex-
ity of the problem by considering a smaller number of nodes at a time. For reducible
graphs, the back edges can be identified by using a tree dominance algorithm, or
depth-first search [19]. Back edges are the ones having a given component as source,
and one of its dominators as destination.

Although only natural loops are used, (goto, break, and continue statements
are not allowed), the resulting CDFGs can be irreducible, which prevents the applica-
bility of this technique. In this case, the scheme is not able to differentiate dependences
involving computations from the same or from distinct iterations. To deal with such
cases, several different approaches have been proposed in the literature [20]. The
LALP compilation framework identify back edges in irreducible graphs based on the
topological ordering of instruction attributions (Attr) existing in the input code. As
part of this process, and in order to guide the scheduling process, the user may need

@ Springer

276 Int J Parallel Prog (2012) 40:262-289

(a (b)
clk [clear | reset | clk_en
module_for:len
clk | we | 10[32] | reset iterations=1024
range_op_s:index3 steps=lo
()ﬂl.“‘li, output[4] done | step
s105[32] 513
¥ A
clk rlﬂl}'.’] | we | reset ! | AT eIk clk |\rc | 1032] | reset
alay 1 sten?
reg_opindex hh, :Itll’_"l_tj;hh'l"' r;\llgu_np_:?imlcx}
00[32 - o0[3k

1321 a_delayed(1] - [4|

s87(32 O] 32

lw 132] | 311 s105]32]

reset | all] | clk
oIk [10(32]
delay_op:indexDelayIndex2 X —_—
delay=13 reg_opiindex sS[32]
)
a_delayed[1] 00321
871321
s3[1] o i)

reset [10132] [el [we [k [112] reset [10032) [settf1] [we [ek [132

R E reg_op_s:index2
add_re g_n]}_:&: index2 wdd_reg_op_s:index

00[32]

00[32]

Fig. 11 Synchronized schedule: a using delays; b using step signal

to furnish to the compiler recurrences and back edges in the CDFG in the form of
annotations.

4.2 Scheduling and Balancing

The scheduling process determines the execution cycle of each operation in the CDFG.
The relative ordering of operations is determined based on their respective predeces-
sors and successors. As opposed to software pipelining techniques targeting micro-
processors, the scheduling approach used when compiling LALP does not assume
sharing of components, apart from memory ports. Furthermore, the relative ordering
between loads and stores to the same memory - multiple loads can be performed con-
currently if using a multi-port memory—is kept as defined in the source code. These
two observations relax the need for a list scheduling based technique.

Before the scheduling actually starts, all back edges are removed, as the scheduler
has access to the CFDG recurrence annotations. The minimal number of clock cycles
necessary to execute one loop iteration is currently being calculated based on the lon-
gest recurrence edge. The highest value obtained determines the minimum execution
rate. All components (instructions) should ideally be accommodated within the calcu-
lated number of cycles, with possible delays employed to order and synchronize the
execution of instructions (see Fig. 11a).

Scheduling is carried out using an ASAP (as soon as possible) strategy, without
resource constraints. Starting from the first node in the graph, consumers are scheduled

@ Springer

Int J Parallel Prog (2012) 40:262-289 277

Fig. 12 Schedules for ADPCM Coder: a Original ASAP. b Enhanced algorithm

closer to producers. The algorithm runs interactively, until no change in schedule the
length occurs between two consecutive runs. A particular optimization employed in
the ASAP algorithm accounts for operations having predecessors only from previ-
ous iterations. Because back-edges are removed, those operations would be scheduled
right at the beginning of the schedule, according to the basic ASAP logic. Instead of
doing that, the enhanced algorithm schedules those operations close to their succes-
sors. In order to show the impact of this strategy, two schedules of an ADPCM coder
have been produced. The first schedule is shown in Fig. 12a, which was produced
using the basic ASAP algorithm. The highlighted instructions show a recurrence that
in practice determines the rate of execution of a single iteration, i.e., 16 cycles (0 to 15).
The second schedule, shown in Fig. 12b, was obtained with the enhanced algorithm.
The highlighted instructions show a recurrence of 12 cycles (5 to 16), an improvement
also observed in other experiments.

The schedule of operations is supported by a dedicated counter, used to synchronize
the operations within each loop body found in the code. The counter component gener-
ates a step signal that stays high one cycle per iteration, and is propagated through the
loop pipelining stages. By doing so, the same execution rate is enforced (see Fig. 11b).

Besides the ASAP scheduling algorithm, a second one is also employed, ALAP
(as late as possible). It starts from the last scheduled node, and tries to move pro-
ducers closer to consumers. The main reason for doing so is to gather information in

@ Springer

278 Int J Parallel Prog (2012) 40:262-289

1 | const cl4d = 2048;

2 | const cl3 = 0;

3

4 | dotprod-alp (out fixed(1,0) done, out fixed(32,1) sum, in fixed(1,0)
init) {

5 {

6 i: counter(16, 1, 1, 0, 0);

7 x: block_ram(1l1l, 32);

s y: block_ram(11l, 32);

9 x_data_out_-mult_op_s_y_data_out: mult_op_s(32);

10 acc: add_reg_op_s(32);

11 i_done_delay_op_2: delay_op(l, 2);

12 i_step_delay_op_1: delay_op(l, 1);

i
i.input <—(s0) cl13;

15 i.termination <—(sl) cl4;
i.clk_en <—(s2) init;
x.address <—(s3) i.output;

18 y.address <—(s4) i.output;

19 x_-data_out_-mult_op_s_y_data_out.I0 <—(s5) x.data_out;
20 x_data_out_-mult_op_s_y_data_out.Il <—(s6) y.data_out;
21 i_step_delay_op-1.a <—(s7) i.step;

22 acc.I0 <—(s8) acc.O0;

23 acc.Il <—(s9) x_data_out_mult_op_s_y_data_out.O0;

24 acc.we <—(s10) i_step-delay_op-1.a_delayed;

25 sum <—(s11) acc.O0;

26 i_done_delay_op_-2.a <—(s12) i.done;

27 done <—(s13) i_done_delay_op_-2.a_delayed;

28 | }

Fig. 13 CDFG representation of the dotprod example using LALP-S

order to balance the final schedule. After running both schedulers, the difference in
cycles between both schedules is computed for each operation. That is called oper-
ation mobility. It is important that the execution time required by alternative paths
(e.g., following branch statements) are equivalent. To ensure that, registers may be
inserted within the shortest path(s), in order to balance the execution times leading to
a common destination.

4.3 CDFG Manipulation

Besides the generation of the CDFG in a visual format, the user is also allowed to have
access to a textual description of it. This textual description is described in a structural
language, briefly called LALP-S (a structural view of LALP). The graph in Fig. 13
illustrates the Dotprod example in LALP-S. The generation of the CDFG in LALP-S
allows the user to make changes at this stage, if required. By doing so, a VHDL-RTL
description can also be generated from LALP-S, (i.e., the compilation flow is able to
process as input LALP-S descriptions besides the standard LALP programs). LALP-S
can also be used to directly describe the target hardware engine.

As can be seen in the example in Fig. 13, LALP-S descriptions represent compo-
nents in the CDFG, and interconnections among them. Thus, this representation can
be directly translated into VHDL-RTL, as long as the VHDL library includes a rep-
resentation for each component used, and the interconnections respect the interfaces
between components.

@ Springer

Int J Parallel Prog (2012) 40:262-289 279

4.4 Back-End: VHDL Generation

As with most hardware compiler approaches, the resulting hardware description is
produced based on a library of VHDL components. They represent basic operations
and hardware resources usually present in FPGAs. Those resources can be basic arith-
metic functional units, counters, accumulators, configurable memory blocks, and even
digital signal processing blocks. Based on that library, a VHDL representation of the
CDEFG, ready for RTL synthesis, is produced. The library been used has a total of 56
components, and its main limitation is the lack of support for floating point operations.
The VHDL-RTL descriptions are then submitted to a standard tool (e.g Xilinx ISE)
capable of RTL synthesis, mapping, placement and routing, and finally generating the
FPGA bitstreams.

5 Experimental Results

This section presents the results achieved using LALP to map a number of kernels, of
varying complexity, to FPGAs. In addition to the examples previously presented, other
examples existing in public benchmark repositories were considered. Whenever possi-
ble, implementations based on LALP were compared with implementations obtained
using selected C to hardware compilers. For LALP descriptions, the same algorithms
previously presented in C source code were used. This is important as it may reflect a
possible (semi-)automatic conversion from C to LALP. On-chip memories (BRAMs)
were used to store input/output data for all the experiments. A maximum of one
load/store per clock cycle was allowed. So, it can be inferred that more optimized
results might have been achieved if multi-port memories were employed.

For the resulting designs, the latencies presented were measured by counting the
number of clock cycles needed for their respective executions. The measurements
were done using a VHDL simulator. For microprocessor-based solutions, the laten-
cies presented were measured with hardware timers, executing the benchmarks using
a given target processor, and without operating system support. The latencies corre-
spond to the best system conditions as all instructions and data were available from
local on-chip FPGA memories.

5.1 Benchmarks

The selected benchmarks include some typical kernels of embedded applications, like
signal and image processing, encoding/decoding, etc. In addition, some simple kernels
that exhibited some characteristics of interest during development and testing were
also used. Those benchmarks are: ADPCM Coder, ADPCM Decoder, Autcor, Bubble
Sort, Dotprod, FDCT, Fibonacci, Max, Pop Count, Sobel, and Vector Sum. The main
characteristics of the original C code of each benchmark are shown in Table 2. The
code length of each benchmark ranges from 10 to 145 lines of code, and contains
between 1 and 3 loops. The table also shows the number of declared arrays, and if
constructs in each benchmark. For comparison purposes, the number of lines of code
in LALP and VHDL, respectively, are also presented.

@ Springer

280 Int J Parallel Prog (2012) 40:262-289

Table 2 Source code characteristics for each benchmark

Benchmark Lines of code Loops Arrays Ifs
C LALP VHDL
ADPCM Coder 83 71 1,718 1 4 10
ADPCM Decoder 70 60 1,352 1 4 9
Autocorrelation 16 29 470 2 2 0
Bubble Sort 15 31 418 2 1 1
Dotprod 10 18 225 1 1 0
FDCT 145 175 5,290 3 3 0
Fibonacci 10 19 202 1 1 0
Max 10 18 225 1 1 1
Pop Count 11 118 2,294 2 2 0
Sobel 36 52 1,298 1 2 3
Vector Sum 12 20 234 1 1 0

5.2 Speedup Achieved and Hardware Resources

Each of those benchmarks was programmed in LALP, taking the original C code as
a reference. It should be noticed that the computing strategy for each benchmark has
been maintained in the manual translation from C to LALP, unless for those identified
by the symbol <, corresponding to versions with “data reuse”. Data reuse aims to
reduce memory accesses, and can be achieved by using shift-registers. Also note that
in these LALP-based implementations, no manual changes to the respective CDFGs
(using LALP-S descriptions) were made.

Results for hardware resources, maximum operating frequency, and execution time
are shown, considering three implementations: (1) using the LALP language to pro-
gram the FPGA; (2) using a C to hardware tool (referred herein as C2Verilog [21])
with public web access; (3) using the ROCCC compiler [22]. The target hardware is a
Xilinx Virtex 6 FPGA (XC6VLX75-T3FF484), using ISE 11.4 as the back-end tool.
The maximum clock frequencies shown are estimations reported by the ISE tool.

The high clock frequencies obtained for the LALP implementations presented in
Table 3 are due to the use of the aggressive loop pipelining approach (see Sect. 2).
Two marked examples, Sobel<> and Fibonacci<>, are versions using data reuse. This
feature allowed to speedup Sobel by 9.3 x, using however 1.26x more slices. As for
Fibonacci, the achieved speedup was 3.6 x, using in this case 0.74 x of the slices used
by the version without data reuse. The throughput results are based on the theoretical
maximum achievable, i.e., processing one single data item per clock cycle, consider-
ing the memory access limitations already mentioned. A throughput greater than 0.9
was achieved for 6 benchmarks, with an overall average of 0.6. To further increase the
throughputs, the original algorithms would have to be substantially changed.

The results obtained using ROCCC are presented in Table 4, although the tool was
not able to compile all the benchmarks considered. Best efforts were made in sev-
eral attempts to compile some benchmarks, including source code modifications, but

@ Springer

Int J Parallel Prog (2012) 40:262-289 281

Table 3 Hardware resources and performance obtained with LALP

Benchmark Data FFs LUTs Slices DSPs Max Latency Exec. Throughput

freq. time

(MHz) (us)
ADPCM Coder 1,024 798 916 257 0 535.017 12,288 2297 0.083
ADPCM Decoder 1,024 543 596 181 0 535.017 3,089 577 0.331
Autocorrelation 1,600 312 161 44 0 669.703 3,010 449 0.532
Bubble Sort 32 225 197 61 0 423.889 4224 9.96 0.008
Dotprod 2,048 93 79 23 3 530.786 2,050 3.86 0.999
FDCT 640 5960 5,110 1,322 56 483.676 1,430 296 0.448
Fibonacci 32 113 101 31 0 514.033 96 0.19 0.333
Fibonacci< 32 107 81 23 0 623.364 32 0.05 1.000
Max 2,048 88 67 18 0 464.165 2,050 442 0999
Pop Count 1,024 97 65 23 0 534.674 1,029 1.92 0.995
Sobel 100 329 358 140 0 264.061 639 242 0.156
Sobel> 100 777 627 177 0 423.711 109 026 0917
Vector Sum 2,048 177 113 34 0 546.538 2,050 375 0.999

<> versions with data reuse

Table 4 Hardware resources and performance obtained with ROCCC

Benchmark Data FFs LUTs Slices DSPs Max Lat. Exec. Through. Improvements
freq. time LALP/ROCCC

(MHz) (us) S —
Slices Speedup

Fibonacci 32 130 208 54 O 364.79 33 0.09 0.970 0.57 048
Fibonacci&> 32 130 208 54 0 364.79 33 0.09 0.970 043 176
Sobel 100 1371 1308 351 O 31359 114 0.36 0.877 040 0.15
Sobeld 100 1371 1308 351 O 31359 114 0.36 0.877 050 141
Vector Sum 2048 554 751 200 O 29198 2052 7.03 0.998 0.17 1.87

Average 041 1.14

<> versions with data reuse

unfortunately no success was achieved for some of them. The results obtained using
ROCCC reveal that the compiler was able to do data reusing for the Sobel and Fibo-
nacci benchmarks. In these cases, the results were better than the ones obtained using
LALP without data reuse. However, LALP results using data reuse outperformed
those using ROCCC. For the three examples shown in Table 4, LALP obtained an
average speedup over ROCCC equals to 1.14 x. With respect to the required hardware
resources, LALP implementations used on average 59% less slices than ROCCC.
The results obtained using the C2Verilog compiler are shown in Table 5. In this case
it was possible to evaluate and compare almost all of the benchmarks considered. Like
ROCCC, C2Verilog was also able to efficiently perform data reuse for the Sobel and
Fibonacci benchmarks. The LALP implementations were able to use on average 46%
less slices than the implementations obtained by C2Verilog. C2Verilog achieved an

@ Springer

282 Int J Parallel Prog (2012) 40:262-289

Table 5 Hardware resources and performance obtained with C2Verilog

Benchmark Data FFs LUTs Slices DSPs Max Lat. Exec. Through. Improvements
freq. time LALP/C2V
(MHz) (us)

Slices Speedup

ADPCM Coder 1,024 990 701 522 0 515.62 40,963 79.44 0.025 049 3.46
ADPCM Decoder 1,024 750 611 528 0 529.63 25,346 47.86 0.040 034 8.29
Autocorrelation 1,600 6,296 6,729 1,738 3 161.01 10,631 66.03 0.151 0.03 14.69
Bubble Sort 32 2,353 4,904 1,369 0 261.77 4,098 15.66 0.008 0.04 1.57
Dotprod 2,048 744 582 476 0 303.26 14,348 47.31 0.143 0.05 12.25
Fibonacci 32 45 38 11 0 688.21 34 0.05 0941 282 0.26
Fibonacci& 32 45 38 11 0 688.21 34 0.05 0941 2.09 0.96
Max 2,048 490 474 127 0 521.84 6,151 11.79 0.333 0.14 2.67
Pop Count 1,024 1,023 1,036 328 0 63046 4,107 6.51 0.249 0.07 3.38
Sobel 100 4,616 6,322 1,716 0 433.15 1,730 3.99 0.058 0.08 1.65
Sobel> 100 4,616 6,322 1,716 0 433.15 1,730 3.99 0.058 0.10 15.53
Vector Sum 2,048 664 660 169 0 665.38 6,150 9.24 0.333 020 246

Average 0.54 5.60

<> versions with data reuse

average throughput of 0.27, with only the Fibonacci example achieving a throughput
greater than 0.9. The LALP implementations achieved on average a speedup of 5.1 x
(5.6 considering also the LALP examples with data reuse) over C2Verilog. It should
be noticed that in some cases the number of slices required by the C2Verilog compiler
is much higher. One possible explanation is that the number of memory accesses pres-
ent in the original C code may generate non-optimized hardware structures. That could
be the case as the tool documentation advises users to minimize memory operations,
and few modifications were made in the original source code for those experiments.

The maximum clock frequencies obtained by LALP implementations were higher,
on average 1.53 x and 1.04 x for ROCCC and C2Verilog, respectively. This can be jus-
tified by the more aggressive loop pipelining approach used by LALP implementations.
LALP implementations have also been compared with the ones obtained using SPARK
[10] and C2H [11]. For both, similar speedups were also obtained, along with savings
in hardware resources, as presented in [23]. The results show evidence that LALP can
indeed achieve speedups using less hardware resources than some of the other avail-
able tools. As claimed, LALP can be used to implement loop accelerators if one needs
faster loop accelerators than the ones obtained by some others C to HDL compilers.

The observed savings in hardware resources obtained by LALP implementations
may be justified by the use of the aggressive loop pipelining technique. It implements
loop pipelining without using hardware resources to deal with epilogue, kernel, and
prologue stages of software inspired loop pipelining techniques. Although those stages
are present when executing the loops, they are not present as hardware dedicated stages,
as already identified and discussed in [14]. LALP does not need to create control states
and assigning operations to them. Instead, it reuses a single operation implementation
for any execution stage that requires it.

@ Springer

Int J Parallel Prog (2012) 40:262-289 283

[l LALP [ROCCC W C2Verilog

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0 I—l

Fig. 14 Throughput comparison

Performance results are also shown in the form of throughput (Fig. 14) and nor-
malized execution time (Fig. 15). Those figures reflect speedups ranging from 0.3 x to
15.5x, when moving from the commercial tool to the LALP implementations (5.6 x
on average).

It can be inferred from those results that the throughput achieved by LALP, mea-
sured as the number of data words processed per clock cycle, is significantly higher.
It should be noticed that the examples that could be compiled by ROCCC have all a
high throughput, which is also reflected on the high average throughput obtained for
this tool.

5.3 Comparing LALP Results with Microprocessor-Based Solutions

A further insight in the potential of using LALP can be obtained by comparing its per-
formance results with those from the execution of the same benchmarks with micro-
processors. As seen in Table 6, figures using the SimpleScalar/ARM simulator [24,
25], one of the two PowerPC440 hardcores included in the Xilinx Virtex-5 FPGA
(XC5VEX130T-2FFG1738CES), and Altera Nios-II [26] were obtained. The LALP
implementations achieved on average a speedup of 29x over SimpleScalar/ARM,
23 x over PowerPC, and 305 x over Nios-IL. If clock frequencies are scaled up to 500
MHz, the respective LALP speedups would still be 12x, 19x and 52x, on average.

5.4 Programming Efforts: Automatic Versus Manual

The current capabilities of the LALP framework may require explicit programmer
intervention, based on the comparison of the results obtained from the automatic

@ Springer

284 Int J Parallel Prog (2012) 40:262-289

I LALP I ROCCC M C2Verilog

16 155
14.7
14
12.3
12
10
8.3
8
6 56
4 35 34
27 25
2 16 18 o 19
10 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 10 1.0 1.0 1.0 _ 1.0 1041
. I I I 05, 02
S 3 & & L &> & d & > ¥ <
& &S & e o(\"’é} € :,6°°\ é"’o& &
© L & Q
® ¥
Fig. 15 Normalized execution time
Table 6 Performance obtained with microprocessors
Benchmark LALP ARM (200 MHz) PPC (400 MHz) Nios II (85 MHz)
Data Exec. Exec. LALP Exec. LALP Exec. LALP
time time speedup time speedup time speedup
(us) (us) (us) (us)
ADPCM Coder 1,024 2297 27834 12.12 103.19 4.49 856.83 37.31
ADPCM Decoder 1,024 5.77 216.03 37.42 89.99 15.59 756.29 130.99
Autocorrelation 1,600 449 178.86 39.80 33.77 7.51 194.87 43.36
Bubble Sort 32 9.96 46.87 4.70 16.62 1.67 156.46 15.70
Dotprod 2,048 3.86 72.65 18.81 79.80 20.66 1,403.07 363.28
FDCT 640 296 22230 75.19 26.71 9.04 296.67 100.34
Fibonacci 32 0.19 1522 8147 1.93 10.33 9.04 48.42
Max 2,048 442 7260 16.44 49.11 11.12 234.62 53.12
Pop Count 1,024 1.21 1149 9.49 291.01 151.21 3,815.09 1,982.34
Sobel 100 1.09 22.86 20.95 5.30 2.19 41.51 17.16
Vector Sum 2,048 375 83.19 22.18 77.27 20.60 2,130.21 567.92
Average 29.41 23.13 305.45

compilation, against those using the original C code. This section presents and dis-
cusses the number of sync qualifiers (@s) in LALP implementations that were resolved
automatically, versus the ones required to be defined manually by the programmer.

@ Springer

Int J Parallel Prog (2012) 40:262-289 285

Table 7 Synchronization directives—Sync qualifiers (@s)

Benchmark Manual process Semi-automatic process

Man. inserted Aut. inserted Man. inserted
ADPCM Coder 28 4 28
ADPCM Decoder 24 3 22
Autocorrelation 3 3 -
Bubble Sort 5 5 -
Dotprod 2 - 2
FDCT 119 39 118
Fibonacci 5 5 -
Fibonacci$> 1 - 1
Max 2 1 1
Pop Count 1 - 1
Sobel 26 16 13
Sobel<> - 12 15
Vector Sum 3 - 3

< versions with data reuse

Table 7 shows two possible cases. The first one (Manual Process) represents the
cases where a programmer defines manually all the sync qualifiers needed to obtain
the correct LALP behaviour. The second one (Semi-Automatic Process) represents
the case where the programmer delegates to the compiler the insertion of the sync
qualifiers. The second process usually needs more sync qualifiers (22% more for these
examples), and is able to determine only a subset of the total number required. For these
examples, 65% of the total sync qualifiers needed to be inserted manually. Although
this does not solve the need to manually insert some sync qualifiers, it can be an
important help to the programmer. Future work should investigate and develop more
advanced analysis algorithms able to increase the number of sync qualifiers that can
be automatically inserted.

With respect to the experimental results obtained for the manual insertion and semi-
automatic insertion of sync qualifiers, similar results were obtained for all benchmarks
except for FDCT. For that benchmark the semi-automatic approach employed 40%
more slices due to the use of a larger number of shift-registers propagating control
signals.

5.5 Pipelining Exploration

One of the advantages of LALP is the possibility to evaluate different implementations
by just changing the values in sync qualifiers. Figure 16 illustrates an example of the
design space exploration conducted with the Dotprod example. In this case, the exper-
iment evaluated the impact on hardware resources, maximum clock frequency, and
latency, when increasing the number of pipelining stages of the multiplier used in the
example. This exploration has been done by only modifying the values of sync qualifi-
ersinthe LALP code. Specifically, three @s have been changed for each design option.

@ Springer

286 Int J Parallel Prog (2012) 40:262-289

1,000

100

17.9

159 | 159 | 159 | 159 | 159 | 159 | 159

10 130418 11.8 118

9.6

4.2 4.2

=-Max Freq. (MHz) -B-FFs LUTs <%Slices =«Exec. Time (us)

1

S O V>
SRR RN RV R U RN VR VRN

TP SR S ST TIPS TIPS SRS TS S B B 2
QQW%&QﬁQbe\\;%\;QVQ

Fig. 16 Design space exploration for the Dotprod example

The results for this experiment are presented in Fig. 16. The 3-number points,
n-m-k, in the X axis of Fig. 16, represent respectively: the existence (n=1) or absence
(n=0) of a register in the data output of the local memory; the number of stages of
the multiplier (m); and the number of registers in the output of the multiplier (k). As
can be seen in those results, the more aggressive loop pipelining version uses a six-
stage multiplier, achieving a speedup of 4.29x over the loop pipelining version using
a single-stage multiplier. This speedup was obtained due to a similar increase in the
maximum clock frequency, and required an implementation with 2.65x more Slices
than the version with a single-stage multiplier. As an example of a trade-off analysis,
an alternative implementation achieved a speedup of 2.56 x using 1.45x more Slices.

6 Related Work

The work presented in this paper addresses an aggressive loop pipelining (ALP)
scheme and a domain-specific language (LALP) to achieve efficient FPGA-based solu-
tions integrating ALP. Due to its performance benefits, loop pipelining has been the
focus of many research efforts [3] and may be considered a requirement to implement
an efficient hardware compiler. In the context of configurable or custom architectures,
most notably FPGA-based ones, many researchers have exploited loop pipelining.
Most of the work focuses on innermost loop pipelining (see, e.g., [5,9,27] and [6]),
and uses some loop transformations (e.g., unrolling, interchange, tiling) to enhance
the applicability of loop pipelining [9]. Most approaches heavily rely on resource con-
straints (important when targeting processors and ASICs) and scheduling schemes.
Those strategies may produce non-optimized results even though the only constraint

@ Springer

Int J Parallel Prog (2012) 40:262-289 287

might be the port accesses to non-customized memories in the target architecture
(the off-chip memories in FPGAs). One of such approaches is Modulo Scheduling,
which can be efficiently performed by using Rau’s Iterative Modulo Scheduling (IMS)
algorithm [7]. It is believed that most hardware compilers use the IMS algorithm.

The approach to loop pipelining presented in this paper resembles more the one
presented in [14], which proposes a dynamic loop pipelining scheme applied to a
coarse-grained reconfigurable, data-driven architecture. Although not using a data-
driven scheme, the approach presented in this paper also uses the notion of counters,
with speed limited by the maximum possible rates for loading and storing data, along
with inter-loop dependences.

In terms of programming languages, most efforts addressed the mapping of com-
putations described in traditional software languages (mainly C) to FPGAs. The main
reasons for that are the wide use of those languages, and the wide spread availabil-
ity of legacy code. In the context of FPGAs, domain-specific languages have been
more focused on specific reconfigurable architectures (such as DIL for PipeRench
[28], and RapiD-C for the RaPID architecture [29]), than on general programming
of FPGAs. The most well-known exceptions are Handel-C and the Haydn approach
[30]. The later makes possible for the programmer to explicitly specify control stages
using annotations and the computations for each stage. Regarding loop pipelining,
the approach is able to specify certain aspects of Modulo Scheduling (e.g., the initia-
tion interval, IT). The LALP approach is different from the previous ones. It permits
achieving optimized loop pipelining schemes by allowing the programmer to control
relative clock cycles, registered assignments, and hardware counters, bearing in mind
possible automatic optimizations and suggestions, along with a future path from C
language to LALP.

7 Conclusions

This paper described a novel approach to program hardware accelerators implemented
in FPGAs. The approach uses a domain-specific language (LALP), specially tailored
to program application-specific architectures taking advantage of loop pipelining and
other concurrency opportunities. LALP allows the user to specify loop computations
using a behavioural description, with abstraction closer to the original software pro-
gram.

LALP is able to express aggressive loop pipelining techniques targeting FPGAs,
aiming to achieve higher performance levels than related techniques, especially those
based on software pipelining. Experimental results have shown the usefulness of LALP
to program hardware accelerators, achieving higher performance levels than those
allowed by some academic and commercial C to hardware tools, in this paper employed
for comparison purposes only. This is an evidence that the proposed approach may be
considered a valid alternative if the design generated by other C to hardware tools do
not meet certain performance or resources usage requirements.

Ongoing work on LALP and its supporting framework is concerned with improved
algorithms to automate some mapping tasks, offering additional support to the pro-
grammer on data dependences and scheduling issues. In addition, compiler support for

@ Springer

288 Int J Parallel Prog (2012) 40:262-289

automatic translation of C code to LALP is under development. This effort is justified
not only due to the more familiar syntax of C language, but also as a way to incorporate
in the LALP compilation flow other analyses and transformations available in existing
optimizing compilers for the C programming language.

Acknowledgments This work has been partially funded by a CNPq/Grices bilateral Brazil/Portugal pro-
ject. Ricardo Menotti, Marcio Fernandes, and Eduardo Marques are also members of INCT-SEC and
acknowledge the support of CNPq and FAPESP, under grants 573963/2008-8 and 08/57870-9. Jodo Cardoso
also acknowledges the partial funding support of FCT, Portugal, under grant PTDC/EEA-ELC/70272/2006.
We acknowledge Adriano Sanches for the support regarding the measurements with PowerPC.

References

1. Densmore, D., Passerone, R., Sangiovanni-Vincentelli, A.: A platform-based taxonomy for ESL
design. IEEE Des. Test Comput. 23(5), 359-374 (2006)

2. Edwards, S.A.: The challenges of synthesizing hardware from C-like languages. IEEE Des. Test Com-
put. 23(5), 375-386 (2006)

3. Allan, V.H., Jones, R.B., Lee, R.M., Allan, S.J.: Software pipelining. ACM Comput. Surv. 27(3), 367—
432 (1995)

4. Callahan, T.J., Hauser, J.R., Wawrzynek, J.: The GARP architecture and C compiler. Computer
33(4), 62-69 (2000)

5. Haldar, M., Nayak, A., Choudhary, A., Banerjee, P.: A system for synthesizing optimized FPGA hard-
ware from matlab. In: ICCAD ’01: Proceedings of the 2001 IEEE/ACM International Conference on
Computer-Aided Design, pp. 314-319. IEEE Press, Piscataway, NJ, USA (2001)

6. Snider, G.: Performance-constrained pipelining of software loops onto reconfigurable hardware. In:
FPGA ’02: Proceedings of the 2002 ACM/SIGDA Tenth International Symposium on Field-Program-
mable Gate Arrays, pp. 177-186. ACM Press, New York, NY, USA (2002)

7. Ramakrishna Rau, B.: Iterative modulo scheduling: an algorithm for software pipelining loops. In:
MICRO 27: Proceedings of the 27th Annual International Symposium on Microarchitecture, pp. 63—
74. ACM Press, New York, NY, USA (1994)

8. Aiken, A., Nicolaum, A.: Perfect pipelining: a new loop parallelization technique. In: ESOP ’88:
Proceedings of the 2nd European Symposium on Programming, pp. 221-235. Springer, London, UK
(1988)

9. Weinhardt, M., Luk, W.: Pipeline vectorization. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
20, 234-248 (2001)

10. Gupta, S., Gupta, R., Dutt, N., Nicolau, A.: SPARK: A Parallelizing Approach to the High-Level
Synthesis of Digital Circuits. Kluwer, Dordrecht (2004)

11. Altera Corporation: Nios II C2H compiler user guide (2009). http://www.altera.com/literature/ug/
ug_nios2_c2h_compiler.pdf

12. Menotti, R., Cardoso, J.M.P,, Fernandes, M.M., Eduardo, M.: Automatic generation of FPGA hardware
accelerators using a domain specific language. In: International Conference on Field Programmable
Logic and Applications (FPL), pp. 457-461. (2009)

13. Menotti, R., Manuel J.M.P., Fernandes, M.M., Eduardo, M.: LALP: a novel language to program cus-
tom FPGA-based architectures. In: Proceedings of the 21st International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), pp. 3—-10. IEEE Computer Society
Press, Los Alamitos, CA, USA (2009)

14. Cardoso, J.M.P.: Dynamic loop pipelining in data-driven architectures. In: CF ’05: Proceedings of the
2nd Conference on Computing Frontiers, pp. 106—-115. ACM Press, New York, NY, USA (2005)

15. Rodrigues, R., Cardoso, JM.P,, Diniz, P.C.: A data-driven approach for pipelining sequences of data-
dependent loops. In: FCCM ’07: Proceedings of the 15th Annual IEEE Symposium on Field-Program-
mable Custom Computing Machines, pp. 219-228. IEEE Computer Society, Washington, DC, USA
(2007)

16. Menotti, R., Marques, E., Cardoso, J.M.P.: Aggressive loop pipelining for reconfigurable architec-
tures. In: International Conference on Field Programmable Logic and Applications (FPL), pp. 501-502
(2007)

@ Springer

http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf
http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf

Int J Parallel Prog (2012) 40:262-289 289

17.
18.

19.
20.

21.

22.

23.

24.

25.
26.

217.

28.

29.

30.

AT&T Research: Graphviz: Graph visualization software (2011). http://www.graphviz.org/

Aspvall, B., Plass, M.F,, Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified
boolean formulas* 1. Inf. Process. Lett. 8(3), 121-123 (1979)

Muchnick, S.: Advanced Compiler Design Implementation. Morgan Kaufmann, Los Altos, CA (1997)

Ramalingam, G.: On loops, dominators, and dominance frontiers. ACM Trans. Program. Lang. Syst.
24(5), 455-490 (2002)

C-to-Verilog.com: C-to-Verilog (2009). http://c-to-verilog.com/

Buyukkurt, B., Guo, Z., Najjar, W.A.: Impact of loop unrolling on area, throughput and clock fre-
quency in ROCCC: C to VHDL compiler for FPGAs. In: Proceedings of the International Workshop
on Applied Reconfigurable Computing (ARC2006) (2006)

Menotti, R., Cardoso, J.M.P., Fernandes, M.M., Marques, E.: On using LALP to map an audio
encoder/decoder on FPGAs. In: Proceedings of the 2010 IEEE International Symposium on Industrial
Electronics (2010). To be published

Austin, T., Larson, E., Ernst, D.: SimpleScalar: an infrastructure for computer system modeling. Com-
puter 35(2), 59-67 (2002)

SimpleScalar LLC: SimpleScalar (2011). http://www.simplescalar.com/

Altera Corporation: Nios II processor reference handbook (2011). http:/www.altera.com/literature/
hb/nios2/n2cpu_niiSv1.pdf

Gokhale, M.B., Stone, J.M., Gomersall, E.: Co-synthesis to a hybrid RISC/FPGA architecture. J. VLSI
Signal Process. Syst. 24, 165—180 (2000)

Budiu, M., Goldstein, S.C.: Fast compilation for pipelined reconfigurable fabrics. In: FPGA ’99: Pro-
ceedings of the 1999 ACM/SIGDA Seventh International Symposium on Field Programmable Gate
Arrays, pp. 195-205. ACM, New York, NY, USA (1999)

Cronquist, D.C., Franklin, P., Berg, S.G., Ebeling, C.: Specifying and compiling applications for RaPiD.
In: FCCM ’98: Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines,
pp. 116. IEEE Computer Society, Washington, DC, USA (1998)

Coutinho, J.G.F, Jiang, J., Luk, W.: Interleaving behavioral and cycle-accurate descriptions for
reconfigurable hardware compilation. In: FCCM ’05: Proceedings of the 13th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, pp. 245-254. IEEE Computer
Society, Washington, DC, USA (2005)

@ Springer

http://www.graphviz.org/
http://c-to-verilog.com/
http://www.simplescalar.com/
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf

	LALP: A Language to Program Custom FPGA-Based Acceleration Engines
	Abstract
	1 Introduction
	2 Aggressive Loop Pipelining
	3 LALP Domain Specific Language
	3.1 Basic Features
	3.2 Implementing Loops in LALP
	3.3 LALP Examples

	4 Mapping LALP Code into Hardware
	4.1 CDFG Generation
	4.2 Scheduling and Balancing
	4.3 CDFG Manipulation
	4.4 Back-End: VHDL Generation

	5 Experimental Results
	5.1 Benchmarks
	5.2 Speedup Achieved and Hardware Resources
	5.3 Comparing LALP Results with Microprocessor-Based Solutions
	5.4 Programming Efforts: Automatic Versus Manual
	5.5 Pipelining Exploration

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

