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Abstract Current GPU computational power enables the execution of complex and
parallel algorithms, such as ray tracing techniques supported by kD-trees for 3D scene
rendering in real time. This work describes in detail the study and implementation
of eight different kD-tree traversal algorithms using the parallel framework NVIDIA
Compute Unified Device Architecture, in order to point their pros and cons regarding
performance, memory consumption, branch divergencies and scalability on multiple
GPUs. In addition, two new algorithms are proposed by the authors based on this
analysis, aiming to performance improvement. Both of them are capable of reaching
speedup gains up to 3× when compared to recent and optimized parallel traversal
implementations. As a consequence, interactive frame rates are possible for scenes
with 1,408 × 768 pixels of resolution and 3.6 million primitives.
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1 Introduction

Ray tracing has been used, since its first appearance with the work of [1] in 1968, as an
effective technique applied to generate detailed images based on natural physics phe-
nomena simulation. Many efforts were done by the scientific community to establish
ray tracing techniques that reach lifelike 3D scene renderization [2]. As any comput-
ing technique, ray tracing has its advantages and drawbacks. While the render results
achieve an accurate simulation of the real world, the computational power demanded
for this task made unfeasible the use of the technique for real time applications. The
main goal of a ray tracing program is to cast rays from the virtual camera, passing
through every pixel on the image and deciding what color the pixel should have. The
color placement is based on details regarding the intersection between rays and scene
objects, considering as well light sources, material properties and the scene itself.

The main application areas for ray tracing generated images are the computer
graphics animation, special effects addition on movies and offline content genera-
tion systems. Despite being computationally expensive, an advantage comes with
the implementation of a ray tracing based renderization: physical behaviors are
easy to code and to represent in these systems. Thus, shading, reflection, refraction,
shadow generation, global illumination, sub surface scattering, and many other fea-
tures become ray generation constraints and material properties.

There is no sense in using ray tracing techniques without considering space parti-
tion algorithms and search optimizations. This kind of data structures speeds up the
intersection test of each primitive present in a scene (triangles, spheres, Bezier sur-
faces, etc). The most usual space partition structures are kD-trees [3], which have
many algorithms to perform the ray traversal.

In spite of the speed up reached with the use of spatial queries data structures, they
are not enough to make ray tracing suitable for real time applications. Although, the
ray tracing problem is highly parallelizable, since parts of the image can be processed
in separate. According to this fact, the image could be distributed through a cluster
(often named render farms), or multicore processors and/or coprocessors to run the
entire solution on a single machine, still having a good result.

Since GPU pipelines became programmable, they are used as a coprocessor for
implementing highly parallelizable algorithms, such as ray tracing. GPU programming
has become even more suitable for general purpose problems since the programming
model was unified by the NVIDIA CUDA [4] architecture, which delivers a many-core
solution containing parallel stream processors. This work exploits this architecture to
implement spatial data structures that run queries in parallel in order to achieve real
time frame rates for ray tracing techniques.

Furthermore, this work contextualizes the scenario of most used algorithms for
kD-tree traversal, from the standard version to the proposed adaptations. Ten tech-
niques were implemented using CUDA in order to evaluate their real time perfor-
mance, where two of them are novel approaches (Ropes++ and 8-byte Standard). The
techniques were used at the core of a highly optimized GPU real time ray tracer for
static scenes in order to achieve the results presented in the following sections. A
comparison between the Ropes++ technique and the NVIDIA OPTIX [5] ray tracing
engine, resulted in a favorable argument to the new approach evaluation and analysis.
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Thus, it could be stated that Ropes++ surpasses the performance of current GPU
counterparts.

2 Acceleration Structures

Ray tracing techniques commonly present a high computational cost since they need
to perform, for each ray r emitted into the scene, a search for the closest geometric
primitive intersected by r. A simple way of solving this problem is to test intersections
between r and every primitive in the scene [6]. Since this is a “brute-force” approach,
search complexity increases linearly depending on the amount of objects present in
the scene [3].

Due to the fact that ray–object intersection involves dozens of floating point arith-
metical operations, it is costly in most computer architectures. Consequently, this
approach becomes prohibitive for real time ray tracing of scenes containing millions
of geometric primitives. Using this method, even for scenes with a few hundred prim-
itives, about 95% of processing time is spent with intersection calculations [6].

This problem can be minimized by the use of special data structures capable of
spatially organizing or grouping scene objects, in order to considerably reduce the
amount of intersection tests involved in the search. This way, instead of following
a “blind” search for the closest intersection, only objects near to the path of the ray
are tested, discarding the remaining ones. Since these remaining objects comprise the
most of the scene, the increase in performance is significant when compared to the
“brute-force” approach. It can be proved [3] that such structures can reduce search
complexity to a sub-linear level. They can be created by using concepts such as spatial
scene subdivision (Partitioning Space, like BSP Trees [3,7]), subdivision involving
sets of objects (Partitioning Object List, like BVHs [8]), or hybrid approaches taking
benefit of both previous concepts [9]. Among many existing acceleration structures,
the ones most used in ray tracing are related to Binary Space Partitioning Trees (BSP
Trees). Such tree recursively divides the scene at each branch, separating all scene
objects into sub-groups, as shown in Fig. 1.

Fig. 1 Binary Space Partitioning tree (BSP)
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Fig. 2 Stanford Dragon model subdivided into small bounding boxes. Light areas represent high density
kD-tree nodes

The recursive BSP subdivision is originated from a chosen splitting plane located
on each branch of the tree. The splitting plane choice can be restricted to one of the
coordinate axes, thus simplifying the search algorithm. This specific tree is known
as kD-tree (k Dimensions-tree), as illustrated in Fig. 2. On a kD-tree, every inter-
nal node stores the dimension and position of the splitting plane that will divide the
scene in two sub-spaces, and the node’s children function as representatives of such
sub-spaces. The leaves represent the smallest sub-spaces of the tree and store a list of
objects located within them. Since the normals of kD-tree splitting planes are always
canonical vectors of world coordinates, each scene sub-space is represented by Axis-
Aligned Bounding Boxes (AABBs). In this case, the tree’s root node represents the
scene bounding box. This way, every kD-tree search (also known as traversal algo-
rithm) is reduced to traverse the ray through the nodes bounding boxes, performing
ray-AABB intersection tests until intersecting an object inside the AABB of a leaf
node, or until the ray leaves the scene bounding box without intersecting any object.
Since a single axis is used as splitting plane support for each node, the ray-AABB
intersection test per node traversal is simplified to one dimension, which considerably
reduces the number of arithmetical operations used.

3 Related Work

Recent efforts regarding ray tracing have been about optimizing existing algorithms
and data structures to achieve the best image quality/speed on given hardware archi-
tectures. The modification of these algorithms guides optimizations on such hardware
architectures to better suit the needs of computer graphics developers.
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Modern CPU implementations take benefit of coherent rays [10] when using them
with packet traversals [11], by grouping the search computation of such rays in groups
of SIMD (Single Instruction, Multiple Data) instructions. However, a modern GPU
SIMT [4] (Single Instruction, Multiple Threads) architecture seems to be even more
adequate to process coherent rays, since the traversal algorithm does not always need
to be manually modified and as consequence no overhead is added, unlike happens
with SIMD packet traversals.

Furthermore, as graphics hardware has become increasingly programmable and
suited to more general-purpose computation, developers were attracted to this plat-
form. By bringing hardware and software together, it is possible to explore how to
best design hardware as well as software systems and what are the best interfaces
between them. As witnessed in recent years, the cycle of rapid innovation in hardware
systems enabling new software approaches, and innovative new graphics software
driving the hardware architectures of the future has brought great benefit to the area
of high performance graphics.

Horn et al. [12] take advantage of the GPU processing power to perform ray trac-
ing on an X1900 XTX. Their implementation uses ATI’s CTM (Close To the Metal)
toolkit and pixel-shader 3.0. The entire process runs at 12–14 frames per second, over
1,024 × 1,024 scenes with shadows and Phong shading.

Popov et al. [13] propose a stackless packet traversal algorithm that supports arbi-
trary ray bundles and handles complex ray configurations efficiently. Their GPU imple-
mentation uses CUDA and runs on a GeForce 8800 GTX. Allowing primary rays only,
they achieve about 15 frames per second over scenes with 1,024 × 1,024 pixels of
resolution.

Gunther et al. [14] present a bounding volume hierarchy (BVH) ray tracer with
a parallel packet traversal algorithm. Using a GeForce 8800 GTX, they achieve 3
frames per second for the well-known Power Plant scene, with 12.7 million triangles
and 1,024 × 1,024 pixels of resolution.

All these works converge taking advantage of the capabilities of hardware systems.
Exploiting existing hardware running novel algorithms and data structures, improving
both the hardware and the software, and discussing the best applicable programming
models and interfaces to hardware capabilities are key challenges facing all of us.

3.1 kD-tree Ray-traversal Techniques

The first known kD-tree ray-traversal algorithm was introduced by Kaplan [15]. This
traversal (later referred by Havran [3] as Sequential traversal) is based on a sequential,
but also cyclic top-down point-location search along the ray path within the kD-tree
nodes. This way, interior nodes (specially the root node) have to be repeatedly visited.
This concept is illustrated in Fig. 3.

When intercepting one node, a ray can traverse just one or both children, as shown
in Fig. 4. For traversing both children, in the Standard traversal algorithm [3], a stack
is needed in order to store the child-node located most far away (far child). This infor-
mation may be used in a posterior search (see Fig. 3), since the traversal first follows
the near child path, and later the far child one. The stack guarantees that the traversal
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Fig. 3 Different approaches used in ray-node traversals. The darker arrows represent the down-traversal
to leaf nodes, while the lighter ones guide the search to the next unvisited node

Fig. 4 Ray-node intersection cases: a one child, b both children

occurs according to the order in which bounding boxes are intercepted by the ray,
visiting a single leaf node at a time.

Using statistical analysis of ray-node intersection cases, Havran [3] modified the
Standard traversal algorithm, achieving a more robust and faster CPU ray-traversal
algorithm. In Havran’s tests, his traversal algorithm implementation on a MIPS archi-
tecture achieved up to 65% of speedup compared to Standard traversal.

During last years, the fast computational power growth of graphics processors has
attracted the attention of researchers seeking for efficient ray tracer GPU implemen-
tations. This work was also focused on kD-trees. Foley et al. [16] have adapted the
Standard traversal algorithm, creating two new traversal algorithms that do not require
a stack for the search, reducing “memory footprint”. These modifications made possi-
ble a kD-tree traversal implementation on graphics cards with limited programmable
stack memory.

The so called kD-Restart algorithm starts over the traversal to the tree root every
time it reaches a leaf of the tree, as shown in Fig. 3. This “restart” operation continues
until an intersection with any primitive is found or the ray leaves the scene bounding
box. It is not necessary anymore to store a possible far child node, since the down
traversal is always initiated in the root node. This eliminates the need for the stack
required by the Standard algorithm. However, the average cost of this search becomes
considerably higher than the Standard one, since many nodes are revisited when search
goes back to the root.

In order to reduce the amount of revisited nodes, the second algorithm, called kD-
Backtrack, stores in each node its bounding box (AABB) and a pointer to its parent.
Using the parent pointer, it is not necessary anymore to return to the root every time
a leaf is found; the algorithm just needs to return to a node that enables traversing
other unvisited nodes, as shown in Fig. 3. In spite of reducing the number of visited
nodes, the kD-Backtrack algorithm demands about an order of magnitude of more
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primary memory to store the entire tree in comparison to the Standard algorithm, due
to the necessity of keeping information about parents pointers and AABBs. Therefore,
kD-Backtrack algorithm is not suitable for complex scenes, with more than 10 million
polygons.

In order to obtain a performance closer to the Standard traversal algorithm one,
Horn et al. [12] proposed a few modifications to the kD-Restart algorithm to reduce
the total amount of visited nodes. The Push-Down technique keeps the last visited
node n that can be considered as query root. In such node, the ray hits only one of
the node’s children. This way, whenever a restart event occurs, instead of returning to
the root, the search restarts at node n, which reduces the amount of revisited nodes,
as illustrated in Fig. 3.

Besides the Push-Down technique, Horn et al. [12] proposed the Short-Stack algo-
rithm, which uses a small circular stack instead of the regular tree-depth size stack
used in the Standard algorithm. In case the stack empties and the ray did not hit any
primitive, the restart event is processed in the same way of the kD-Restart, redirecting
the query to the root.

Push-Down and Short-Stack algorithms optimize different parts of kD-Restart and
can be used together. In this case, if a restart event is raised in Short-Stack, instead of
returning to the root, the search goes back to the node previously stored by Push-Down.
We call such hybrid traversal PD&SS.

Popov et al. [13] demonstrate a CUDA implementation of Ropes, a stackless tra-
versal using the concepts of ropes [17], in which each leaf stores its corresponding
bounding box and 6 pointers (ropes) to the neighbor nodes of the faces of its bounding
box. This way, when a leaf is reached, instead of returning to a node stored in the stack,
one of the 6 stored pointers is used. This concept is shown in Fig. 3. Consequently,
the traversal using ropes visits fewer nodes than every algorithm cited before, with
the cost of having to perform more memory accesses for fetching bounding boxes and
rope information.

4 Proposed Implementation

Global lighting techniques such as ray tracing are based on basic concepts of Optics
[2] in order to render more realistic scenes in comparison to rasterized ones. Images
with complex visual effects like transparent or reflexive objects are easily obtained
with the use of ray tracing, being this technique indicated for more precise renderings,
with plenty of details.

Our implemented ray tracing system supports reflections and shadows according
to the simple model described by Whitted [6]. Due to hardware limitations, CUDA
does not support recursive calls. As a consequence, we adapted the standard recursive
algorithm to an iterative one. By using only an instance of the primary ray, whenever
an intersection is found, the ray is translated to the intersection point and has its direc-
tion modified according to the type of ray to be generated (shadow or reflected ray).
The iterations end when the reflected ray does not hit any object or when it reaches
the maximum level of reflection previously determined.
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4.1 Ray Tracer Kernel

Our implementation distributes the workload of each pixel to different threads, in a
way that n pixels are processed by n parallel threads. Since CUDA presents itself as
a SIMT (Single Instruction, Multiple Thread) architecture, it is important that near
threads follow the same sequence of instructions whenever possible, to guarantee that
the instruction is simultaneously executed in all threads. Because of that fact, near
pixels are treated by near threads, favoring parallel execution. Since primary rays
generated by near pixels have equal origins and similar directions, there is a high
probability that they perform a similar traversal on the scene, intersecting the same
objects while executing the same group of instructions. Such alike rays are known as
coherent rays [10].

By assigning the ray tracing of each pixel to one corresponding thread, it is pos-
sible to use a single kernel for processing the entire algorithm in GPU, including the
kD-tree traversal and shading. This way, each CUDA block of threads represents an
image sub-region to be rendered, commonly known as tile, as shown in Fig. 5. This
approach offers less overhead in comparison to multi-kernel implementations, since
for each change of pipeline stage it is necessary to store in global memory all the
information that must be passed to the next stage.

However, the single kernel approach is not the best choice when dealing with scenes
composed by many reflective objects: a significant amount of low coherent secondary
rays is generated, harnessing the degree of parallelism due to divergent instructions
and random accesses to memory. This is a known problem of CPU implementations
that becomes far more serious on GPUs. Besides that, it is not difficult to find cases
when only a small amount of the block generates secondary rays, in a way that many
threads stay in “idle” state, waiting for the busy ones to complete. GPU resources
are only made available when the entire block of threads being used has finished its
processing, which does not occur in CPU, where a new pixel is processed every time
one is finalized.

Fig. 5 Tiles used to process neighbor pixels
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Given those problems, the implemented ray tracer makes use of a single kernel
approach whenever rendering just primary rays (ray casting). In case of scenes with
reflective objects, a new approach for dealing with secondary rays based on “screen
space” compression is used in order to reduce the amount of time wasted by idle
threads in the same warp (group of 32 neighbor threads running in parallel, in the
same multiprocessor). To solve the problem of idle threads in different warps, but in
the same block, our implementation takes advantage of persistent threads [18], in a
way that kernel functions are changed to allow the programmer to create a pool of tasks
for each warp. Using this pool of tasks, the warp has some work to do until all pixels
are processed. Instead of creating a pool for each warp, our implementation creates a
pool (in shared memory) for each multiprocessor and then, each multiprocessor pool is
used as “task source” for the warps. This way, the number of costly atomic operations
on global memory (necessary for task allocations) is proportionally reduced from the
number of parallel warps to the number of multiprocessors.

4.2 Secondary Rays

In order to lessen the secondary rays problem, the pixel computation is subdivided
into phases, each one corresponding to a new generated reflective ray to be computed.

At first, the kernel responsible for processing all primary rays is executed. A screen
space Boolean mapping is created as a result of this first phase, in which pixels with
value 1 represent the need for secondary rays. After that, the Boolean map is com-
pressed using a parallel prefix sum technique [19]. Such map enables the execution
of a new ray tracing kernel in which all active pixels are grouped into contiguous
blocks. This guarantees a balanced processing load for every thread in a warp, and
consequently increases the thread occupancy on the stream processors by reducing the
amount of idle threads. Despite the overhead caused by more kernel invocations and
more global memory usage, this approach enables gains up to 20% in comparison to
the single kernel approach. It is important to notice that each one of these new kernels
is also implemented using the concept of persistent threads [18].

4.3 Memory Usage

Since this work is focused on a comparative study of ray-traversal implementations
in GPU and consequently does not require scene reconstruction at every new frame,
the kD-tree construction process is performed by the CPU and the structure built is
later sent to the GPU. The kD-tree construction utilizes a spatial subdivision technique
based on Surface Area Heuristic with perfect splits [20]. As result, it is possible to pre-
build a high quality kD-tree for complex scenes, with more than one million objects.

On the GPU side, both kD-tree and geometrical/material properties of objects are
stored in global memory. In order to reduce the access penalty to such type of mem-
ory, texture bindings on global memory are used. This artifice provides an 8 KB cache
system with 256 bytes of cache line size on current graphics cards.

Despite the fact that ray tracing presents a high degree of parallelism, there is also
a high demand for bandwidth due to the great amount of accesses to global memory.
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Fig. 6 Depth-first tree layout (left) versus van Emde Boas tree layout (right)

All threads from our implementation realize a considerably high number of memory
accesses searching for objects in the scene. In case these accesses are performed inad-
equately (randomly, for example), the obtained results may not reach performance
expectations.

In order to reduce the number of accesses to global memory, our implementation
organizes the 3D scene in a way that geometric primitives near in space may be located
in neighbor memory blocks. This way, by traversing the scene, the ray will probably
intersect near objects based on the principle of data locality. This relationship is anal-
ogous, since near objects are stored in memory addresses close to each other, which
helps increasing the cache hit rate for such objects.

The scene kD-tree is specially designed to increase the cache hit rates. For that,
the tree is structured in a way a node can fit in 64 bits, following a depth-first order,
shown in Fig. 6. The van Emde Boas Implicit Layout [3,21] shown in Fig. 6 was also
tested, but it was slower in GPU, because it needed 128 bits per node, requiring more
global memory reads. Since the layout doesn’t affect the ray-traversal algorithms, our
comparative study is based solely on the faster, 64 bits node layout.

When the CUDA compiler is not capable of reducing the number of necessary vari-
ables in a certain scope in order to maintain a fixed number of used registers, all “extra”
variables are placed in local memory. Local data access might be up to 600 times more
to access data in local memory, in comparison to register access. The shared memory
can be used as a support for storing variables. This is advantageous since the transfer
time between registers and shared memory is about 4 clock cycles [4] for accesses
without bank conflicts, which costs the same as a floating point “add” operation.

Therefore, the ray structure, represented by an origin point and a direction vector,
is stored in shared memory. This way, ray information is used in every phase of the
algorithm and the use of registers is significantly reduced. Another advantage in stor-
ing ray information in shared memory space is the ability of using memory indexing,
which is necessary in ray-triangle intersection tests and kD-tree traversal. Since in
compile time it is not known which axis will be used, it is necessary to represent the
axes as a 3-value vector, whose indexes vary from 0 to 2. In case kernel code indexes
a vector variable, it will be automatically stored in local memory in order to allow the
indexing operation. By using shared memory it is possible to overcome this problem,
maintaining the indexing and performing faster memory operations.

CUDA constant memory space is used to store most kernel fixed parameters, such
as virtual camera configurations and maximum ray tracing depth. CUDA compiler
automatically stores parameters used by kernel functions in shared memory space.
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Fig. 7 Work balance between multiple GPUs using the interlacing blocks approach

Because of the fact that this memory region is already being used for storing data
regarding the rays, we decided to manually place these parameters in constant mem-
ory. Since constant memory access in CUDA is cached and consequently fast, this does
not present significant performance losses in comparison to shared memory usage.

4.4 Multi-GPU

It is possible to take advantage of multiple graphics cards attached to the same com-
puter in order to achieve a better performance. Each device has his own memory space,
and depending on the type of the problem, it may be necessary to create copies of the
same data to be processed for each device. It can be difficult to efficiently merge the
partial results from each device into a single memory space, usually resident in the
primary memory of the computer. This is the case of our ray tracer: all the scene is
completely loaded by each device and the computation result (pixels) is merged into
one array by the CPU.

Our ray tracer takes advantage of multiple CUDA devices by splitting the screen
in rows of tiles to be processed by each device, following an interleaved pattern, as
shown in Fig. 7. Interleaved lines achieved better load balance between the devices,
but worsened performance, what can be explained by the reduction of ray coherence
between neighbor pixels when compared to interlacing by block of contiguous lines.

4.5 Ropes++

The new traversal approach proposed in this work (Ropes++), shown in Algorithm 1,
is based on the Ropes traversal [17]. The Ropes++ reduces the number of global mem-
ory reads and arithmetical operations necessary to the leaf traversal. To accomplish
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that, the intersection algorithm of the original Ropes algorithm is adapted in a way
that the test is reduced to locate the AABB’s exit point by reading only half of the
AABB information. This is possible based on the fact that the exit face of a ray-AABB
intersection depends only on the ray’s direction, and that there are always three pos-
sible intersection faces, one for each ray axis direction. The reduction of memory
reads is achieved by to the substitution of the access to six floats, representing the leaf
bounding box, by the three floating point accesses necessary to the AABB’s exit faces
calculations. Since only three floats are necessary instead of six, the register pressure is
slightly reduced, enabling a higher number of threads effectively processed in parallel.

Our rope traversal also performs a simplification of the first ray-scene intersection
test, initially calculating only the entry point distance. Based on the fact that when
a ray does not intersect the scene’s AABB it will not intersect a sub-scene volume
either, the ray-scene test can use as exit point distance the intersected exit face of the
first traversed leaf, computation that is always necessary for ray-scene hit cases.

Algorithm 1 Modified traversal with ropes (Ropes++)
1: Ray r = (org, dir); {Origin Point + Direction Vector}
2: Node node = root;
3: Float tMin = Entry distance of r in the tree; {only tMin is necessary at this point}
4: Float t; {distance ray-primitive}
5: Primitive intersected; {possibly intersected primitive}
6: repeat
7: Point pEntry = r.org + tMin ∗ r.dir ;
8: while ¬node.isLeaf() do
9: if pEntry[node.axis] ≤ node.splitPosition then
10: node = node.left;
11: else
12: node = node.right;
13: end if
14: end while

{AABB represented by 6 floats ( min and max 3D points)} {We only need to test against 3 parame-
terized values} {Branchless ray-AABB exit point intersection test: r.dir.axis ≥ 0}

15: localFarX = (node.AABB[(r.dir.x ≥ 0)∗3] − r.org.x)/r.dir.x;
16: localFarY = (node.AABB[(r.dir.y ≥ 0)∗3 + 1] − r.org.y)/r.dir.y;
17: localFarZ = (node.AABB[(r.dir.z ≥ 0)∗3 + 2] − r.org.z)/r.dir.z;
18: tMax = min(localFarX, localFarY, localFarZ);
19: if tMax ≤ tMin then
20: return MISS;
21: end if
22: for all Primitive p in node do
23: I = Intersection(r,p,tMin,tMax);
24: if I �= null then
25: Update t and intersected, using best (smaller t) result;
26: end if
27: end for
28: if intersected �= null then
29: return HIT(intersected,t);
30: end if
31: exitFace = minLocalFarAxis + (r.dir[minLocalFarAxis]≥ 0)*3;
32: node = node.ropes[exitFace];
33: until node == null
34: return MISS;
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4.6 8-bytes Standard Traversal

The Standard traversal is a simple and elegant way of traversing a kD-tree. However,
the stack requirement has a high performance impact on GPU implementations when
compared to CPU ones, since the last one has a very efficient cache system, signifi-
cantly reducing the stack access penalty. Since a high quality kD-tree is not balanced,
tipically presenting a depth greater than one hundred, the only two CUDA memory
spaces capable of allocating the stack are the global and local memories. Accesses to
local memory are as expensive as accesses to global memory [4], but accesses to local
memory are always coalesced, since they belong to a per-thread scope. This justifies
the decision of placing our stack in local memory.

Previous works [3,12,15] related to the Standard traversal follow a stack element
model of three variables, which store information necessary to keep the traversing
going on without returning to the root node each time the algorithm reaches a leaf
node. These three stored values are the index of the far node to be traversed later
and the parametric ray interval (tMin and tMax) to be traversed. The two parametric
values represent the intersection points between the ray and the bounding box of the
far node. Since each one of this information can fit in a 32 bit variable, they are usu-
ally stored in a 12-byte struct format. After implementing all ray-traversals, it became
clear that, with some small modifications to the original algorithm, it was possible to
remove one of the three information, the tMin variable, to create a smaller struct of 8
bytes instead of 12. The unnecessary stacked information was actually always present
during the traversal, stored in the last tMax value found after reaching a leaf node.
Imagining the ray in a continuous path, tMax represents the last point traversed in the
ray, meaning that this last point will also be the first point to be traversed when the
algorithm pops from the stack the last far node to be traversed. Then, the tMin stored
in the stack will have the same value as the tMax found in the previous leaf node. This
concept is shown in Fig. 8. Since the stack has 8-bytes per element, we name it 8-bytes
Standard traversal, and the default implementation as 12-bytes Standard traversal. It
is important to notice that this new stack format can also be used in the short-stack
algorithm. The 8-byte Standard traversal is shown as pseudo-code in Algorithm 2.

Fig. 8 Equivalence between current leaf’s tMax and next node’s tMin
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Algorithm 2 8-byte Standard traversal
1: Ray r = (org, dir); {Origin Point + Direction Vector}
2: Primitive intersected; {possible intersected primitive}
3: Float t; {distance ray-primitive}
4: Stack < Node, Float > stack; {traversal stack (8 bytes per element)}
5: Float tMin,tMax = Entry/Exit distance of r in the tree;
6: Node node = root; {current Node}
7: while TRUE do
8: while ¬node.isLeaf() do
9: axis = node.axis();
10: diff = node.splitPosition - r.org[axis];
11: tDist = diff / r.dir[axis];
12: (nearNode,farNode) = getOrderedNodes(r,node);
13: if tDist < 0 ∨ tDist ≥ tMax then
14: node = nearNode;
15: else
16: if tDist ≤ tMin then
17: node = farNode;
18: else
19: stack.push(farNode,tMax);
20: node = nearNode;
21: tMax = tDist;
22: end if
23: end if
24: end while
25: for all Primitive p in node do
26: I = Intersection(r,p,tMin,tMax);
27: if I �= null then
28: Update t and intersected, using best (smaller t) result;
29: end if
30: end for
31: if intersected �= null then
32: return HIT(intersected,t);
33: end if
34: if stack.isEmpty() then
35: return MISS;
36: end if
37: tMin = tMax;
38: (node,tMax) = stack.pop();
39: end while
40: return MISS;

Both CPU and GPU implementations can take advantage of this new approach,
since it is not a concept dependent of architecture. One direct advantage in GPU is
the possibility to create even deeper kD-trees, since there is more space available for
the stack. Another one is faster memory accesses, since in local memory a 8-byte (64
bits) load is faster than a 12-byte (96 bits) one [4]. A comparative analysis between
these two traversal aproaches is described in the next section.

5 Comparative Analysis and Results

This section shows the differences between all the traversal algorithms, in many dif-
ferent aspects, such as number of traversal steps, execution time related to number of
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Fig. 9 Models used in tests. From left to right: Bunny, Dragon, Happy Buddha and Asian Dragon

reflections and scene complexity, number of divergent branches, multi-GPU analysis
and kD-tree memory consumption. The results were collected using an Intel Core
i7 2.66 GHz CPU with 12 GB of RAM and two NVIDIA GeForce GTX 295 (for
both single and multi-GPU tests) in Quad-SLI mode, running Microsoft Windows 7
Professional 64-bit and using CUDA 3.0 toolkit. With the intent to ease comparisons
between previous and future publications, all 3D models used in the tests were taken
from the Stanford 3D Scanning Repository [22], comprising four different models:
Bunny (69k triangles), Happy Buddha (1.08 million triangles), Dragon (1.0 million
triangles) and Asian Dragon (3.6 million triangles). These different models are shown
in Fig. 9. The original Stanford Asian Dragon has more than 7.2 million triangles.
Since a kD-tree of 7 million triangles exceeds the maximum memory space of the
GTX 295 card, we had to use a 3D editor tool to simplify its mesh, reducing by half
its original triangle count.

Despite the fact that each traversal algorithm follows a different search concept, it
is possible to notice a certain similarity in their structures. Initially, before the search
itself is performed, all algorithms execute an intersection test between the ray and
scene bounding box. This operation occurs in such a way that, in case the ray does not
hit the scene bounding box, there is no meaning in performing the kD-tree traversal.
Another reason for this initial test is that most traversal algorithms store both entry
and end intersection points distances, for later use as traversal end conditions.

Both Sequential and kD-Restart algorithms do not need a stack, which makes their
codes simpler and with less variables, reducing the number of registers used per thread.
However, when the search reaches a leaf and goes back to the root, many nodes are
revisited, and consequently results in a higher amount of global memory reads, as
shown in Fig. 10.

Compared to kD-Restart, the stackless kD-Backtrack algorithm achieved a lower
number of traversal steps, as shown in Fig. 10. However, the amount of global mem-
ory reads was increased mostly due to additional loads of parents indices necessary
to the backtracking process. Since this algorithm needs to store the nodes’ AABBs, it
approximately consumes 3 times more memory space, as shown in Fig. 11.

The Push-Down reduces the number of visited nodes (see Fig. 10) when compared
to kD-Restart. To accomplish this, it adds control structures to the code in order to
avoid returning the search to the tree’s root. However, such control structures add costly
branch divergences (shown in Fig. 12) that consequently decrease performance.

Regarding Short-Stack, our implementation allocates the stack in shared memory,
allowing a maximum size of 3 nodes, without the possibility of stack overflows, due
to the circular nature of the structure. Accesses to this short stack are faster than the
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Fig. 10 Number of node traversal steps for each algorithm from a fixed viewpoint using the Asian Dragon
model (3.6 million triangles, 1,408 × 768 resolution, single GPU)

Fig. 11 kD-tree size in megabytes for each algorithm using the Asian Dragon model (3.6 million triangles,
single GPU)

Standard algorithm since it is located in shared memory. This approach surpasses kD-
Restart’s performance as well. However, similar to the kD-Restart, the stack’s limited
size forces a return to the root and as consequence new searches to already visited
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Fig. 12 Number of branches and divergent branches for each algorithm from a fixed viewpoint using the
Asian Dragon model (3.6 million triangles, 1,408 × 768 resolution, single GPU)

nodes are performed, as shown in Fig. 10. This way, short-stack performance is lower
than the Standard traversal one.

The Push-Down and Short-Stack hybrid algorithm (PD & SS) [12] offers a sig-
nificant gain of performance in comparison to the single short-stack, even with the
addition of Push-Down’s divergent control structures and stack operations. This hap-
pens due to the fact that Push-Down helps limiting the stack use by transferring the
restart event to a scene sub-tree, reducing the number of nodes to be stored, which is
convenient because of the small stack size.

The Ropes traversal algorithm proposed by Popov et al. [13] for CUDA architec-
ture results in a lower number of visited nodes in comparison to all previously cited
algorithms. In spite of increasing the amount of arithmetical operations, it is important
to notice that, contrary to the other algorithms, the Ropes traversal does not need to
perform costly division operations for every node traversal. Instead, it makes use of 3
less expensive multiply-add operations [4]. However, an additional ray-AABB inter-
section test is necessary for every visited leaf to define the new rope to be used. A great
and inherent advantage of an approach using ropes refers to shadow and reflective rays,
that start their traversal in the last intersected leaves, which contain the origin of such
rays. However, an algorithm using ropes demands about 3 times more memory space
(see Fig. 11) to store the scene, therefore being a prohibitive alternative for scenes
with a high number of primitives (more than 1 million) in low-end CUDA enabled
devices.

The algorithm with the second best performance result was the 8-byte Stan-
dard traversal. It allocates the stack in local memory, presenting a simple imple-
mentation with few control structures and consequently having a lower amount of
divergences. The 8-byte layout also achieved a better performance than the 12-byte
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Fig. 13 Amount of time in milliseconds for each algorithm from a fixed viewpoint, varying the level of
reflections and using the Buddha + 4 Spheres + 1 Plane scene (1.08 million triangles, 1,408 × 768 resolu-
tion, single GPU). Scenes on the top-left and top-right represent ray casting (no reflections) and 8 levels of
reflection enabled, respectively

format, as shown in Figs. 13 and 14, which is explained by faster access from a
64-bit memory load than a 128-bit one. The Havran traversal algorithm achieved
a performance between the 8-byte and 12-byte Standard traversals. This can be
explained by the slight increase of traversal cost when compared to the standard
approach.

As shown in Figs. 13 and 14, the Ropes++ traversal algorithm achieved the
best performance results for almost all tested scenes. The reason for such perfor-
mance enhancement is directly related to a lower number of visited nodes and the
Ropes++ ray-AABB intersection optimizations, which significantly reduce the amount
of global memory accesses. Another reason is the lower number of branches and
divergent branches (see Fig. 12). Unfortunately, as the Ropes algorithm, the Ropes++
demands much more memory when compared to the Standard traversal, as shown in
Fig. 11.

Figure 15 shows the achieved performance using multiple CUDA devices and for
different image resolutions. Two different image splitting approaches were analyzed:

123



Int J Parallel Prog (2012) 40:331–352 349

Fig. 14 Traversals’ performance degradation according to the increase of the number of primitives (1,408
× 768 resolution, single GPU)

interleaved lines vs interleaved blocks. Using four devices (two GTX 295 cards),
Fig. 15 shows that interlacing blocks leads to a better performance than interlacing
lines, since the former presents a higher amount of ray coherence cases, as explained
in Sect. 4.4.

Finally, the NVIDIA OPTIX CUDA ray tracing engine [5] and our Ropes++ tra-
versal algorithm were compared regarding performance. Figure 16 shows that our
traversal implementation reached speedup gains up to 3× when compared to NVIDIA
OPTIX. It is important to notice that OPTIX supports kD-trees (Short-Stack traversal
[5]) and BVHs. Using the OPTIX kD-tree, the Stanford Asian Dragon caused an out
of memory exception, and therefore we were not able to compare this scene with our
implementation.
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Fig. 15 Traversals’ performance degradation according to the increase of resolution using the Bunny model
(69k triangles, multi-GPU using 4 devices)

Fig. 16 Comparison between the proposed implementation against NVIDIA OPTIX ray tracing engine
for 4 different Stanford models (1,408 × 768 resolution, single GPU)
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6 Conclusion and Future Works

This work presented a compilation of different techniques applied to the develop-
ment of ray tracers, focusing real time rendering. A considerable number of kD-tree
traversal approaches were compared regarding performance, in order to obtain an
algorithm capable of offering the lowest execution time. The best result was achieved
using our proposed traversal approach (Ropes++), based on the technique of Havran
et al. [17]. The second best algorithm was our modified Standard traversal, the 8-byte
one. Although slightly slower than Ropes++, the 8-byte Standard traversal requires
approximately three times less memory, since the Ropes++ needs to store six ropes
for each leaf node.

CUDA architecture favors implementations that recently ran only efficiently on
CPUs, due to their efficient data structures stored in primary memory. The Standard
traversal, which uses stacks, was difficult to efficiently implement using shaders. It
must be highlighted that all implemented techniques using CUDA architecture are
capable of rendering high definition images in real time in a scalable way, which was
not the case in the majority of the original implementations discussed in this work.

We also presented some results regarding multi-GPU processing. Our approach of
interleaved blocks achieved better performance than interleaved lines. However, the
scalability factor of this approach was below expected, since using 4 devices we only
achieved a 2.3× speedup when compared to a single device. As future work, we intend
to research better ways of balancing the tasks between multiple CUDA devices.

Another future work is to implement and compare different acceleration structures,
such as BVH and BIH, regarding traversal performance and construction time for both
of them.
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