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Abstract We introduce a GPU grid-based data structure for massively parallel
nearest neighbor searches for dynamic point clouds. The implementation provides
real-time performance and it is executed on GPU, both grid construction and near-
est neighbors (approximate or exact) searches. This minimizes the memory transfer
between device and system memories, improving overall performance. The proposed
algorithm may be used across different applications with static and dynamic scenar-
ios. Moreover, our data structure supports three-dimensional point clouds and given
its dynamic nature, the user can change the data structure’s parameters at runtime.
The same applies to the number of neighbors to be found. Performance comparisons
were made against previous works, endorsing the benefits of our solution. Finally, we
were able to develop a real-time Point-Based Rendering application for validation of
the data structure. Its drawbacks and data distribution’s impact on performance were
analysed and some directions for further investigation are given.
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1 Introduction

Spatial subdivision is a well-known technique for improving performance used in a
variety of applications. There are many data structures that handle spatial subdivision
efficiently. However, some data structures are well suited for specific problems. As
an example, ray tracers need to do a lot of ray-triangle intersection tests in order to
perform triangle culling. And kd-trees can provide a fast approach to solve such tests
as shown in [1]. In addition, kd-trees can also be used for nearest neighbor search
in photon mapping [2] or in point cloud modeling [3]. Other data structures such as
octrees have been used for smoke and water simulation [4] and appearance preserving
[5], while collision detection of deformable objects can be implemented with spatial
hashes [6] or representative triangles [7]. Finally, different types of spatial subdivision
data structures ease the task of culling non visible objects from a scene [8].

Another common problem solved with an efficient spatial subdivision is the near-
est neighbors, which consists on finding the closest neighbors to an input query. The
neighbors and the input query can be described as a location, a car, a restaurant, etc.
Nearest neighbor searches have their roots on the post-office problem, in which resi-
dences (input query) are assigned to their nearest post office (neighbor) and were first
described by Donald Knuth [9]. Nowadays, a vast number of problems rely on nearest
neighbor searches, including pattern classification [10], mobile information systems
[11], implicit surfaces definition [12,13], simplification of point-sampled surfaces
[14], nearest photon queries in photon mapping [2], nearest neighbor search in point
cloud modeling and particle-based fluid simulation [3,15], normal estimation [16] and
finite element modeling [17], among others. In this context, solving problems that rely
on nearest neighbors searches implies in improving spatial subdivision techniques.

Nearest neighbor searches in dynamic point clouds comprise constructing a data
structure (at each given timestamp) to hold the input data set as well as realize a lot
of sorting, when searching for neighbors of a given set of query points. If the data
structure does not intelligently subdivide the input data set in order to minimize such
sorting, searches become slow and real-time criteria (a maximum processing time
of 33 ms, including data structure construction) cannot be met. In other words, the
main concern of this work is to address real-time massively parallel nearest neighbor
searches in dynamic point clouds. This can be achieved through a grid data structure for
both KNN (K nearest neighbors) and ANN (approximate nearest neighbors) searches
and by exploiting the inherent parallel processing power of modern GPUs. In addition,
a Point-Based Rendering (PBR) application is proposed, so the data structure can be
tested and evaluated.

The remainder of this paper is organized as follows. In the next section we discuss
some related work regarding KNN and ANN searches on CPU and GPU. Section 3
introduces the proposed solution to massively parallel nearest neighbor searches in
dynamic point clouds. Both CPU and GPU implementations are highlighted. The
obtained results are compared with each other as well as with previous works. Finally,
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a discussion justifies the advantages of a GPU approach. Section 4 introduces concepts
related to PBR and evaluates the proposed solution using PBR as case study. Section 5
draws a conclusion for the presented work, exploiting the contributions made and
pointing some future works to it.

2 Related Work

This section discusses KNN and ANN searches. The former is a generalization of the
post-office problem, where the solution to the problem involves the K nearest post-
offices instead of the nearest one only, while the later can tolerate minimum errors,
i.e. there can be post-offices that are farther than the KNN, but can be found faster and
are as good as the others for the problem solution.

Previous works on nearest neighbor searches are mainly implemented in CPU and
are optimized for cache efficiency, minimal disk access, among others. In large point
clouds data sets, Sankaranarayanan et al. [18] proposed a search by identifying a region
in space (called locality) that contains all of the KNNs of a collection of points. Once
the best possible locality is built, each point searches only the locality for the correct
set of K nearest neighbors. The data structure used is a disk-based quadtree variant
(e.g., see [19]) and can handle large data sets. Even though their algorithm improves
previous techniques, it does not deliver real-time performance, since its results show
that 6.22 s are needed for computing the neighborhood of size K = 8 for each point in
a point cloud with 37K points, on a Quad Intel Xeon with 1 GB of RAM and SCSI
hard disks.

Aiming to speed up Sankaranarayanan’s work, Connor and Kumar [20] solve the
construction of KNN graphs for point clouds in parallel, benefiting from multiple
processors CPUs and handling large data sets. The KNN graph construction is done
in three phases. First, a parallel distribution sort is used, then the sorted array is split
into p chunks (p is the number of processors to be used) in a way that each processor
can compute the initial approximate nearest neighbors for one chunk independently.
Finally, a recursive function refines the approximate nearest neighbor solution to an
exact answer. Albeit being an efficient algorithm for KNN searches by taking advan-
tage of multiple processors, their results are impractical for real-time applications.
Exemplifying, on Dual Quad-core 2.66 GHz Intel Xeon CPUs, with 4 GB of DDR
RAM, for each point in a data set with about 27K points, the KNN graph construction
for K = 1 takes 40 ms for points stored as 64-bit integers, which delivers a maximum
frame rate of 25 fps.

Some problems that rely on nearest neighbors to be solved do not require the
exact closest neighbors. An approximation can be used and as a consequence, ANN
searches are performed instead of KNN ones. Such approximation carries an inher-
ent error, however ANN generally improves performance. The ANN effort is justi-
fied when the error can be minimized without compromising the problem’s solution.
Lin and Yang [21] proposed an index structure (ANN-tree) to solve ANN searches
with a high accuracy. The ANN-tree greatly improves the accuracy of searches, but
the results shown do not provide time measures and also no more than one neigh-
bor is computed for the data sets. Furthermore, the normal estimation proposed by
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Mitra and Nguyen [16], for example, uses Arya et al.’s [22] ANN library for neigh-
borhood evaluation.

Recently, GPU implementations have improved performance by utilizing the mas-
sive parallel architecture of graphics cards. In [23], the authors propose a brute force
KNN GPU implementation that overcomes the ANN CPU implementation by over 100
times (Pentium 43.4 GHz with 2 GB of DDR2 memory versus NVIDIA GeForce 8800
GTX with 768 MB). The brute force KNN algorithm sorts the elements by distance
to the query point and takes the first k elements as solution. Although this solution
surpasses the ones in which query oriented data structures were used, the brute force
method is still a naive implementation. For example, NN searches have been used in
GPU data structures for dynamic sampling and rendering of algebraic point set sur-
faces [24]. The results reported by Guennebaud et al. show a frame rate of 45 fps for
dynamic sampling and rendering of a model with approximately 23K vertices (includ-
ing NN searches), using a Core2 Duo 2.4 GHz CPU and an NVIDIA GeForce 8800
GTX. Furthermore, kd-trees have been constructed in real-time on the GPU for ray
tracing, point cloud modeling and photon mapping [25]. The implemented point cloud
modeling in [25] performs 127K KNN searches for a neighborhood of K = 10 in 14 ms,
on an Intel Xeon 3.7 GHz CPU with an NVIDIA GeForce 8800 ULTRA, which proves
that a GPU approach is not only feasible for KNN searches, but practically mandatory.

To overcome the necessity of fast nearest neighbor searches, our data structure
provides a real-time performance for its construction and both KNN (except for large
data sets) and ANN searches, while supporting dynamic input data.

3 Methodology

In this section we propose a grid-based GPU data structure for dynamic point cloud
data sets capable of achieving real-time performance for both approximate and exact
nearest neighbor searches [26]. The grid-based data structure is similar to Fig. 1 and
it will be further used in a PBR application. It handles three-dimensional points and
is subdivided in NNN parts. For instance, Fig. 1 is subdivided in 3× 3× 3 parts.

In sequence, the construction of the data structure and the algorithm for both ANN
and KNN searches are highlighted, some implementation details are given and results
are discussed.

Fig. 1 Grid-based cube,
subdivided in a 3× 3× 3 manner
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Fig. 2 Given an input point cloud, an AABB expansion is required for an even grid subdivision

3.1 GPU Grid Construction

The GPU data structure construction algorithm proceeds as follows. For a given point
set P (Fig. 2a), the minimum and maximum coordinates are found through a par-
allel reduction [27]. The reduction algorithm basically elects a candidate (minimum
or maximum) from a given set (in this case the point set P). This way, the AABB
(axis aligned bounding box) of P is computed. The AABB sides are then set to its
maximum size, i.e. it is “rounded up” to a cube (our data structure currently handles
three dimensions), while keeping its center (see Fig. 2b).

From now on, we have set our “working” space and it will be subdivided into cells
(the number of subdivisions can be defined by the user interactively). In sequence, we
guarantee that each point p ∈ P remains within the cube and can be indexed into its
cells following a simple injective hashing function,

hash(p) = cp.x × s2 + cp.y × s + cp.z, (1)

executed entirely on the GPU. The variable cp has three dimensions and holds the
spatial location of the cell, with regard to the cube’s number of subdivisions (repre-
sented by the variable s). It is computed as

cp ← cell(p) = (p − lower Bound)

(upper Bound − lower Bound)
× s, (2)

with the variables upper Bound and lower Bound representing the maximum and
minimum values of the “rounded up” AABB, respectively, and s being the cube’s
number of subdivisions. Figure 3 presents a given point set hashed into a grid with
four subdivisions per dimension.

Since we have all the points p ∈ P hashed through the hash(p) function, we sort
them in a way that points from the same cell will be placed sequentially in memory.
Finally, we reorder the input point set accordingly to the point’s hash value and in
sequence we find each cell size, i.e. the amount of points that are within that cell, as at
the bottom of Fig. 4. It is noteworthy that except for the reduction, all stages of the data
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Fig. 3 Point set hashed into a grid with four subdivisions per dimension

Fig. 4 Point set aligned sequentially in memory, regarding cell position

structure construction are done on the GPU. The reduction is an exception because
part of it is done on the CPU. Section 3.3 will further discuss the implementation
details.

3.2 NN Search

In this section, we describe how our nearest neighbor searches (both ANN and KNN)
are performed. The ANN search is implemented using range search. Initially, for each
point pi ∈ P , with i being the point index, their hash is computed and a search radius
ri = 1 is dictated in parallel. Starting from the cell that contains pi , we increment ri

until we find the radius value rk which guarantees that at least K points are present.
This search radius is measured in cells, i.e. if a point is within a cell ck = {5, 4, 6}
and we find a radius rk = 3, then it is necessary to visit all the cells within the cube
with edges c1 = {2, 1, 9}, c2 = {2, 7, 9}, c3 = {2, 7, 3}, c4 = {2, 1, 3}, c5 = {8, 1, 9},
c6 = {8, 7, 9}, c7 = {8, 1, 3}, c8 = {8, 7, 3}.
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As shown in Algorithm 1, which is executed in parallel, we visit at least 27 cells,
because ri = 1, and we will end up having a cube with side equals to 3 cells. For
all the cells visited, a point histogram is computed. When the size of the histogram is
greater than K, we have the approximately K closest points, so we stop incrementing
the radius. Finally we get the K closest points, based on their distance from pi .

Algorithm 1 Approximate Nearest Neighbor Search Algorithm
Require: k ≥ 1
Ensure: k approximate points to p are returned
1: rk ← 0 {The initial range radius value is set to zero}
2: cp ← hash(p) {The cell position is computed based on the point position}
3: phist ← si ze(cp)

4: repeat
5: rk ← rk + 1
6: for each cell c, c is rk cells away from cp do
7: phist ← phist + si ze(c)
8: end for
9: until phist < k
10: return k closest points to p within radius rk

A similar approach is used for KNN searches (Algorithm 2). As with ANN, we find
the value of rk , but we continue expanding two more times. Since we consider cells
as the radius magnitude, in the ANN algorithm we take the cell center as reference.
In KNN, the point pi can be near to an edge, so there could be points closer to it that
are in cells not covered by rk found by the ANN algorithm. This way we avoid false
neighbors, so the expansion is straightforward.

Algorithm 2 Exact Nearest Neighbor Search Algorithm
Require: k ≥ 1
Ensure: k closest points to p are returned
1: rk ← 0 {The initial range radius value is set to zero}
2: cp ← hash(p) {The cell position is computed based on the point position}
3: phist ← si ze(cp)

4: t ← 0
5: repeat
6: rk ← rk + 1
7: for each cell c, c is rk cells away from cp do
8: phist ← phist + si ze(c)
9: end for
10: if phist ≥ rk then
11: t ← t + 1
12: end if
13: until phist < k or t ≤ 2
14: return k closest points to p within radius rk

The difference between ANN and KNN is demonstrated in Fig. 5 using a two-dimen-
sional problem as an example. Given a query point (in red) and a number of K = 10
neighbors to find, there are two point sets representing its neighbors. The approximate
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Fig. 5 Difference between ANN and KNN searches. More cells are visited with KNN searches

neighbors can be found using at least one expansion. They are represented by the black
points plus the other two orange ones, and at least 32 = 9 cells are visited. Moreover,
some error is introduced with this approximation. The purple points are closer than the
orange ones and thus are found only when executing the KNN algorithm. In this case,
at least 72 = 49 cells (in two-dimensional problems) should be visited. The green
points represent points that are neither approximate nor exact neighbors of the query
point.

3.3 Implementation Details

We implemented the grid data structure and NN searches previously explained using
NVIDIA’s Compute Unified Device Architecture (CUDA) framework [28,29]. Pre-
vious to CUDA, researchers have used shading languages for exploiting the GPU.
The main disadvantages were knowledge requirement about graphics pipeline and the
lack of arbitrary memory access (gather and scatter). CUDA solves such problems by
providing a high level C-like programming language to abstract NVIDIA GPUs from
series 8 or higher.

CUDA programming model is overviewed as follows. The code that runs on the
GPU is called kernel. Each kernel has a grid configuration up to two dimensions defin-
ing how many blocks will logically run in parallel. A block is composed by threads
and has up to three dimensions. Threads run physically in parallel and execute the
kernel code.

We store several memory buffers for the data structure construction besides the
input data set. For each point, we need to store four 32-bit integers representing the
hash value, its index on the original buffer and temporary values for the sorting. In
addition, we need two buffers with size equal to s × s × s unsigned 32-bit integers to
hold information about each cell start index and cell size (how many points the cell
contains), with s being the number of grid subdivisions defined by the user. Currently,
the value of s can range from 1 to 197, due to memory (for the additional buffers) and
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performance (regarding time to compute cell start index and size) restrictions. Also,
it has a fixed value for all the dimensions, so cells have the same spatial distribution,
facilitating the nearest neighbor searches. After allocating these buffers, the grid is
constructed.

As noted on Sect. 3.1, before constructing the grid, a parallel reduction is per-
formed. We modified the reduction code provided by the CUDA SDK to support
non power of two sized data sets and to compute both minimum and maximum
values from the input data set. The reduction done on GPU generates per-block
minimum and maximum values. These values are copied to host memory, i.e. the
memory available to the system, and a CPU reduction computes the AABB bounds.
The AABB is then “rounded up” to a cube similarly to the illustration presented in
Fig. 2b.

Points are hashed into cells and a parallel key-value radix sort is applied; the key
and value are the hash and the point index, respectively. This way points from a
given cell will be placed sequentially in memory (as in Fig. 4). Finally, each cell size
is computed and the original input data set buffer is reordered based on the index
information after the parallel sorting. Since reads from contiguous memory addresses
speed up performance due to CUDA’s memory management model, the reordering is
mandatory.

Nearest neighbor searches are performed as follows. For each query point, its hash
is computed (faster than reading from global memory), so we know which cell it is
within, and then we discover through range search the radius value rk which guar-
antees that at least K points are present in surrounding cells. In addition, we count
the number of non-empty cells on that range. The total number of non-empty cells
counted is computed by using a parallel scan [30] and a cell buffer is allocated to
hold their indices. In sequence, all the cells within the radius value rk are re-visited,
except that instead of counting cells or computing a search radius, non-empty cells
have their indices stored in the cell buffer. This will be helpful in the neighbor search’s
sorting stage, since a reduced number of cells will be visited. As an example, for the
KNN search in Fig. 5, instead of 49 cells only 10 are visited (the ones marked in
blue).

In order to exploit the memory model of the GPU, when performing the neighbor
search’s sorting phase we declare ten variables that will hold the closest distances from
the query point, although the algorithm’s interest is the K-th distance. More than 10
variables, for our kernel code, would compromise the general availability of registers,
thus limiting the amount of threads executing physically in parallel. On one hand,
if K≤10, then all the points will be visited exactly once, and the K-th distance will
be found. On the other hand, if K>10, points will be visited more than once. For
example, if K = 17, two iterations are performed, selecting the first ten closest points,
then the seven remaining ones. This redundancy often pays off avoiding the use of
shared memory or local memory, because we are declaring variables that are used as
registers, and thus no latency or shared memory bank conflicts would happen. Finally,
after computing the distance dk of the K-th neighbor, we visit once more all the points
and store those which have a distance to the query point smaller or equal to dk . Points
are stored in global memory in a way that threads will write in consecutive memory
locations.
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Table 1 Data sets used in tests
Data set Size (points)

E.T. 17,345

Bunny 35,947

Dinosaur 53,504

Sphere 163,842

Hand 327,323

Dragon 423,565

Fig. 6 Visual representation of the E.T. (top left), Bunny (top center), Dinosaur (top right), Sphere
(bottom left), Hand (bottom center) and Dragon (bottom right) data sets

3.4 Results and Discussion

The described algorithm has been tested on an Intel Core i7 920 2.67 GHz with 4 GB
of RAM and an NVIDIA GTX 480 graphics card. The system was running Windows
7 Professional 64-bit. Since the GTX 480 consists of two GPUs, the results shown in
this section are related to the use of both cards in tandem.

Table 1 shows the different data sets used in the tests. It is noteworthy that the sphere
data set is the only one with its points evenly distributed in space. The remaining data
sets mostly have some areas with high density of points. A visual representation of
the data sets is shown in Fig. 6. In addition, the E.T. data set is from a 3D OBJ online
repository (no longer available), the sphere data set was generated with a 3D modeling
tool, the Hand data set is from the Clemson University, while the remaining ones are
from Stanford University.

For all data sets depicted in Table 1, grid construction, ANN searches and KNN
searches numeric results were gathered and are shown in Table 2. The grid construction
follows the number of subdivisions in the same table, and searches consist in finding,
for each point in the data set, its K = 10 neighbors (approximate or exact). The standard
deviation of the measured times shows that the values do not varies so much based on
the mean, i.e. the queries perform almost in constant time. Regarding the number of
subdivisions, it is important to note that they were carefully chosen (empirically), not
for the grid construction, but to improve performance on the searches. The time results
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Table 2 Timing results for grid construction, and nearest neighbor searches on GPU

Data set # of subdiv. Grid construction ANN KNN
(avg/stdev) in ms (avg/stdev) in ms (avg/stdev) in ms

E.T. 35 0.72/0.08 3.54/0.26 7.62/0.21

Bunny 69 1.15/0.11 3.28/0.71 6.01/0.52

Dinosaur 127 1.39/0.06 4.96/1.28 12.35/1.66

Sphere 127 2.79/0.03 6.65/0.20 20.21/0.23

Hand 192 5.20/0.04 17.92/0.22 58.19/0.41

Dragon 192 6.36/0.04 21.15/0.32 63.44/0.34

Table 3 Performance comparison with previous CPU implementations

Work Data set K Search CPU GPU
size time

Sankaranarayanan et al. 37,000 8 6.220 s Quad Intel –

Xeon

Connor and Kumar 27,000 1 0.040 s
Dual Quad-core

–2.66 GHz

Intel Xeon

This work 54,000 8
0.012 s Intel Core i7 NVIDIA

(SD = 0.0004 s) 920 GTX 480

2.67 GHz

are shown in milliseconds and were gathered according to the following criteria: each
grid construction is repeated N times according to equation 3 [31].

N =
(

2Zασ

ε

)2

(3)

The number of samples (N ) is determined by the confidence level (α) using a
normal distribution with parameters μ = 0 and σ = 1(Zα in Eq. 3), the standard
deviation of the samples (σ ) and the expected error (ε). The confidence level used in
ours experiments was 95%, and the expected error was fixed in 0.1µs. The same rule
applies to searches.

Previous results [20] have shown that performing similar KNN searches (K = 1) in
CPU (using 8 cores in parallel) on a point cloud of about 56K points yields a result
of 70 ms. The proposed algorithm performs both KNN search (K = 10) and grid con-
struction in 23 ms for a point cloud of 163K points in GPU (almost three times more
points). Furthering the comparisons, Table 3 presents some interesting results.

For all points in the data sets, one KNN search is performed. The number of points
is depicted in the column “Data set size” and the number of neighbors found is rep-
resented by the column “K”. Search time is given in seconds and the two first works
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Fig. 7 Two clusters of points
within the same grid data
structure

are implemented in CPU. In addition, the standard deviation of the search time was
provided in order to show that the search is performed almost in constant time.

The proposed algorithm surpasses both previous CPU implementations. When com-
pared to [18], it presents a speedup of approximately 518x, while performing 16,504
more searches. In addition, when compared to [20], it performs 26,504 more searches
with a speedup of approximately 3x, while finding 7 more neighbors. In summary,
this work performs more searches and finds more neighbors in less time.

An example of a GPU implementation for range search is the Anderson et al.’s [32]
neighbor list generation for molecular dynamics simulation. It reports that generating
a list of all N neighbors (approximately 30 neighbors are found) on a data set with 50K
points takes 25 ms. The proposed algorithm also obtains a result of 25 ms for the same
conditions. However it is guaranteed that exactly 30 neighbors (exact or approximate
ones) are found for each point, differently from Anderson et al.’s work.

However, although being fast, the data structure has its drawbacks. For example,
higher performance is achieved with an even point distribution. The ANN search time
for the Bunny data set is faster than for the E.T. one due to the fact that the points in
the Bunny data set are evenly distributed, while in the E.T. one there are many high
density areas, decreasing performance in the sorting stage.

Another impact of point distribution can be exemplified with clusters. Figure 7
shows two clusters of points, one with 9 and other with 15,000. If it is required for
each point an ANN or KNN search of up to 8 neighbors, the searches will be as fast
as they should (according to the algorithm presented). However, if K ≥ 9 neighbors
are required, each point in the smaller cluster will need to visit too many cells (most
of them are empty) in order to reach the larger cluster, because locally there are not
enough neighbors. Moreover, in such cases a careful choice for the subdivision number
must be taken.

Figure 8 shows a performance comparison regarding the subdivision choice and
ANN searches for the aforementioned data set on the Core i7/GTX 480 machine. The
blue line represents timing results for ANN searches when both clusters are within the
same data structure, while the green line represents timing results for ANN searches
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Fig. 8 Time necessary to find K neighbors with one and two clusters. With two clusters, memory access
is incoherent and a sudden decrease in performance happens with the growth of subdivisions on the grid

Fig. 9 Impact on ANN search performance in a clustered data set

only in the larger cluster, i.e. the cluster with 9 points is not present on the data structure,
and thus is ignored.

With K = 9, the performance is drastically affected, as shown in Fig. 9. This is due
to incoherent memory access, as well as a high number of cells visited by the smaller
cluster.

Finally, the proposed algorithm needs the user to specify the number of subdi-
visions. Figure 10 reports timing results for different subdivision choices for the
Dinosaur model. The red line indicates the time spent on grid construction, the green
line the time spent with searches (K = 8), and the blue line represents the total time.
From Fig. 7 to Fig. 10 the y-axis means execution time in milliseconds and the x-axis
means the number of subdivisions of the data structure.

If a poor choice is made, for instance, the number of subdivisions is equal to one,
grid construction will be as fast as possible, but NN searches will require O(N 2) time,
which is unacceptable in dynamic scenarios. The input data set distribution and its
size are the main concerns for a better subdivision choice. Finally, the presented exact
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Fig. 10 Timing results for different subdivision choices on the Dinosaur data set

nearest neighbor search approach is able to deliver real-time performance for small
data sets. If large data sets are required, some improvements are needed.

4 Point-Based Rendering

Regarding three-dimensional (3D) models, their representation is often based on trian-
gle meshes, since they are easy to manipulate and render. However, a reliable surface
representation is only achieved with a great number of triangles, and when this num-
ber surpasses the number of pixels on the screen, the rendering process becomes slow
[33]. Furthermore, representation of volumetric objects, wave simulation, smoke sim-
ulation, etc. is commonly done through a particle system. The correct rendering of
objects represented as particle systems can be done through a high-quality GPU PBR
framework [34]. In short, PBR takes a point cloud with no explicit connectivity and
reconstructs the underlying surface defined by such cloud.

In order to evaluate the performance of the proposed data structure and approxi-
mate nearest neighbor search, we developed a PBR application [26]. Regarding the
data structure, its implementation was slightly modified to support reordering of more
than one buffer. This is necessary, because the rendering framework needs to access
color and normal information of each point. In addition, the PBR framework does
not require information of a point’s neighbors, just the distances to the farthest one.
This avoids the need for storing neighbors in global memory and increases overall
performance.

Rendering follows the three-pass algorithm proposed by Botsch and Kobbelt [35]
and Guennebaud and Paulin [36] and is entirely implemented on GPU, using OpenGL
and GLSL. Basically, each point is rendered as a circular disc (splat) in three passes:
visibility, accumulation and shading. The visibility pass consists in rendering all splats
perspectively [37] in order to store their depth values on the depth buffer. In addition,
back face culling is performed. This way, each pixel will determine the z value of a
visible splat. The accumulation pass is similar to the visibility pass regarding the per-
spective projection. However, it does not write to the depth buffer. Instead, each splat
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Fig. 11 Bunny data set rendered using the Point-Based Rendering technique. The visibility pass (left) stores
the depth value, the accumulation pass (center) interpolates weighted normals from neighboring splats and
the shading pass (right) computes the average normal vector and performs lighting

is projected with a depth offset towards the viewer. This guarantees that overlapping
splats will have fragments with different z values accepted on the depth-test. More-
over, this pass accumulates interpolated normal vectors for overlapping splats by using
a blending function. The accumulated normal vectors will then be normalized on the
following pass. Finally, the remaining pass (shading pass) will compute the average
normal vector for each pixel and perform lighting. The passes are illustrated in Fig. 11.

Although both PBR and ANN searches are performed by the same GPU, thus lim-
iting its processing availability, the results obtained show that the proposed algorithm
and rendering framework are feasible for real-time applications.

4.1 Experimental Results

The PBR application has been tested on the same machine presented in Sect. 3.4 and
only one GPU was exploited.

Regarding the data sets discussed in Table 1 and Table 2, they were rendered with
the aforementioned PBR framework. The simulation of a dynamic point cloud was
introduced by a wave function (implemented in CUDA), so that at each frame points’
position changes. The number of subdivisions used is described in Table 4 and K = 6
approximate neighbors are found, since this is a good (empirical) amount in order to
reconstruct the surface of the aforementioned data sets. Finally, the window size was set
to a high definition resolution of 720p, i.e. 1280×720 pixels. The results presented in
Table 4 comprise both dynamic and static point clouds and consist of the average frame
rate for rendering, the time for constructing the data structure, performing searches
and rendering the point cloud. Also the time spent only with rendering is stated.

Analyzing Table 4, most data sets presented real-time performance for static and
dynamic point clouds, exempting Hand and Dragon data sets. This occurs due to the
fact that to only one GPU is responsible for rendering, data structure construction and
searches, with a high amount of points. When all these times are added, real-time is
almost impossible. One probable solution could be splitting the workload among more
than one GPU.

Figure 12 shows the results obtained with static and dynamic point clouds for all
data sets previously discussed. All data sets (in this figure) are presented in a static-
dynamic order.
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Table 4 Point-Based Rendering execution times and frame rate for both static and dynamic scenes

Data set # of
subdivisions

Frame rate (FPS) Data structure (ms) Rendering (ms)

Static Dynamic Static Dynamic Static Dynamic

E.T. 50 85 78 5.05 6.84 6.71 5.98

Bunny 69 75 65 5.02 7.04 8.31 8.34

Dinosaur 127 63 58 9.09 10.86 6.78 6.38

Sphere 127 47 44 11.11 13.15 10.16 9.57

Hand 192 26 20 25.64 35.71 12.82 14.29

Dragon 192 21 18 32.25 38.46 15.36 17.09

Fig. 12 E.T. (top left), Bunny (top right), Dinosaur (middle left), Dragon (middle right) and Hand (bottom)
data sets rendered using the Point-Based Rendering technique

5 Conclusion

A GPU-based massively parallel nearest neighbor search algorithm for dynamic point
cloud data sets has been developed. It achieves real-time performance for both approx-
imate and exact nearest neighbor search.

The algorithm builds a spatial grid and exploits GPU features to improve perfor-
mance in the search stage. The adopted solution outperforms many current off-line
CPU implementations as well as being among the fastest existing GPU based ones,
mainly when dealing with dynamic scenarios.
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The achieved performance is highly dependent on factors such as the number of
clusters as well as the selected number of subdivisions. The latter must be chosen
according to the data set distribution and its size.

A PBR application has been evaluated to demonstrate the proposed strategies in
handling real-time massively parallel nearest neighbor searches [38]. Note nonethe-
less, that the data structure used relies on the user specifying the subdivision number.
Despite the lack of capability for handling large data sets (millions of points), due to
memory availability of current GPUs, this may be overcome through the use of stream
computing.

In addition, it is desirable for the grid to adapt according to the input data set dis-
tribution. In this context, a tradeoff between the time necessary for its construction
and the time for performing the NN search may be established. As a result, user inter-
vention is no longer needed. Similarly, KNN search performance may also benefit
from this grid adaptation. Finally, the proposed approach will be evaluated in different
contexts such as real-time physics simulation, point cloud modeling, among others.
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