
Int J Parallel Prog (2012) 40:118–140
DOI 10.1007/s10766-011-0183-4

DAFT: Decoupled Acyclic Fault Tolerance

Yun Zhang · Jae W. Lee · Nick P. Johnson ·
David I. August

Received: 5 February 2011 / Accepted: 13 July 2011 / Published online: 7 August 2011
© Springer Science+Business Media, LLC 2011

Abstract Higher transistor counts, lower voltage levels, and reduced noise margin
increase the susceptibility of multicore processors to transient faults. Redundant hard-
ware modules can detect such faults, but software techniques are more appealing for
their low cost and flexibility. Recent software proposals have not achieved widespread
acceptance because they either increase register pressure, double memory usage, or
are too slow in the absence of hardware extensions. This paper presents DAFT, a
fast, safe, and memory efficient transient fault detection framework for commodity
multicore systems. DAFT replicates computation across multiple cores and sched-
ules fault detection off the critical path. Where possible, values are speculated to be
correct and only communicated to the redundant thread at essential program points.
DAFT is implemented in the LLVM compiler framework and evaluated using SPEC
CPU2000 and SPEC CPU2006 benchmarks on a commodity multicore system. Eval-
uation results demonstrate that speculation allows DAFT to improves the performance
of software redundant multithreading by 2.17× with no degradation of fault coverage.

Keywords Fault tolerance · Compiler · Speculation

Y. Zhang (B) · J. W. Lee · N. P. Johnson · D. I. August
Department of Computer Science, Princeton University, 35 Olden St., Princeton,
NJ, 08540, USA
e-mail: yunzhang@princeton.edu

J. W. Lee
e-mail: jl7@princeton.edu

N. P. Johnson
e-mail: npjohnso@princeton.edu

D. I. August
e-mail: august@princeton.edu

123

Int J Parallel Prog (2012) 40:118–140 119

1 Introduction

As semiconductor technology continues to scale, the number of transistors on a sin-
gle chip grows exponentially. This implies an exponential reduction in transistor size,
degrading the noise margin of each transistor. In addition, extreme demands for energy
efficiency drive aggressive voltage scaling, which leads to an even lower noise margin.
While the fault rate per bit remains relatively constant over technology generations
[1], these technology trends make processor chips more susceptible to transient faults
than ever before.

Transient faults are caused by environmental events, such as particle strikes or
fluctuating power supply [2–5], and are nearly impossible to reproduce. Transient
faults occur randomly after deployment and are not necessarily attributed to design
flaws. These soft errors do not cause permanent hardware damage, but may result in
complete system failures. Sun Microsystems acknowledges that customers such as
America Online, eBay and Los Alamos National Labs, experienced system failures
caused by transient faults [6,7].

A typical solution for transient fault detection is redundant computation. A pro-
gram’s execution is duplicated, in either hardware or software, and the results of
the two instances are compared for validation. Hardware solutions are transparent to
programmers and system software, but require specialized hardware (e.g., watchdog
processor in [8]). Real systems, such as IBM S/390 [9], Boeing 777 airplanes [10,11],
and HP’s NonStop Himalaya [12] incorporate hardware transient fault detection and
recovery modules. However, redundant execution in custom hardware can increase
a processor’s transistor count by 20–30%, which leads to extra chip area and addi-
tional verification cost [9,13]. In addition, the scope and mechanism of protection
are hardwired at design time under an assumed failure model and working environ-
ment, which may be suboptimal depending on deployment environments. Some hybrid
techniques combine custom hardware extension and software redundancy for fault
detection [14,15]. The requirement of hardware extension severely limits the applica-
bility of these techniques. Like hardware-only solutions, they cannot be deployed on
commodity platforms.

By contrast, software redundancy is more flexible and cost-efficient in terms of
physical resources. This approach can be applied to commodity systems that are
already deployed and avoids expensive hardware and chip development costs. In addi-
tion, multicore design provides increasing parallel resources in hardware, making
software redundancy solutions more viable than ever. Recent implementations of soft-
ware redundancy, however, either double the usage of general-purpose registers [16],
require specialized hardware communication queues [15], or double memory usage
[17].

This paper presents DAFT, a software-only speculation technique for transient
fault detection. DAFT is a fully automatic compiler transformation that duplicates
computations in a redundant trailing thread and inserts fault detection instructions.
DAFT speculates that transient fault checking never detects a fault so that cyclic
inter-thread communications can be avoided. For misspeculation detection, DAFT
generates specialized exception handlers and is capable of discerning transient faults
from software exceptions that occur normally (e.g., bugs in the software). Volatile

123

120 Int J Parallel Prog (2012) 40:118–140

variables, such as memory-mapped I/O addresses, are handled with special care to
prevent speculative execution from triggering an externally observable side effect. As
a result, DAFT exhibits very low performance overhead. Communication and code
optimizations are then applied to further improve whole program performance. As a
software-only approach, DAFT provides the programmer with the flexibility to choose
the region of a program to protect.

In short, DAFT advances the state-of-the-art in software redundant multithreading
by achieving the following desirable properties:

– Geomean performance improvement of 2.17× over a non-speculative version of
software redundant multithreading on a real multicore machine. This low overhead
is comparable to those of hardware solutions but achieved without any hardware
support.

– Ability to distinguish normal exceptions from transient faults and guarantee no
false positives.

– 99.93% fault coverage on a mixed set of SPEC CPU2000 and SPEC CPU2006
benchmark programs in the transient fault simulation experiments. This is compa-
rable to other hardware and software redundancy techniques.

The remainder of this paper is organized as follows: Sect. 2 surveys related work
and compares DAFT with other approaches. Section 3 introduces the software specu-
lation technique in DAFT and other optimizations to minimize performance overhead
without compromising fault detection capabilities. Section 4 presents the automatic
code transformation algorithm of DAFT. Section 5 presents experimental results along
with analysis. Section 6 concludes the paper.

2 Related Work

Early multithreaded techniques for fault tolerance rely on specialized hardware to
execute redundant copies of the program for transient fault detection and recovery.
Rotenberg’s AR-SMT [18] is the first technique to use simultaneous multithreading
for transient fault detection. An active thread (A) and a redundant thread (R) exe-
cute the same program at runtime, and their computation results are compared to
detect transient faults. Mukherjee et al. improved AR-SMT with Chip-level Redun-
dant Threading (CRT), which uses a multicore chip for redundant execution and value
checking [19]. Simultaneous Redundant Threading (SRT), proposed by Reinhardt
et al., detects transient faults based on simultaneous multithreading processors [14].
However, all these techniques rely on specialized hardware extensions, hence are not
applicable to off-the-shelf commodity systems.

The pi bit [20] by Weaver et al. and dependence-based checking [21] by Vijaykumar
et al. have been proposed as methods to only detect faults that affect program outcome.
This is done by following the propagation of faults through the entire program. These
techniques also require custom hardware extensions to dynamically track true regis-
ter dependences between instructions towards the program output as the program is
executed.

Software redundancy detects transient faults without any hardware support [15,16,
19,22,23]. Techniques for software redundancy can be divided into three categories:

123

Int J Parallel Prog (2012) 40:118–140 121

thread-local duplicated execution, software redundant multithreading, and process-
level redundant execution.

Thread-local duplicated execution techniques, such as EDDI [22] and SWIFT [16],
redundantly execute instructions within a single thread. Thread-local duplicated exe-
cution has several advantages. No communication or synchronization is necessary
between original execution and redundant execution traces. Both original and dupli-
cate instructions are executed on the same processor, better utilizing the cache.

However, thread-local duplicated execution doubles register usage and relies solely
on instruction-level parallelism (ILP) to reduce the performance overhead from an
increased instruction count. On architectures with a small number of registers, this
causes extra register spills. For this reason, SWIFT’s overhead is low on architectures
with many registers, such as the Itanium [24]. However, instruction-level redundancy
has much higher overhead on ×86_64 architecture having only 16 general purpose
registers.

Software Redundant Multithreading (SRMT) executes identical code on difference
processors using multiple threads [15], and compares the results to ensure correct exe-
cution. This approach maintains one shared copy of memory space, which implies that
redundant multi-threading techniques lose redundancy at store instructions. Before a
memory operation is executed, its operands must be communicated between threads
and checked for consistency. If the values of the operands match, the trail thread sends
a message to the lead thread, confirming the absence of transient fault. The lead thread
then executes the memory operation, and proceeds. This barrier synchronization incurs
significant performance cost. One such implementation of software redundant multi-
threading, SRMT, is reported to have up to 4× slowdown on real machines without
hardware extensions [15] partially for this reason.

When a real transient fault triggers an exception (for instance, by causing divi-
sion by zero), SRMT invokes the program’s exception handler to catch the fault,
possibly leading to a false positive and changing the program’s behavior. On real
machines without hardware extension, the experiment results of SRMT report up to
4× slowdown. Like SRMT, DAFT takes a software-only redundant multithreading
approach. DAFT speculates that all computations execute correctly and verifies them
off the critical path, drastically reducing the overhead of fault detection. Since the
inter-thread communication pattern is acyclic, DAFT is insensitive to the latency of
inter-core communication. Finally, DAFT distinguishes between transient faults and
normal exceptions avoiding false positives without degrading fault coverage.

Process-level redundant execution, duplicates the original program into several
process instances [17,25–28]. Private memory space owned by each process provides
natural protection for non-externally visible memory operations, except for shared
memory. Only externally visible values need to be verified when they escape user
space. DieHard [26] by Berger et al. uses redundancy on general-purpose machines
for memory fault tolerance, which can be used in combination with DAFT for whole
system protection. Process-level Redundancy (PLR) presented by Shye et al. acts as
a shim between user programs and the operating system [17]. In PLR, two identi-
cal program instances run simultaneously on multiple processors, and performs fault
detection only on externally visible side effects, such as I/O operations and program ter-
mination. This approach guarantees that faults do not change the observable behavior.

123

122 Int J Parallel Prog (2012) 40:118–140

Table 1 Comparison of transient fault detection techniques

SRT [14] SWIFT [16] SRMT [15] PLR [17] DAFT [This Paper]

Special Hardware Yes No No No No

Register Pressure 1× 2× 1× 1× 1×
Fault Coverage Broad Broad Broad Broad Broad

Memory Usage 1× 1× 1× 2× 1×
Communication Style Cyclic None Cyclic Cyclic Acyclic

PLR checks fewer values and tends to have lower overheads than other software redun-
dancy techniques, yet the memory usage of PLR is at least doubled. PLR’s memory
footprint can be prohibitive for memory-bound applications or memory-constrained
systems, such as embedded devices. In addition, PLR must be applied at the whole
program granularity; programmers and tools cannot select critical sections of code
that need protection.

Representative transient fault detection techniques are summarized in Table 1. Com-
pared with other techniques, DAFT provides broad fault coverage, presents little pres-
sure on register files, requires no specialized hardware, and keeps memory overhead
minimal.

3 Decoupled Acyclic Fault Tolerance

This section presents the design of DAFT with step-by-step development. Section 3.1
defines the Sphere of Replication (SoR) of DAFT, which determines the scope of pro-
tection. Section 3.2 introduces a non-speculative version of redundant multithreading.
Section 3.3 describes the software speculation technique in DAFT to minimize perfor-
mance overhead caused by redundant execution and error checking. While boosting
performance, speculation poses new challenges for detecting faults and ensuring the
correctness of program execution. Section 3.4 addresses these challenges with three
fault detection mechanisms. Section 3.5 discusses how DAFT handles indirect func-
tion calls. Finally, Sect. 3.6 presents several communication and code optimization
techniques to make DAFT even faster.

3.1 Sphere of Replication

The Sphere of Replication (SoR) [14] is a logical domain of redundant execution
within which all activity and state is replicated, in either space or time. Like previ-
ous fault tolerance techniques [14,16,19,22,23], DAFT’s SoR is the processor core.
DAFT’s SoR does not include the memory subsystem, such as caches and off-chip
DRAMs, as it can be protected by error correction codes (ECC). In practice, all static
instructions, except memory operations (i.e. loads and stores), need to be replicated
in DAFT across the leading and the trailing threads.

123

Int J Parallel Prog (2012) 40:118–140 123

Loads are excluded from replication because a pair of loads from the same mem-
ory address in a shared memory model are not guaranteed to return the same value,
as there is always a possibility of intervening writes between the two loads from an
exception handler or from other threads. Replicating load operations may lead to false
positives in fault detection. The situation is the same for stores. Library functions are
also excluded in cases when the DAFT compiler does not have access to the library’s
source code or intermediate representation.

DAFT executes each load only once in the leading thread and passes loaded values
to the trailing thread via a software queue. Similarly, store instructions are executed
once in the leading thread, with values and memory addresses being checked in the
trailing thread. In this way, DAFT ensures deterministic program behavior and elimi-
nates false positives. Because the source code of library functions is not available for
DAFT to compile, calls to such functions are also only executed once. The return value
of a library function call is similarly produced and consumed across the two threads
like a loaded value. In Fig. 1(a), for example, instructions 2, 4, 5 and 7 are replicable,
whereas instructions 1 (library function call), 3 (load), 6 (store) and 8 (store) are not.

3.2 Non-Speculative Redundant Multithreading

To execute a program with redundant multithreading, the compiler replicates the
instructions in the SoR into the leading and trailing threads and inserts code for com-
munication and fault checking. Figure 1(b) and (c) illustrates how the leading and
trailing threads in non-speculative redundant multithreading are created based on the
original program. Instructions for communication and fault checking are emphasized
in boldface. Before every memory operation in the leading thread, the memory address
and the value to be stored, if any, are sent to the trailing thread. The trailing thread
compares these values to the corresponding locally-computed values. The result of
fault checking is sent back to the leading thread. The memory operation is commited
only if there is no fault; otherwise, the leading thread will stop execution and report
a transient fault. Resuming correct program execution after a failure needs support
from transient fault recovery scheme, which is not within the scope in this paper. As
an example, checkpointing systems [29–31] can be used in concert with DAFT for
resuming program execution after a transient fault is detected.

More importantly, these chains ofproduce,consume,check,send, andwait
instructions create a cyclic communication pattern. As a result, the leading thread
spends much of its time waiting for confirmation instead of performing useful work.
In the code shown in Fig. 1(b) and (c), there are three communication cycles among
instruction 4 and 5, 11 and 12, and 16 and 17. Our measurements indicate that this
non-speculative version of redundant multithreading has more than 3× slowdown
over the original code (see Sect. 5). Moreover, performance is highly sensitive to the
inter-thread communication cost. An increase in communication latency can cause
significant further slowdown. In one realistic setup, SPEC CPU benchmarks with
software redundant multithreading slowed down almost by 3× due to an increase in
the inter-thread communication cost [15].

123

124 Int J Parallel Prog (2012) 40:118–140

1 r0 = rand()
2 addr1 = addr1 + r0
3 load r1, [addr1]
4 r2 = call bar(i32 r1)
5 addr2 = addr2 + 8
6 store r2, [addr2]
7 r3 = r3 + 1
8 store r3, [vaddr]

1 r0’ = consume()
2 addr1’ = addr1’ + r0’
3 addr1 = consume()
4 check addr1, addr1’
5 send(signal)

6 r1’ = consume()
7 r2’ = call _trail_bar(i32 r1’)
8 addr2’ = addr2’ + 8
9 r2 = consume()
10 addr2 = consume()
11 check r2, r2’
12 check addr2, addr2’
13 send(signal)

14 r3’ = r3’ + 1
15 r3 = consume()
16 vaddr = consume()
17 check r3, r3’
18 check vaddr, vaddr’
19 send(signal)

(Non-Speculative) (Non-Speculative)

1 r0 = rand()
2 produce r0
3 addr1 = addr1 + r0
4 produce addr1

5 wait(signal)
6 load r1, [addr1]
7 produce r1
8 r2 = call _lead_bar(i32 r1)
9 addr2 = addr2 + 8
10 produce r2
11 produce addr2

12 wait(signal)
13 store r2, [addr2]
14 r3 = r3 + 1
15 produce r3
16 produce vaddr

17 wait(signal)
18 store r3, [vaddr]

1 r0 = rand()
2 produce r0
3 addr1 = addr1 + r0
4 produce addr1
5 load r1, [addr1]
6 produce r1
7 r2 = call _lead_bar(i32 r1)
8 addr2 = addr2 + 8
9 produce r2
10 produce addr2
11 store r2, [addr2]
12 r3 = r3 + 1
13 r3’= r3’+ 1
14 check r3, r3’
15 check vaddr, vaddr’
16 store r3, [vaddr]

1 r0’ = consume()
2 addr1’ = addr1’ + r0’
3 addr1 = consume()
4 check addr1, addr1’
6 r1’ = consume()
7 r2’ = call _trail_bar(i32 r1’)
8 addr2’ = addr2’ + 8
9 r2 = consume()
10 addr2 = consume()
11 check r2, r2’
12 check addr2, addr2’

(Speculative)

(a) Original (b) Leading Function (c) Trailing Function

(d) Leading Function (e) Trailing Function
(Speculative)

Fig. 1 Redundant multithreading with and without DAFT

Redundant computation and fault checking increase static and dynamic instruction
counts, leading to significant performance overhead. Consequently, compiler optimi-
zations should be performed before applying redundant multithreading. These pre-pass
optimizations remove dead code and reduce the number of memory operations, leading
to less code replication and lower checking/communication overhead.

3.3 Software Speculation in DAFT: Removing Cyclic Dependencies

Cyclic dependencies in the non-speculative redundant multithreading from Sect. 3.2
put inter-thread communication latency on the critical path of program execution,

123

Int J Parallel Prog (2012) 40:118–140 125

Fig. 2 Overall structure of DAFT

slowing down the leading thread significantly. Since a transient fault occurs rarely
in practice, the trailing thread almost always signals no fault to the leading thread.
Therefore, this inter-thread communication signal value can be speculated with high
confidence.

Inspired by Speculative Decoupled Software Pipelining (Spec-DSWP) [32], DAFT
exploits such a high-confidence value speculation to break the cyclic dependencies.
Specifically, the communication dependence between signal and wait instruc-
tions is removed. Instead of waiting for the trailing thread to signal back, the leading
thread continues execution. Consequently, program performance is insensitive to the
inter-thread communication latency. Figure 1(d) and (e) illustrates the program code
after speculation is applied. Through speculation, DAFT not only improves program
performance by allowing the leading thread to continue execution instead of busy
waiting, but also reduces communication bandwidth use and code growth.

However, speculation poses new challenges for detecting faults and ensuring the
correct execution of programs. For example, misspeculation on volatile variable acces-
ses can cause severe non-reversible problems, such as sending a wrong value to an
I/O device. Another potential issue is the difficulty of distinguishing a segmentation
fault from a transient fault when a fault occurs in a pointer register. The next section
discusses challenges and solutions to maintain broad fault coverage without losing the
performance benefit of speculation. Figure 2 shows the structure of DAFT.

3.4 Misspeculation Detection

With speculation, the problem of fault detection in DAFT is effectively translated to the
problem of misspeculation detection. Figure 3 shows usage scenarios of a bit-flipped
register value and the fault detection mechanisms of DAFT for all the scenarios (leaf
nodes in the scenario tree). Some faults are detected by the leading thread, while others
by the trailing thread. If the faulty value is never used by later computation, the fault
can be safely ignored without affecting the correctness of the program, where “use”
means the variable will affect a later store to a memory address, including memory
mapped I/O addresses. Figure 3 presents three mechanisms for misspeculation detec-
tion in DAFT: in-thread operand duplication for volatile variable accesses, redundant
value checking and custom signal handlers.

123

126 Int J Parallel Prog (2012) 40:118–140

Fig. 3 Classification of possible usage scenarios of a bit-flipped register value and fault detection mecha-
nisms in DAFT

3.4.1 In-Thread Operand Duplication

A volatile variable is defined as a variable that may be modified in ways unknown
to the implementation or have other unknown side effects [33]. Memory-mapped I/O
accesses are an example of volatile variable accesses. Misspeculating transient faults
on volatile variable accesses may cause an externally visible side effect which cannot
be reversed. Assuming vaddr in the example shown in Fig. 1(a) is an I/O mapped
memory address, r3 and vaddr must be checked for correctness (by instructions 14
and 15) before the store to prevent potentially catastrophic effects. One conservative
solution would be to fall back to the non-speculative, cyclic communication pattern
of Fig. 1(b) and (c). However, performance gains from speculative execution would
be lost; communication latency would slow the critical path of program execution.

In this case, the more efficient solution is to verify the operands to the volatile
store in thread; slowing the leading thread infrequently is a better strategy than cyclic
communication. Dataflow analysis is used to compute the def-use chain of the volatile
variable. DAFT replicates all instructions from the volatile variable’s def-use chain
in the leading thread, as shown in Fig. 1(d) and (e). An automatic code generation
algorithm to handle this case is described in Sect. 4.

3.4.2 Redundant Value Checking

If a transient fault occurs and flips a bit in a register to be used later, it is usually
detected by redundant value checking. The trailing thread in DAFT contains value

123

Int J Parallel Prog (2012) 40:118–140 127

checking code for every non-volatile store and is responsible for reporting this kind of
fault. Instruction 11 in Fig. 1(e) illustrates an example of redundant value checking.
The check operation compares the two redundant copies, r2 and r2’, and reports
a transient fault if the two values mismatch.

3.4.3 Custom Signal Handler

A faulty value may raise an exception before redundant value checking detects the
fault in the trailing thread. For instance, memory access to an unmapped address may
cause a segmentation fault, or a division instruction may cause a division-by-zero
exception. It is also possible that the original program would have to throw the same
exception with or without a transient fault. To distinguish between these two cases,
DAFT employs a custom signal handler, which is registered (via sigaction()) at
the beginning of program execution.

When an exception occurs, it is first captured by the DAFT signal handler. The sig-
nal handler does not abort the program immediately but waits for the trailing thread to
trigger the same exception. If the exception was triggered by a transient fault, the value
checking code in the trailing thread eventually detects the fault. If no fault is reported
before a timeout occurs, the signal handler assumes that this is a normal exception
and calls the corresponding system signal handler. If the original program attempts to
register a signal handler itself, DAFT wraps the application signal handler, ensuring
that fault-detection logic runs first.

In the case of a valid address, the trailing thread will eventually detect the fault by
comparing redundant copies of the faulty register. If the address is invalid, a segmen-
tation fault exception will be triggered. In such a case, SRMT [15] relies on a system
signal handler to abort the program. Unfortunately, this is not a safe solution. SRMT
cannot distinguish normal program bugs from a transient fault, and thus changes pro-
gram behavior. The DAFT signal handler catches all segmentation faults as shown in
Fig. 2. For example, when a segmentation fault happens, the signal handler traps it
and asks the leading thread to wait for a signal from the trailing thread. If the trailing
thread confirms the address is correct, the exception is due to a bug in normal pro-
gram exception, and the original signal handler is called. Otherwise, a transient fault is
reported and the program is terminated. This is critical for program safety, especially
for programs implementing custom signal handlers.

The program behavior for external signals is not changed, since the original process
ID is kept. Any externally triggered signal, such as SIGINT interrupt, will be sent to
both threads and the corresponding response will be issued.

3.5 Indirect Function Calls

The compiler cannot always determine the target of indirect function calls (e.g. func-
tion pointers). However, DAFT must ensure that the trailing thread follows the same
path as the leading thread. DAFT overcomes this problem by using trampoline func-
tions. Indirect calls will invoke the leading version of the callee function. Such calls
may originate either in the leading thread or in the trailing thread; an extra flag is added

123

128 Int J Parallel Prog (2012) 40:118–140

to distinguish these cases. If the function is called from the trailing thread, the original
function in the leading thread serves as a trampoline and invokes its corresponding
trailing version of the function. For the leading thread, only one long jump is made
as each call is not very computationally expensive. For the trailing thread, the tram-
poline in the leading thread is used to invoke the corresponding trailing function. If
a wrapper function was used for indirect calls, every function call instruction in both
threads would have to go through two calls, which increases runtime overhead.

3.6 Communication and Code Optimizations: Making DAFT Faster

Speculation removes wait and signal communication, and takes communication
latency off the critical path. However, the amount of communication in a program
as well as the communication speed still plays an important role for program perfor-
mance. To speed up DAFT, two optimizations are applied to DAFT-transformed code
for minimal communication cost and fewer branches. Several optimization decisions
are also made to speed up a single data communication.

3.6.1 Branch Removal

Since the trailing thread does not duplicate all instructions in the original program,
it may sometimes contain basic blocks that contain only consume and branch
instructions. This is not redundant code and cannot be removed through dead code
elimination. Figure 4 explains a typical case where some branches can be removed
to reduce the number of branch instructions in the trailing thread. In Fig. 4(a), basic
block bb1 contains only one library function call and an unconditional branch to basic
block bb12. The DAFT transformation in Fig. 4(b) and (c) creates a basic block bb1
in the trailing function containing only a consume and an unconditional branch. It
is preferable to remove the basic block bb1 entirely and move the communication to
the basic block bb to avoid one unnecessary branch.

3.6.2 Inter-thread Communication Lifting

r1 in Fig. 5 is a loop induction variable. Its value is used later in computing the
memory address to load from. This pattern is typical in array-based operations. The
custom signal handlers in DAFT capture exceptions caused by transient faults, such

(a) (b) (c)

Fig. 4 Branch removal after DAFT code generation

123

Int J Parallel Prog (2012) 40:118–140 129

(a) (b) (c)

Fig. 5 Inter-thread communication lifting

as segmentation faults or division by zero. If a loop performs only arithmetic compu-
tation and memory accesses, it is safe to move the memory address check out of the
loop. Any transient faults that may occur during the loop execution can be detected
via either the value checking outside of the loop, or the custom signal handler. In the
example code in Fig. 5, DAFT can remove one inter-thread communication and one
value checking per iteration.

3.6.3 Software Communication Queue

In DAFT, an unbalanced lock-free ring buffer software queue library is used for
inter-thread communication [34]. This queue implementation shifts more work of
communication onto the consumer thread. Since all communications in DAFT are
uni-directional from the leading to trailing thread, the fast communication queue
ensures low runtime overhead and latency tolerance.

The queue implementation uses streaming store and prefetching to achieve best per-
formance on real machines. Streaming store is an SSE instruction for better bandwidth
and performance stability. Streaming stores bypass L2 cache and write to memory
directly. This optimization speeds up communication especially when two threads are
not sharing an L2 cache. Prefetching is enabled for the consumer to prefetch queue
data into its own cache before the values are needed.

4 DAFT Automatic Code Transformation

DAFT is implemented as an automatic compiler transformation in the LLVM com-
piler framework [35]. A program can be transformed to DAFT-protected code using
Algorithm 1. This algorithm takes an intermediate representation (IR) of the program
and the program dependence graph (PDG) [36] as inputs, produces a new program
IR containing code for redundant computation using multiple threads, inter-thread
communication, value checking, and signal handler registration.

Once the function main is invoked, a redundant thread is spawned with identical
program inputs, shared memory space, and shared file system. The original program
copy is called Leading thread, and the redundant program copy is called the Trailing
thread.

123

130 Int J Parallel Prog (2012) 40:118–140

Algorithm 1 Automatic DAFT transformation
1: Register signal handlers for Leading and Trailing
2: for all Function func ∈ Program do
3: IdentifyTrailingThreadInst(func)
4: BuildRelevantBBs(func)
5: for all Instruction inst ∈ func do
6: if inst ∈ InThreadReplicableSet then
7: copy inst to Leading
8: copy inst to Leading
9: if inst ∈ STORE_OPs then
10: append check to Trailing
11: end if
12: else if inst ∈ RedundantReplicableSet then
13: copy inst to Trailing
14: else if inst ∈ NonReplicableSet then
15: if inst ∈ LOAD_OPs then
16: append produce to Leading
17: append consume to Trailing
18: else
19: append produce to Leading
20: append consume to Trailing
21: append check to Trailing
22: end if
23: end if
24: end for
25: RedirectBranches(func)
26: end for
27: InsertInitialAndFinalCommunication()

4.1 Identifying Instructions for the Trailing Function

For each function in a program, DAFT first traverses the intermediate representation
and partitions the instructions into three sets:

– Non-replicable
– In-thread replicable
– Redundant replicable

Non-replicable instructions are those which directly load from or store to memory, or
are library function calls. In-thread replicable instructions are those which compute
the address or value of a volatile memory operation, or I/O operations. Redundant
replicable instructions are all other instructions: those which do not access memory,
or are not calls to library functions. DAFT replicates in-thread redundant instructions
into the leading thread, whereas redundant replicable instructions are replicated into
the trailing thread. The process of identifying these sets of instructions is shown in
Algorithm 2.

4.2 Identifying Relevant Basic Blocks

Next, we construct a new, empty function to serve as the trailing thread. Both threads
must follow the same control flow. However, not every basic block will perform work

123

Int J Parallel Prog (2012) 40:118–140 131

Algorithm 2 IdentifyTrailingThreadInst (Function func)
1: // Building Replicable Instruction Set
2: RedundantReplicableSet = InThreadReplicableSet = NonReplicableSet = ∅
3: for all Instruction inst ∈ func do
4: if inst ∈ Memory_OPs then
5: NonReplicableSet = NonReplicableSet ∪ {inst}
6: if inst ∈ Volatile Operations then
7: for all Instruction prev_inst ∈ DefinitionChain(inst) do
8: InThreadReplicableSet = InThreadReplicableSet ∪ {prev_inst}
9: end for
10: end if
11: else if inst ∈ REG_OPs then
12: RedundantReplicableSet = RedundantReplicableSet ∪ {inst}
13: else if inst ∈ CALL_INST then
14: callee = getCalledFunction(inst)
15: if callee ∈ Program then
16: RedundantReplicableSet = RedundantReplicableSet ∪ {inst}
17: end if
18: else
19: NonReplicableSet = NonReplicableSet ∪ {inst}
20: end if
21: end for
22: RedundantReplicableSet = RedundantReplicableSet \ InThreadReplicableSet

in the trailing thread. For efficiency, we selectively copy only relevant basic blocks to
the trailing thread.

We say that a basic block bb is relevant to the trailing thread if (i) any instruction
from bb is in the redundant-replicable set, or (ii) an instruction from bb controls1 any
instruction relevant to the trailing thread.

The second rule is transitive. It is necessary to identify and replicate a skeleton
of the control flow graph which is relevant to the trailing thread as to ensure control
equivalence between the leading and trailing threads. This second rule is repeatedly
applied until the relevant set converges. This procedure is described in Algorithm 3.

4.3 Automatic Code Generation

The code generation pass of the DAFT transformation consists five steps as follows.

4.3.1 Replicating Redundant Code

Whenever a value escapes the SoR and needs to be communicated from the leading
thread to the trailing thread, a produce operation is inserted into the leading thread,
and a consume operation is inserted into the trailing thread at the corresponding
location. Lines 8 and 10 in Algorithm 1 demonstrate the situations when the original
program code is replicated to the leading or trailing thread.

1 An instruction X controls an instruction Y if, depending on the direction taken at X , Y must execute
along one path and may not execute along another path [37].

123

132 Int J Parallel Prog (2012) 40:118–140

Algorithm 3 BuildRelevantBBs (Function func)
1: Work = Controls = ∅
2: Work = Work

⋃
RedundantReplicableSet

3: while Work �= ∅ do
4: for all Instruction inst ∈ Work do
5: temp = ControlDepend(inst)
6: temp = temp \ Controls
7: if temp �= ∅ then
8: Work = Work

⋃
temp

9: Controls = Controls
⋃

temp
10: end if
11: Work = Work \ { inst }
12: end for
13: end while
14: RelevantInsts = Controls

⋃
RedundantReplicableSet

15: for all BasicBlock bb ∈ func do
16: for all Instruction inst ∈ bb do
17: if inst ∈ RelevantInsts then
18: RelevantBBs = RelevantBBs

⋃
bb

19: break
20: end if
21: end for
22: end for

4.3.2 Building Redundant Program Structure

To achieve control equivalence between a pair of leading and trailing threads, con-
ditional branches from each thread must branch the same direction. In other words,
the branch predicate must be communicated from the leading thread to the trailing
thread. If that branch condition is within the redundant-replicable or non-replicable
set, the value should already be communicated to the trailing thread. Otherwise, in the
case of in-thread replicable branch conditions, that value must be communicated to
the trailing thread with an additional produce-consume pair.

4.3.3 Inserting Communication and Value Checking Codes

For a memory load instruction, one produce-consume pair is created for the memory
address. Similarly, two produce-consume pairs are created for a store instruction for
communicating value and address, respectively. Before each binary function call, each
argument passed via register is produced to the trailing thread for value checking. If a
library function call returns a value that is used in later computation, that value needs
to be communicated, too. Our definition of relevant basic blocks ensures that produce
and consume operations are always inserted at control-equivalent locations in each
thread. After inter-thread communication instructions are inserted, value checking
code (check) is inserted into the trailing thread for runtime transient fault detection.

4.3.4 Redirecting Branch Targets

All relevant basic blocks are copied to the trailing thread, first as an empty block. After
redundant code replication and communication insertion, the control-flow instruction

123

Int J Parallel Prog (2012) 40:118–140 133

Algorithm 4 RedirectBranches (Function func)
1: for each branch instruction branch ∈ Trailing do
2: newTarget = closestRelevantPostDom(target(branch))
3: redirect(branch, newTarget)
4: end for

(branch, switch, return, etc) at the end of each basic block relevant to the trailing thread
is duplicated and inserted into the trailing thread. Since the destination basic block
may not be relevant to the trailing thread, we redirect those destinations to the closest
post-dominating block which is relevant to the trailing thread, as in Algorithm 4.

4.3.5 Inserting Initial and Final Communication Codes

At the start of program execution, DAFT registers the custom exception handler via
sigaction(), and spawns a new thread to serve as the trailing thread. DAFT
invokes main in both the leading thread and the trailing thread. At the end of program
execution, the trailing thread must join the leading thread. The custom signal handlers
are implemented as a library, compiled and linked with DAFT-transformed program
code.

4.4 Example Walk-through

The example in Fig. 1(a) is used to demonstrate how Algorithm 1 works on a real piece
of code. The first step is to identify replicable instructions. The algorithm scans all
the instructions in the function. If the instruction is a regular computation statement
such as instruction 2, it is inserted into RedundantReplicableSet. If the instruction is a
memory load/store, or a binary function call, it is immediately marked NonReplicable.
The rest of the instructions are inserted into RedundantReplicableSet.

A tricky case is volatile memory access. In this example, instruction 7 in Fig. 1(a)
is a regular computation at the beginning of analysis and therefore redundantly rep-
licable. But as soon as instruction 8 is examined, DAFT realizes that r3 is stored as
a volatile variable. At this point, the def-use chain of r3 is traversed. Instruction 7 is
then removed from RedundantReplicableSet and inserted into the InThreadReplica-
bleSet. This is why replicable instruction sets must be built before code duplication
and communication insertion. Such information is stored in a data structure similar to
Table 2.

Once the instructions are classified, the program code is ready for code duplication.
All redundant replicable and in-thread replicable instructions are copied to the trailing

Table 2 Replicability of
instructions in Fig. 1(a)

Replicability Instruction

In-thread replicable 7

Redundant replicable 2, 4, 5

Non-replicable 1, 3, 6, 8

123

134 Int J Parallel Prog (2012) 40:118–140

and leading functions, respectively. Since branch and function call instructions are all
redundant replicable, the trailing thread copies the control flow of the leading thread,
too. After instruction replication, instructions 2, 7, and 8 in Fig. 1(e) are inserted into
the trailing thread version of that function. Similarly, instruction 14 in Fig. 1(d) is
replicated from in-thread replicable instruction 7 in the original program.

Communications are inserted for values that enter or exit the SoR. In this example,
instruction 3 (load) in Fig. 1(a) exits the SoR, therefore the address it loads from
must be communicated for correctness checking. In Fig. 1(e), instruction 3 is inserted
into the trailing thread. Fault checking code is inserted immediately after the commu-
nication; check operations serve as correctness checking points and alert the user if
a fault occurs.

Similarly, for instruction 6 (store), both the value and the memory address are
communicated, followed by fault checking code. Volatile variable store such as instruc-
tion 8 triggers in-thread fault checking. No communication is needed for this store.
The fault checking code is inserted into the leading thread immediately before the store
commits. The return value of a call to an extern function, such as r0 in instruction
1 in Fig. 1(a), is a value that comes into the SoR, hence it is communicated to the
trailing thread. Otherwise, calls to non-external functions such as instruction 4 need
no communication or fault checking code since nothing escapes from the SoR.

5 Evaluation

DAFT is evaluated on a six-core Intel Xeon X7460 processor with a 16 MB shared L3
cache. Each pair of cores shares one 3 MB L2 cache. A mixed set of SPEC CPU2000
and SPEC CPU2006 benchmark programs is used for reliability and performance
analysis. All evaluations use the SPEC ref input sets. DAFT is implemented in the
LLVM Compiler Framework [35]. DAFT uses fast, lock-free software queues with
streaming write and prefetching for inter-thread communication [34].

5.1 Reliability Analysis

To measure the fault coverage of DAFT, Intel’s PIN instrumentation tool [38] is used
to inject single bit flip faults. Single-event-upset (SEU) model is assumed in the evalu-
ation [14,24,39]. First, PIN monitors a profile run of the program to count the number
of dynamic instructions. In the simulations, no fault is injected into the standard C
libraries, since they are not compiled with DAFT and therefore lack transient fault
protection. One dynamic instruction is selected randomly. One register is selected
randomly among general-purpose registers, floating point registers, and flag registers.
PIN flips a random bit of the selected register after the selected instruction. Program
output is compared against the reference output to ensure that externally visible behav-
ior is unchanged. Each benchmark program is executed 5,000 times, with one transient
fault injected in each trial.

This fault injection method cannot simulate faults occurring on the bus or latches.
Simulating such faults would require complex hardware modeling support. PIN works
at the software level and can simulate faults in architectural state which are the target of

123

Int J Parallel Prog (2012) 40:118–140 135

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

164.gzip

179.art

181.m
cf

183.equake

256.bzip2

401.bzip2

429.m
cf

435.grom
acs

444.nam
d

456.hm
m

er

470.lbm

473.astar

482.sphinx3

999.specrand

GTC
GeoM

ean

P
er

ce
nt

ag
e

of
 In

je
ct

ed
 F

au
lts

Detected Timeout Benign Data Corrupt

Fig. 6 Fault detection distribution

this paper. The memory system of the machine used for experimentation is protected
by ECC and is outside of DAFT’s SoR.

Injected faults are categorized into four groups based on the outcome of the program:
(1) Benign faults; (2) Detected by DAFT; (3) Timeout; and (4) Silent Data Corrupt.
After a fault is injected, it is possible that the program can still finish running normally
with correct output. We call this kind of injected fault Benign because it does not
affect the program’s normal execution. Some injected transient faults can be detected
by DAFT through either redundant computation and value checking, or specialized
exception handling. This kind of soft error is Detected by DAFT. There is a chance that
some faults may cause the program to freeze. We specify a scale and an estimated exe-
cution time of the program. If the program takes more than scale × ExecutionT ime
to finish, our instrumentation aborts the program and reports Timeout as an indication
that transient fault happened. The fault coverage of DAFT is not 100% because tran-
sient faults can occur while moving from a redundant instruction to a non-replicable
instruction. For example, if a transient fault occurs on register r1 in Fig. 1(d) right
after instruction 5 (load) and instruction 6 (produce), DAFT is not able to detect
the fault (represented as Silent Data Corrupt in Fig. 6). However, the possibility of
such a fault occurring is extremely low—the fault coverage is evaluated to be 99.93%
from simulation.

5.2 Performance

Figure 7 shows the runtime overhead (vertical axis in the figure) of redundant multith-
reading with and without speculation, normalized to the original sequential program
without any fault protection. The geomean performance overhead of DAFT is 38% (or
1.38× slowdown) on average. Compared with redundant multithreading without spec-
ulation (as described in Sect. 3.2), DAFT is 2.17× faster. Previous software solutions,
such as SRMT [15], reported 4.5× program execution slowdown using a software
queue on a real SMP machine. Compared to SRMT, DAFT performs favorably, and
hence is more practical for real-world deployment.

123

136 Int J Parallel Prog (2012) 40:118–140

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

164.gzip

179.art

181.m
cf

183.equake

256.bzip2

401.bzip2

429.m
cf

435.grom
acs

444.nam
d

456.hm
m

er

470.lbm

473.astar

482.sphinx3

999.specrand

GTC
GeoM

ean

P
ro

gr
am

 S
lo

w
do

w
n

(x
)

Without Speculation
With Speculation

Fig. 7 Performance overhead of redundant multithreading with and without speculation

DAFT speeds up execution by almost 4× in 473.astar to 2× in 435.gro-
macs, compared to non-speculative redundant multithreading. In473.astar, mem-
ory loads and stores are closely located with each other in some hot loops. Without
speculation, each of the two redundant threads has to wait for the other to pass values
over. This back and forth communication puts the communication latency on the criti-
cal path, causing the program to slow down significantly. 181.mcf and 164.gzip
have similar memory access patterns.435.gromacs does not contain a lot of closely
located memory loads and stores, but the number of memory operations is higher than
in other benchmark programs. More memory operations mean more communications
and redundant value checking, which translate to higher runtime overhead.

The whole program slowdown of DAFT mainly depends on the number of memory
operations in a program. For one load instruction, DAFT inserts two produce/consume
pairs: one before loading to check the correctness of the memory address; the other
one after the load to pass values to the trail thread. For one store instruction, two pro-
duce/consume pairs need to be inserted: one for the value to be stored and the other for
the memory address. Figure 8 indicates the number of communications (linear in the
number of values communicated through software queue) normalized to the number
of total instructions in a program.

5.3 Binary File Size

Figure 9 shows the static size of the binary generated by DAFT normalized to the
original program without transient fault tolerance. This size of the binary file is the
sum of program executable code, and statically linked libraries, such as software com-
munication queue. The geomean code size of DAFT-transformed program is about
2.4× larger than the baseline program. This increase came from the communication
primitives inserted into the program, value checking code in the trailing thread, and
the initialization code to register signal handlers and fork the trailing thread.

Specifically, every register computation instruction is duplicated into two identical
copies. DAFT creates two produce-consume pairs for each load and store instruction,

123

Int J Parallel Prog (2012) 40:118–140 137

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

164.gzip

179.art

181.m
cf

183.equake

256.bzip2

401.bzip2

429.m
cf

435.grom
acs

444.nam
d

456.hm
m

er

470.lbm

473.astar

482.sphinx3

999.specrand

GTC
GeoM

ean

N
or

m
al

iz
ed

 A
m

ou
nt

 o
f

 C

om
m

un
ic

at
io

n
Without Speculation

With Speculation

Fig. 8 Number of communication instructions (produce/consume) normalized to the total number of
instructions executed

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

164.gzip

179.art

181.m
cf

183.equake

256.bzip2

401.bzip2

429.m
cf

435.grom
acs

444.nam
d

456.hm
m

er

470.lbm

473.astar

482.sphinx3

999.specrand

GTC
GeoM

ean

B
in

ar
y

F
ile

 S
iz

e
In

cr
ea

se
 (

x)

Without Speculation
With Speculation

Fig. 9 DAFT-generated binary size normalized to the original binary size

before code optimization. 435.gromacs has a higher increase in binary file size
because the unprotected program is smaller than other benchmarks. Compared with the
non-speculative redundant multithreading approach, DAFT has a comparable increase
in binary size, yet lower runtime overhead, due to DAFT’s acyclic communication
pattern.

5.4 Memory Footprint

DAFT increases memory usage with additional code for leading and trailing threads, a
runtime stack for each thread, and a communication queue. All benchmark programs
were instrumented to measure DAFT’s impact on memory pressure. At program ter-
mination, the leading thread dumps the program’s peak runtime memory usage. This
number is collected from the operating system through the /proc file system.

Figure 10 shows that DAFT uses a geomean of 1.13× memory footprint of the
unprotected programs. The extra memory usage comes from the software communi-
cation queue, extra stack allocation and increased binary file size. The software queue
uses a fixed amount of memory. As demonstrated in Fig. 1(b), redundant multithreading
without speculation requires bi-directional inter-thread communication between the

123

138 Int J Parallel Prog (2012) 40:118–140

 1

 1.1

 1.2

 1.3

 1.4

 1.5

164.gzip

179.art

181.m
cf

183.equake

256.bzip2

401.bzip2

429.m
cf

435.grom
acs

444.nam
d

456.hm
m

er

470.lbm

473.astar

482.sphinx3

999.specrand

GTC
GeoM

ean

M
em

or
y

U
sa

ge
 N

or
m

al
iz

ed
 to

 O

rig
in

al
 P

ro
gr

am
 (

x)
Without Speculation

With Speculation

Fig. 10 Memory footprint of the DAFT-generated program normalized to that of the original unprotected
program

leading thread and the trailing thread, resulting in using two software communication
queues, while DAFT uses only one queue. DAFT uses 5% less peak runtime memory
than non-speculative redundant multithreading across all benchmark programs.

The memory overhead of DAFT-protected code is higher for programs with low
memory usage, since the constant 16 MB overhead of the communication queue is
significant. For other benchmarks, such as 164.gzip which uses 329 MB memory,
this overhead is less pronounced. This is an improvement over a previous approach
that more than doubles the memory usage for every benchmark program [17].

6 Conclusion

Future processors will ship with more cores, more and smaller transistors, and lower
core voltages. Short of a miracle in silicon fabrication technology, transient faults will
become a critical issue for developers everywhere. However, the multicore revolution
has brought redundant hardware to commodity systems, enabling low-cost software
redundancy for fault detection.

This paper presents a fast, safe and memory-efficient redundant multithreading tech-
nique for transient fault detection. By combining speculation, custom signal handlers,
and intelligent communication schemes, DAFT provides advanced fault detection on
off-the-shelf commodity hardware. It features minimal runtime and memory overhead.
Unlike some of previous software solutions, DAFT correctly handles exceptions and
distinguishes program exceptions from transient faults. DAFT can provide reliability
for off-the-shelf systems without specialized hardware or explosion in memory use.

Acknowledgements We thank the Liberty Research Group for their support and feedback during this
work. We also thank the anonymous reviewers for their insightful comments and suggestions. This material
is based upon work supported by the National Science Foundation under Grant No. 0627650. We acknowl-
edge the support of the Gigascale Systems Research Focus Center, one of five research centers funded
under the Focus Center Research Program, a Semiconductor Research Corporation program. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the Liberty Research
Group and do not necessarily reflect the views of the National Science Foundation.

123

Int J Parallel Prog (2012) 40:118–140 139

References

1. Hareland, S., Maiz, J., Alavi, M., Mistry, K., Walsta, S., Dai, C.: Impact of CMOS Scaling and SOI
on Software Error Rates of Logic Processes. VLSI Technology Digest of Technical Papers (2001)

2. Baumann, R.C.: Soft errors in advanced semiconductor devices-part I: the three radiation sources. IEEE
Trans. Device Mater. Reliab. 1(1), 17–22 (2001)

3. O’Gorman, T.J., Ross, J.M., Taber, A.H., Ziegler, J.F., Muhlfeld, H.P., Montrose, I.C.J., Curtis, H.W.,
Walsh, J.L.: Field testing for cosmic ray soft errors in semiconductor memories. IBM J. Res. Dev. 40,
41–49 (1996)

4. Reis, G.A., Chang, J., August, D.I., Cohn, R., Mukherjee, S.S.: Configurable transient fault detec-
tion via dynamic binary translation. In: Proceedings of the 2nd Workshop on Architectural Reliability
(2006)

5. Segura, J., Hawkins, C.F.: CMOS Electronics: How It Works, How It Fails. Wiley-IEEE Press,
New York (2004)

6. Baumann, R.C.: Soft errors in commercial semiconductor technology: overview and scaling trends.
In: IEEE 2002 Reliability Physics Tutorial Notes, Reliability Fundamentals, pp. 121_01.1–121_01.14
(2002)

7. Michalak, S.E., Harris, K.W., Hengartner, N.W., Takala, B.E., Wender, S.A.: Predicting the number
of fatal soft errors in Los Alamos national labratory’s ASC Q computer. IEEE Trans. Device Mater.
Reliab. 5(3), 329–335 (2005)

8. Mahmood, A., McCluskey, E.J.: Concurrent error detection using watchdog processors—a sur-
vey. IEEE Trans. Comput. 37(2), 160–174 (1988)

9. Slegel, T.J., Averill, R.M. III., Check, M.A., Giamei, B.C., Krumm, B.W., Krygowski, C.A., Li, W.H.,
Liptay, J.S., MacDougall, J.D., McPherson, T.J., Navarro, J.A., Schwarz, E.M., Shum, K., Webb,
C.F.: IBM’s S/390 G5 microprocessor design. IEEE Micro 19, 12–23 (1999)

10. Yeh, Y.: Triple-triple redundant 777 primary flight computer. Proc. IEEE Aeros. Appl. Conf. 1, 293–
307 (1996)

11. Yeh, Y.: Design considerations in Boeing 777 fly-by-wire computers. In: Proceedings of the Third
IEEE International High-Assurance Systems Engineering Symposium, pp. 64–72 (November 1998)

12. Horst, R.W., Harris, R.L., Jardine, R.L.: Multiple instruction issue in the nonstop cyclone processor.
In: Proceedings of the 17th International Symposium on Computer Architecture, pp. 216–226 (May
1990)

13. Ando, H., Yoshida, Y., Inoue, A., Sugiyama, I., Asakawa, T., Morita, K., Muta, T., Motokurumada, T.,
Okada, S., Yamashita, H., Satsukawa, Y., Konmoto, A., Yamashita, R., Sugiyama, H.: A 1.3GHz Fifth
Generation SPARC64 Microprocessor. International Solid-State Circuits Conference (2003)

14. Reinhardt, S.K., Mukherjee, S.S.: Transient fault detection via simultaneous multithreading. In: Pro-
ceedings of the 27th Annual International Symposium on Computer Architecture, pp. 25–36, ACM
Press (2000)

15. Wang, C., Kim, H.-S., Wu, Y., Ying, V.: Compiler-managed software-based redundant multi-thread-
ing for transient fault detection. In: CGO ’07: Proceedings of the International Symposium on Code
Generation and Optimization, pp. 244–258, IEEE Computer Society, Washington, DC, USA (2007)

16. Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I.: SWIFT: software implemented fault
tolerance. In: Proceedings of the 3rd International Symposium on Code Generation and Optimization
(March 2005)

17. Shye, A., Moseley, T., Reddi, V.J., Blomstedt, J., Connors, D.A.: Using process-level redundancy to
exploit multiple cores for transient fault tolerance. In: International Conference on Dependable Systems
and Networks, IEEE Computer Society, Los Alamitos, CA, USA (2007)

18. Rotenberg, E.: AR-SMT: A microarchitectural approach to fault tolerance in microprocessors. In: Pro-
ceedings of the Twenty-Ninth Annual International Symposium on Fault-Tolerant Computing, p. 84,
IEEE Computer Society (1999)

19. Mukherjee, S.S., Kontz, M., Reinhardt, S.K.: Detailed design and evaluation of redundant multithread-
ing alternatives. SIGARCH Comput. Archit. News 30(2), 99–110 (2002)

20. Weaver, C., Emer, J., Mukherjee, S.S., Reinhardt, S.K.: Techniques to Reduce the Soft Error Rate of
a High-Performance Microprocessor. In: Proceedings of the 31st Annual International Symposium on
Computer Architecture (2004)

123

140 Int J Parallel Prog (2012) 40:118–140

21. Vijaykumar, T.N., Pomeranz, I., Cheng, K.: Transient-fault recovery using simultaneous multithread-
ing. In: The 29th Annual International Symposium on Computer Architecture, pp. 87–98, IEEE Com-
puter Society (2002)

22. Oh, N., Shirvani, P.P., McCluskey, E.J.: Error detection by duplicated instructions in super-scalar
processors. IEEE Trans. Reliab. 51, 63–75 (2002)

23. Gomaa, M., Scarbrough, C., Vijaykumar, T.N., Pomeranz, I.: Transient-fault recovery for chip multi-
processors. In: Proceedings of the 30th annual international symposium on Computer architecture, pp.
98–109. ACM Press (2003)

24. Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I., Mukherjee, S.S.: Design and evalu-
ation of hybrid fault-detection systems. In: Proceedings of the 32th Annual International Symposium
on Computer Architecture, pp. 148–159 (June 2005)

25. Avizienis, A.: The N-version approach to fault-tolerant software. IEEE Trans. Softw. Eng. 11, 1491–
1501 (1985)

26. Berger, E.D., Zorn, B.G.: DieHard: probabilistic memory safety for unsafe languages. In: Proceedings
of the ACM SIGPLAN ’06 Conference on Programming Language Design and Implementation (June
2006)

27. Brilliant, S.S., Knight, J.C., Leveson, N.G.: Analysis of faults in an N-version software experi-
ment. IEEE Trans. Softw. Eng. 16(2), 238–247 (1990)

28. Novark, G., Berger, E.D., Zorn, B.G.: Exterminator: automatically correcting memory errors with
high probability. In: PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference on Programming
language design and implementation, pp. 1–11. ACM, New York, NY, USA (2007)

29. James, W.D., Jr, J.E.L.: A user-level checkpointing library for POSIX threads programs. In: The
Twenty-Ninth Annual International Symposium on Fault-Tolerant Computing (1999)

30. Whisnant, K., Kalbarczyk, Z., Iyer, R.K.: Micro-checkpointing: checkpointing for multithreaded appli-
cations. In: Proceedings of the 6th IEEE International On-Line Testing Workshop (IOLTW), IEEE
Computer Society, Washington, DC, USA (2000)

31. Rieker, M., Ansel, J.: Transparent user-level checkpointing for the native POSIX thread library for Li-
nux. In: International Conference on Parallel and Distributed Processing Techniques and Applications
(2006)

32. Vachharajani, N., Rangan, R., Raman, E., Bridges, M.J., Ottoni, G., August, D.I.: Speculative Decou-
pled Software Pipelining. In: PACT ’07: Proceedings of the 16th International Conference on Parallel
Architecture and Compilation Techniques, pp. 49–59. IEEE Computer Society, Washington, DC, USA
(2007)

33. ISO/IEC 9899-1999 Programming Languages – C, Second Edition (1999)
34. Jablin, T.B., Zhang, Y., Jablin, J.A., Huang, J., Kim, H., August, D.I.: Liberty queues for EPIC archi-

tectures. In: Proceedings of the 8th Workshop on Explicitly Parallel Instruction Computing Techniques
(April 2010)

35. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analysis & transforma-
tion. In: CGO ’04: Proceedings of the International Symposium on Code Generation and Optimization,
p. 75. IEEE Computer Society, Washington, DC, USA (2004)

36. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and its use in optimiza-
tion. ACM Trans. Program. Lang. Syst. 9, 319–349 (1987)

37. Ottoni, G., Rangan, R., Stoler, A., August, D.I.: Automatic thread extraction with decoupled software
pipelining. In: MICRO ’05: Proceedings of the 38th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 105–118, IEEE Computer Society, Washington, DC, USA (2005)

38. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J., Hazelwood,
K.: Pin: building customized program analysis tools with dynamic instrumentation. In: Proceedings
of the 2005 ACM SIGPLAN conference on Programming language design and implementation, PLDI
’05, pp. 190–200. ACM, New York, NY, USA (2005)

39. Walker, D., Mackey, L., Ligatti, J., Reis, G.A., August, D.I.: Static typing for a faulty lambda calcu-
lus. SIGPLAN Not. 41(9), 38–49 (2006)

123

	DAFT: Decoupled Acyclic Fault Tolerance
	Abstract
	1 Introduction
	2 Related Work
	3 Decoupled Acyclic Fault Tolerance
	3.1 Sphere of Replication
	3.2 Non-Speculative Redundant Multithreading
	3.3 Software Speculation in DAFT: Removing Cyclic Dependencies
	3.4 Misspeculation Detection
	3.4.1 In-Thread Operand Duplication
	3.4.2 Redundant Value Checking
	3.4.3 Custom Signal Handler

	3.5 Indirect Function Calls
	3.6 Communication and Code Optimizations: Making DAFT Faster
	3.6.1 Branch Removal
	3.6.2 Inter-thread Communication Lifting
	3.6.3 Software Communication Queue

	4 DAFT Automatic Code Transformation
	4.1 Identifying Instructions for the Trailing Function
	4.2 Identifying Relevant Basic Blocks
	4.3 Automatic Code Generation
	4.3.1 Replicating Redundant Code
	4.3.2 Building Redundant Program Structure
	4.3.3 Inserting Communication and Value Checking Codes
	4.3.4 Redirecting Branch Targets
	4.3.5 Inserting Initial and Final Communication Codes

	4.4 Example Walk-through

	5 Evaluation
	5.1 Reliability Analysis
	5.2 Performance
	5.3 Binary File Size
	5.4 Memory Footprint

	6 Conclusion
	Acknowledgements
	References

