
Int J Parallel Prog (2012) 40:4–24
DOI 10.1007/s10766-011-0182-5

Data Layout Transformation Exploiting Memory-Level
Parallelism in Structured Grid Many-Core Applications

I-Jui Sung · Nasser Anssari · John A. Stratton ·
Wen-Mei W. Hwu

Received: 1 February 2011 / Accepted: 13 July 2011 / Published online: 18 August 2011
© Springer Science+Business Media, LLC 2011

Abstract We present automatic data layout transformation as an effective compiler
performance optimization for memory-bound structured grid applications. Structured
grid applications include stencil codes and other code structures using a dense, reg-
ular grid as the primary data structure. Fluid dynamics and heat distribution, which
both solve partial differential equations on a discretized representation of space, are
representative of many important structured grid applications. Using the information
available through variable-length array syntax, standardized in C99 and other modern
languages, we enable automatic data layout transformations for structured grid codes
with dynamically allocated arrays. We also present how a tool can guide these trans-
formations to statically choose a good layout given a model of the memory system,
using a modern GPU as an example. A transformed layout that distributes concurrent
memory requests among parallel memory system components provides substantial
speedup for structured grid applications by improving their achieved memory-level
parallelism. Even with the overhead of more complex address calculations, we observe
up to 10.94X speedup over the original layout, and a 1.16X performance gain in the
worst case.

Keywords GPU · Parallel programming · Data layout transformation

1 Introduction

Structured grid applications [2] are a class of applications that calculate grid cell values
on a regular (structured in general) 2D, 3D or higher dimensional grid. Each output
point is computed as a function of itself and its nearest neighbors, potentially with

I.-J. Sung (B) · N. Anssari · J. A. Stratton · W.-M. W. Hwu
University of Illinois at Urbana-Champaign, Urbana, IL, USA
e-mail: sung10@illinois.edu

123

Int J Parallel Prog (2012) 40:4–24 5

patterns more general than a fixed stencil. Examples of structured grid applications
include fluid dynamics and heat distribution that iteratively solve partial differential
equations (PDEs) on dense multidimensional arrays. For parallelizing such applica-
tions, the most common approach is spatial partitioning of grid cell computations into
fixed-size portions, usually in the shape of planes or cuboids, and assigning the result-
ing portions to parallel workers e.g. Pthreads, MPI ranks, or OpenMP parallel
for loops.

However, the underlying memory hierarchy may not interact in the most efficient
way with a given decomposition of the problem; due to the constantly increasing dis-
parity between DRAM and processor speeds [18], modern massively parallel systems
employ wider DRAM bursts and a high degree of memory interleaving to create suf-
ficient off-chip memory bandwidth to supply operands to the numerous processing
elements.

Unlike CPU-based systems in which a DRAM burst usually corresponds to a cache
line fill, massively parallel systems such as GPUs form a DRAM burst from vectorized
memory accesses. This can either be done by hardware from concurrent threads in
the same wavefront (also known as memory coalescing in CUDA terms) or by the
programmer (such as the short-vector loads in CUDA and OpenCL). In both cases, it
is important to have concurrent accesses bearing desired memory address bit patterns
in terms of memory access vectorization. Intuitively, this can be addressed by loop
transformations to achieve unit-strided access in the inner loop. However, for arrays
of structures, it is necessary to employ data layout transformations, such as dimension
permutation, to achieve vectorization [11] or reduce coherence overhead [12].

A less explored direction is the parallelism among memory controllers, and inter-
leaved DRAM banks, which plays an increasingly important role in system perfor-
mance. In massively parallel systems, the interconnect between DRAM channels and
processors decodes address bit fields to decide the corresponding channel and memory
bank numbers from a memory request [3]. Given that a fixed subset of the address bits
is used to spread accesses across parallel memory channels and banks, achieving high
bandwidth requires concurrently serviced accesses to have varying values in those
address bit fields. To exploit this level of memory-level parallelism (MLP) in struc-
tured grid applications, precise control must be exercised over how multidimensional
index expressions map each index field to address bit fields. It is not generally possible
without data layout transformation or hardware approaches [15] to shuffle address bit
fields such that concurrent memory requests can be both well-vectorized and routed
to different memory channels and banks.

Unfortunately, the full details of a memory hierarchy are often too obscure or com-
plex for typical application programmers to adapt their programs to them. Even for the
exceptional cases where the programmer does know how to transform the data layout
to fit the memory system, performing the transformation manually is tedious, results
in less readable code, and must be repeated every time a new platform is targeted.

To alleviate these problems, we present a formulation to enable automatic data
layout transformation for structured grid applications through a monotonic dataflow
analysis compiler pass. We augment this formulation with a static tool to help the
programmer prune the search space of target layouts for the one that best fits the
underlying memory system. Using a modern GPU as an example, we show how to

123

6 Int J Parallel Prog (2012) 40:4–24

guide the decision process with an analytical model of the memory system based on
detailed microbenchmarking that leverages insights into the execution model of a GPU.

Currently, programming languages such as C and FORTRAN rigidly define the lay-
out of multidimensional arrays, allowing usages relying on the default layout such as
addressing logically adjacent elements through hard-coded pointer arithmetic. There-
fore, programmers opting to use automatic transformations on arrays must be subject
to more stringent interfaces that insulate the source code from changes in the layout.
However, implementing arrays of transformable layouts using a new language data
type or C++-style classes both complicates the language and may incur undesirable
overheads for accessing the most performance-critical data structure of the applica-
tion. To make data layout transformation feasible in the context of a language derived
from C++, we rely on two assumptions. First, the declaration, allocation, and access of
multidimensional arrays should follow C99-style variable length array (VLA) syntax,
Second, the programmer must adhere to FORTRAN-style subscripted array accesses,
as any assumptions on the relation between addresses across multiple array elements
may not hold after layout transformation.

Figure 1 depicts our procedure for data layout transformation, using a modern GPU
memory system as an example. The input is a kernel in which arrays are declared and
accessed in a restricted form of variable-length arrays, clearly denoting the size of each
array dimension, with array access restricted to FORTRAN-like form. Knowledge of
the execution model is then used to determine the relationships and ranges of array
indices likely to be concurrently requested by the kernel. For each array of interest,
an optimization problem is formulated and solved based on the estimated number
of concurrent instances of each array index with distinct values, with the solution
determining the desired layout. A code generation pass emits the transformed code
with array access expressions converted to flattened array accesses using transformed
layouts.

Fig. 1 Data layout transforms for structured grid codes

123

Int J Parallel Prog (2012) 40:4–24 7

The rest of this paper explains our methodology and results in detail. Section 2 pro-
vides an overview of iterative PDE solvers. Section 3 discusses related work in data
layout transformations. Section 4 formulates the offset calculation of array-accessing
statements, and defines the data layout transformations we consider using this formu-
lation. Section 5 discusses how we obtained a memory address interleaving scheme
for DRAM controllers through micro-benchmarking, and derived an optimized layout
from the program and execution model. Section 6 presents our experimental results.
Finally, Section 7 concludes.

2 Common Access Patterns of PDE Solvers on Structured Grids

Although there are many numerical methods that deal with PDEs, there are only a
few data access patterns among the most prevalent methods solving these problems
on structured grids. The structured grid often comes from discretizing physical space
with Finite Difference Methods [20] or Finite Volume Methods [7], while solutions
based on Finite Element Methods [20] often result in irregular meshes.

Many numerical methods solve PDEs through discretization and linearization. The
linearized PDE is then solved as a large, sparse linear system [9]. For large prob-
lems, direct-solution methods are often not viable: practical approaches are almost
exclusively iterative-convergence methods.

Iterative techniques like the Jacobi and Gauss-Seidel methods (including those
with Successive Overrelaxation) are often used as important building blocks for more
advanced solvers like multigrid [6]. Both techniques are instances of stencil codes,
whose stencils can be expressed as a weighted sum of a cell and its nearest neighbors in
the grid. The major difference in terms of access patterns is that Gauss-Seidel methods
typically apply cell updates in an alternating checkerboard style. Adjacent elements
are never updated in the same sweep; two separate, serialized sweeps over the red and
black cells perform one whole iteration update.

The lattice-Boltzmann method (LBM) [25], a particle-based method mainly used
in computational fluid dynamics problems, was recently extended as a general PDE
solver [32]. LBM is also an iterative method applied to structured grids. The cell update
rules for LBM are divided into two stages that update multiple grid cell properties (i.e.
distribution functions of particles close to different edges or surfaces of the grid cell.)
The intra-cell stage (called collide) and inter-cell stage (called stream) combined per-
form one iteration’s update [24]. The stream stage accesses the nearest neighbors of
the current cell, while the collide stage’s inputs are entirely local to the current cell.
Since there is no data reuse within an update iteration across cells, techniques that
aim at reducing memory accesses such as shared memory tiling for the GPU are less
useful. Hence, LBM is considered memory bandwidth-bound [27].

3 Related Work

Since stencil codes and LBM applications are often memory bandwidth-bound, many
approaches have focused on enhancing the memory system performance for these
applications. However, most of these approaches focus on increasing the cached reuse

123

8 Int J Parallel Prog (2012) 40:4–24

of data loaded from memory. For traditional cache-based memory hierarchies, most
methods do so by transforming the traversal order of array elements by loop tiling at
the cache line size [26,28].

Stencil codes are a subset of structured grid applications that have been studied
extensively, and optimized for locality on many platforms, including the GPU plat-
form we address in this paper [5]. Because there is no traditional cache or direct control
over the relative execution order of threads, most GPU-specific transformations for
stencil codes aim to enhance reuse of shared data across neighboring cells using a
pipeline-like approach, e.g. Datta et al. [5].

Such methods, which improve how efficiently data is used or reused in the
on-chip cache of the system, are not always applicable or sufficient. For exam-
ple, the LBM does not contain any data reuse within a single timestep [24], and
some stencil codes with heavy reuse may still be performance bound by off-
chip bandwidth even after reuse is exploited. Applications in such situations could
potentially still gain significant performance improvement by using MLP-oriented
optimizations.

Data layout transformations [17] have been primarily used for improving cache
locality and localizing memory accesses in nonuniform memory architectures and
clusters. Anderson et al. [1] employed data layout transformations for shared-memory
multiprocessor systems to make the data accessed by the same processor contiguous
in the address space. Lu et al.’s recent work [16] applied data layout transformation
for cache locality in NUCA (non-uniform cache architecture) chip multiprocessors to
keep memory accesses localized in processor-local L2 cache which have non-uniform
access cost, which results in similar formulation of earlier works for clusters [13].
This work presents data layout transformations to aid hardware memory vectoriza-
tion and reduce DRAM bank conflicts, with the target architecture being many-core
processors connected to on-chip multi-channel memory controllers through on-chip
interconnects with uniform access cost from each core to each memory channel, e.g.
a GPU.

In terms of the underlying DRAM memory model, most of the work described above
only considered the latency of hitting or missing in the data cache, or the latency of
local versus remote memory accesses for clusters and NUCA. However, for a massively
parallel system, balancing DRAM traffic across controllers can be important. Datta et
al. [5] took into consideration the affinity of DRAM controllers and processor cores
in NUMA architectures using an affinity-aware memory allocator. To our knowledge,
there is no software-based approach to balancing workloads for the multi-channel,
interleaved DRAM controllers employed in modern parallel architectures.

For GPUs, we know of no previous work applying data layout transformation to
structured-grid codes other than for gaining unit-strided accesses [11,27], which helps
vectorizing memory accesses into DRAM bursts (i.e. coalescing). Our automated data
layout transformations further exploit concurrency in multi-channel and interleaved
DRAM bank organizations. For managing off-chip memory bandwidth, Baskaran et
al. [4] proposed an approach based on loop tiling using the polyhedral model frame-
work, effectively assigning thread indices so that access patterns can be better coa-
lesced. However, their approach considered the data layout as part of the constraints

123

Int J Parallel Prog (2012) 40:4–24 9

and hence is not to further improve the memory access efficiency on strided accesses
commonly seen in the LBM and red-black Gauss-Seidel methods codes.

Various works [10,21,22,29] proposed hardware optimizations for DRAM con-
trollers towards uniform access latency and fairness, some parallelism aware [21,22].
All of them focused on scheduling DRAM requests under fixed workloads, without
considering how the workloads themselves could potentially adapt to the memory
system. Also, such approaches only balance among memory banks under the same
controller, while several controllers are often present in modern systems.

4 Data Layout Transformations for Structured Grid C Code

For structured grid codes, transforming the bit patterns of effective addresses of con-
current grid access expressions for the underlying memory hierarchy can be achieved
by transforming linearization functions calculating grid elements’ offsets from index
expressions for each dimension and the size of each dimension. This effectively trans-
forms the data layout.

We first present a formalization of arrays, layouts, and layout transformations that
define the required information as well as semantics. To conduct data layout transfor-
mation, we collect the necessary information through variable-length array syntax, a
recently standardized feature of the C language, that enables FORTRAN-style index
expressions for arrays of all kinds, including those whose size is not statically known.
The extra information contained in these declarations and accesses are essential to
performing robust data layout transformation.

4.1 Grids and Flattening Functions

Definition 1 An n-dimensional array G is characterized by an index space that is a
convex, rectangular subspace of N

n .

An array element is identified by a vector of integers called an index vector. Without
loss of generality, for the index vector I of an array element, Ii ∈ [0, Dimi) where
Dimi ∈ N, Dimi > 0 is the i-th element of the dimension vector of G.

Definition 2 An injective function FF: N
n → N is a flattening function for an n-

dimensional array G if this function is defined for all valid array element index vectors.

A flattening function defines a linearization of coordinates of elements in G. When
the resulting integer is interpreted as the offset for addressing an element from the
beginning of the memory space reserved for the array, then this flattening function
defines the memory layout of the array. We require FF to be injective: it should map
every valid index vector to a unique value. An FF f explicitly forbids a many-to-one
mapping, and thus f −1 is defined and f −1(f (I)) = I for a valid index vector I.
With these restrictions, a flattening function uniquely defines a memory layout and
vice-versa; we use these terms interchangeably in the remaining text.

123

10 Int J Parallel Prog (2012) 40:4–24

Fig. 2 An example of layout
transformation

To permute the address bit pattern derived by an FF, we can transform the default
Row-Major Layout (RML) flattening function by adapting the two primitive trans-
formations proposed by Anderson et al. [1] that are analogous to well-known loop
transformations:

Strip-mining: Split dimension i into T -sized tiles, 0 ≤ T < Di . This transformation
creates a new index vector I′ and a new dimension vector D′, which
are inputs to the transformed FF. I′ and D′ are created by dividing Ii

into Ih, Il and Di into Dh, Dl , where Ih = �Ii/T �, Il = Ii mod T
and Dh = �Di/T 	, Dl = T . Intuitively, strip-mining splits a dimen-
sion into two adjacent dimensions. When the original dimension size
is not a multiple of the strip size, padding is introduced at the last
strip.

Permutation: Permute the index vector and corresponding dimension vector.

Figure 2 shows a layout tiling example that transforms an access to arrayA[D j][Di]
from A[j][i], i.e. RMLA, to A[jlog2(Di):4][i][j3:0]. First the dimension j is split into
jH and jL without actually changing the order of elements in memory, only padding
the grid to some multiple of 24 × Di elements. Then the dimensions i and jL are
swapped, which also changes the order of elements in memory.

5 Directing Data Layout Transformation

Intuitively, the space of all possible layouts that can be derived by applying the data
layout transformation primitives arbitrarily on a multidimensional data structure can
be very large. However, by leveraging properties from both the SPMD programming
model, common on massively parallel systems, and the class of applications we are
targeting, we demonstrate a generalizable data layout methodology for this appli-
cation/target pair, based on an analytical model of the memory hierarchy and static
analysis of the program. Finally, a data flow analysis is designed to help deduce data
layouts for subscripted pointer accesses in the program.

123

Int J Parallel Prog (2012) 40:4–24 11

5.1 Benchmarking and Modeling Memory System Characteristics

For massively parallel architectures such as the GPU, the number of concurrent mem-
ory requests from all the processors can be large, especially for codes with large
datasets.

In such systems, DRAM controllers spread concurrent requests through the inter-
connect into different memory channels and banks, mostly by hashing address bits.
Moreover, on some systems such as the NVIDIA G80 and GT200 GPUs, memory
requests are vectorized (or coalesced, in CUDA terms) based on the least significant
bits of their addresses if these requests are from a subset of threads that are executed
in SIMD fashion (i.e. CUDA warps) by the underlying hardware.

To better understand how memory interleaving works, it is necessary to benchmark
the underlying memory hierarchy to model the achieved memory bandwidth as a func-
tion of the distribution of memory addresses of concurrent requests. As an example,
we derive an analytical model for an NVIDIA Tesla GPU, and use the execution model
of that GPU to analyze the expected program execution flow and concurrent requests
likely to be generated. Other devices and programming models could be evaluated
independently with a similar approach. Previous work [31] benchmarked the GPU
to explore memory latency as a function of access strides in a single-thread setting.
However, since the class of applications we are targeting is mostly bandwidth-limited,
we must determine how the effective bandwidth varies given access patterns across all
concurrent requests. First, each memory controller will have some pattern of generat-
ing DRAM burst transactions based on requests. The memory controller could be only
capable of combining requests from one core, or could potentially combine requests
from different cores into one transaction. In our example, the GPU memory controller
implements the former, with the CUDA programming manual [23] defining the global
memory coalescing rule, which specifies how transactions are generated as a function
of the simultaneous requests from the vector lanes of one streaming multiprocessor
(SM).

Next, we must define our model on which bits in a memory address steer interleav-
ing among memory channels, DRAM banks, or other parallel distribution structures
built into the architecture to increase the number of concurrently satisfiable requests.
We can determine these steering bits by observing the behavior of a microbenchmark
generating concurrent requests with a fixed stride pattern and the resulting achieved
bandwidth. Figure 3 illustrates this behavior for an NVidia Tesla GPU. The micro-
benchmark is similar to pointer-chasing in lmbench [19]: each thread repeats the
statement x = A[x] for a large number of iterations, with the array A initialized
with A[i] = i and each thread initialized with x = blockIdx.x * Stride.
There is only one thread per thread block to ensure that each request results in one
memory transaction.

By examining the spikes of poor bandwidth in Fig. 3, we can see a couple of fea-
tures of the underlying system. First, each successive power-of-two stride essentially
generates a concurrent set of requests with a fixed bit pattern in an increasingly large
number of lower address bits. Continued performance degradation as the stride dou-
bles indicates that the bit that was variant in the previous power of two but not in
the current one is relevant to the parallel distribution of requests. Figure 3 shows that

123

12 Int J Parallel Prog (2012) 40:4–24

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5
12

 1
02

4

 1
53

6

 2
04

8

 2
56

0

 3
07

2

 3
58

4

 4
09

6

 4
60

8

 5
12

0

 5
63

2

 6
14

4

 6
65

6

 7
16

8

 7
68

0

 8
19

2

 8
70

4

 9
21

6

 9
72

8

 1
02

40

 1
07

52

 1
12

64

 1
17

76

 1
22

88

 1
28

00

M
ill

io
n

D
R

A
M

 T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

Stride (words)

Fig. 3 Effective memory bandwidth vs. strides in words between requests from many single-threaded
blocks on an Nvidia Tesla GPU. Bandwidth is in millions of transactions per second, and strides are in
increments of 64 words

strides of 512, 1024, 2048, 4096 and 8192 words achieve successively lower effective
bandwidths. Although more detailed microbenchmarks suggest that the interleaving
is sophisticated enough that many of the higher bits may contribute to steering to
some degree, the most critical bits are those at or below bit position 13. Moreover, the
worst observed bandwidth occurs on strides with a multiple of 512 words (2K bytes),
indicating that the 11 lowest bits have the most direct impact on the achieved MLP.
For instance, note that strides of 8192+x*512 words are equally poor in performance
as 8192 strides. Through further detailed microbenchmarking, we have confirmed that
all bit positions in the range [13:6] are essential to spreading accesses to different
memory channels and banks. Therefore, for the purposes of data layout of arrays of
word-sized elements, we would consider the lower twelve bits of a flattened index
expression to be relevant (equivalent to address bits [13:2]), and the bits in positions
[10:6] the most important to vary across burst requests and indeed sufficient to dis-
tribute accesses across all memory system elements. From the coalescing rules [23],
bits [5:2] are inferred to be offsets into a DRAM burst. Within a burst, a good layout
transformation must maximize the number of useful words in that burst.

5.2 Data Transformation for Structured Grid Codes on a Two-level SPMD
Programming Model

In current GPU architectures, each thread can only execute one memory operation at
a time. Concurrent requests are therefore generated from different threads executing
concurrently on the parallel hardware. Intuitively, index expressions dependent on
thread and thread block identifiers should have significant variations in their values,
and therefore variations in the bits representing the resulting address. To maximize

123

Int J Parallel Prog (2012) 40:4–24 13

bandwidth utilization, the intuitive goal of data layout transformation is to ensure
that the address bits dependent on thread and thread block identifiers are the same as
those bits used in the memory system to distribute concurrent requests among parallel
memory system elements, and that the transformed access expressions adhere to the
coalescing rules for full utilization of DRAM bursts.

Let us first consider the CUDA-like pseudo code in Listing 1 that is a simplified
version of the 2D lattice-Boltzmann method (LBM):

Listing 1 Running Example

enum {N=0, E, W, S};

/ / Declare A0 and Anext as 2D variable−
/ / length arrays of 4−element structures

__global__ void
example(int ny, int nx, float A0[ny][nx][4] ,
float Anext[ny][nx][4])
{

int i = threadIdx .x+1, j = blockIdx .x+1;

/ / Access in FORTRAN−l ike form

float x_velo = A0[j][i][E] − A0[j][i][W];
float y_velo = A0[j][i][N] − A0[j][i][S] ;

Anext[j][i−1][E] = x_velo;
Anext[j][i+1][W] = −x_velo;
Anext[j−1][i][N] = y_velo;
Anext[j+1][i][S] = −y_velo;
}

In this code we have a 2D Array-of-Structures (AoS) layout. The code performs
operations on the input cell owned by the thread, using the results to update specific
fields of its neighbors in the output. Note that the leftmost dimension of every index
expression is some constant value plusblockIdx.x, the second dimension is always
some constant plus threadIdx.x, and the last dimension is a fixed offset denoting a
structure field. The Array-of-Structures (AoS) layout is good for CPUs or cache-based
architectures in general because of better spatial locality among structure members,
but for GPUs this stops the memory vectorization hardware (or memory coalescing
hardware in CUDA terms) from fully utilizing DRAM bursts when concurrent threads
each requests a certain field of its own cell. The coalescing rules effectively state
that the index of the lowest dimension must be dependent on threadIdx for good
coalescing. This issue can be easily resolved by permuting the data layout, perhaps

123

14 Int J Parallel Prog (2012) 40:4–24

by exchanging the second and last dimensions, leading to addresses that satisfy the
coalescing rule.

However, a good layout in terms of maximal MLP should also make concurrent
memory accesses from different warps have distinct bits at the steering bits. Intui-
tively, we should not only make a vectorizable access pattern, but also assign bits of
thread and thread block identifiers most likely to be distinct among active threads to
those steering bits. Identifying which bits will be distinct among concurrent accesses
requires analysis dependent on the execution model of the architecture. A good data
layout would take these busy bits from the index of each dimension and map them
into the steering bits of the memory system. A more formal definition and automated
solution is presented in the remainder of this section.

5.2.1 Characterizing Thread Indices in Two-level
SPMD Programming Models

In the two-level threading (thread/block) models employed by OpenCL and CUDA,
some properties regarding thread indices can be observed:

– Computational grids consist of fixed-size thread blocks issued as a unit to the pro-
cessors (i.e. SMs in CUDA terms), and executed asynchronously across them. As
for thread IDs, asynchronous execution means that any thread with a legitimate
thread ID within a block can be the issuer of a memory request.

– The total number of blocks in the computational grid can be very large, outnum-
bering the number of processors in the system, so the runtime issues a subset of
these blocks to the processors. In other words, at any instant there is only a subset
of X blocks being executed so the number of distinct block IDs usually is only a
fraction of total number of blocks in a computational grid. With some simplifying
assumptions about the regularity of block scheduling, the index range of blocks
executing at a time can be roughly modeled as some oldest, still-executing block
to some youngest executing block with an index of X plus the index of the oldest
block minus one.

We can then characterize thread and block IDs in terms of distinct least significant
bits across their concurrent instances:

– The number of distinct least significant bits across concurrent block IDs is about
log2(maximum capacity of active blocks in the system)

– The number of distinct least significant bits across concurrent thread IDs is about
log2(block size)

For CUDA, the maximum capacity for active blocks in the system can be deter-
mined statically from the compiled code’s resource usage and the device parameters
[23].

For our running example, assume there are 32 active thread blocks, each with
128 constituent threads, which means 5 LSBs of a thread block index and 7 LSBs
of a thread index will be busy. In this case, one good layout for array A0 could be
created by strip-mining the Y and X dimensions by 32 and 128 respectively and
shifting the resulting sub-dimensions into the steering and coalescing bit positions.

123

Int J Parallel Prog (2012) 40:4–24 15

In terms of dimension vectors and flattening functions, the dimension vector of A0
is D : (�ny/25	, �nx/27	, 4, 25, 27) , where nx and ny are from C99 VLA dec-
laration of A0; the FF of A0 is F F(I, D) : I2[:5]D3 D2 D1 D0 + I1[:7] D2 D1 D0 +
I0 D1 D0 + I2[4:0]D0 + I1[6:0], where I is the index vector of the array subscripts, e.g.
for A0[j][i][0], I : (I2 = j, I1 = i, I0 = 0).

5.2.2 Automated Discovery of Ideal Data Layouts

To automate the process of selecting and shifting bits to best fit the memory system,
we begin with a high-level algorithmic description of the procedure:

1. Convert all grid-accessing expressions into affine forms of thread and thread block
indices and surrounding sequential loop indices. For structured grid codes that use
FORTRAN-like array subscripts, array accessing expressions can be usually con-
verted to this form. In principle, if there are non-affine terms in an expression, we
could still approximate it by introducing auxiliary affine terms, as suggested by
Girbal et al. [8].

2. For a given grid, if all expressions accessing the grid share the same coefficients
for all columns except the constant column, then this grid is eligible for layout
transformation. We call the grid eligible, and define a matrix consisting of the
coefficients of the affine form of its accessing expressions, except the constant
column, as the grid’s common access pattern. For structured grid codes which
access nearest neighbors, the access expressions of the same grid usually have the
same coefficients except for the last column. E.g. [x+1][y] and [x-1][y-1]

are considered of the same common access pattern

[
1 0
0 1

] (
x
y

)
.

3. For each eligible grid, derive the desired data layout from its common access
pattern:
(a) Calculate the number of busy bits of each referred thread and block index

from the occupancy and thread block configuration.
(b) For each dimension, compute the collective busy bits represented by the cor-

responding row in the common access pattern. Since a row in the common
access pattern represents some linear combination of thread and block indi-
ces, the collective busy bits are the union of these busy bits, while some of
them are possibly shifted by log2 of their coefficients.

(c) Assign the least significant N bits of the fastest changing dimension index to
the bit position that is used for memory coalescing, where N is the number of
address bits that determine memory vectorization according to the hardware
specification.

(d) Greedily assign other collective busy bits from all dimensions to the steering
bits by strip-mining power-of-two-sized tiles and permuting these tiles to the
desired bit positions until all steering bits are occupied or there are no busy
bits left from any dimension.

(e) Assign all remaining bits to the higher dimensions.
(f) Generate flattening functions and dimension vectors according to the above

assignment and the C99 VLA declaration for the grid.

123

16 Int J Parallel Prog (2012) 40:4–24

4. Perform dataflow analysis to derive the flattening function associated with each
array accessing expression.

5. Output the transformed code with inline-expanded flattening function at grid
accessing expressions.

For our running example, some of the access functions of A0 and Anext are:
(block I dx .x + 1, thread I dx .x + 1, E), (block I dx .x + 1, thread I dx .x + 1, W),
(block I dx .x, thread I dx .x + 1, N), and (block I dx .x + 2, thread I dx .x + 1, S). In
the affine form of access functions similar to the notation used by Girbal et al. [8],

they would look like:

⎡
⎣1 0 1

0 1 1
0 0 E

⎤
⎦

⎛
⎝ blockIdx.x
threadIdx.x

1

⎞
⎠ ,

⎡
⎣1 0 1

0 1 1
0 0 W

⎤
⎦

⎛
⎝ blockIdx.x
threadIdx.x

1

⎞
⎠ ,

⎡
⎣1 0 0

0 1 1
0 0 N

⎤
⎦

⎛
⎝ blockIdx.x
threadIdx.x

1

⎞
⎠, and

⎡
⎣1 0 2

0 1 1
0 0 S

⎤
⎦

⎛
⎝ blockIdx.x
threadIdx.x

1

⎞
⎠, respectively. The

affine form of the access functions of Anext and A0 only differ in the last column,
and thus both arrays are eligible for data layout transformation, with their common

access pattern being

⎡
⎣1 0

0 1
0 0

⎤
⎦. The common access pattern clearly links the dimension

with individual thread and thread block indices, which are used for deciding the actual
layout based on their busy bits.

Continuing with our previous example, we will assume the number of active thread
blocks is 32, and the number of threads in the thread block is 128. This means that the
5 least significant bits of blockIdx.x are busy, and the all seven meaningful bits
of threadIdx.x are busy. The second dimension index, corresponding to threa-
dIdx.x, takes the lowest dimension place in the transformed layout for coalescing
(4 least significant bits) and the first three steering bits in a word address. The highest
dimension is split into two dimensions, with the 5 least significant bits accessing the
new lower dimension and the remaining bits accessing the higher dimension. The
newly created lower dimension is transposed to take the second lowest dimension of
the new layout. The remaining dimensions are left as they are, resulting in the layout
shown before.

5.3 Propagating Layout Information as Extended Types with Pointers

After each solver iteration, iterative PDE solver implementations in C or C-like lan-
guages usually swap pointers to the input and output grid before starting the next
iteration, i.e. the output of the current iteration becomes the input of the next itera-
tion. Hence, correct propagation of layout and dimension information through pointer
assignments is essential for these solver implementations.

In other words, after deciding the layout of a specific grid, we need to analyze the
source code to figure out the set of grid access expressions, in the form of subscripted
pointer dereferences, that need to be updated to use the transformed flattening func-
tion instead. We address this issue by treating layouts as extended types and solve the
dataflow equation to analyze the layout for array accessing expressions.

123

Int J Parallel Prog (2012) 40:4–24 17

Types in programming languages specify the information necessary for the code to
interpret and operate on instances of that type. The layout of an array is an implicit
part of an array’s type, typically defined by the language. To transform the layout of a
particular array, excluding other arrays, we must essentially change that array’s type,
and propagate that change in type information through the program to ensure that
all parts of the program accessing that array do so correctly. This propagation could
be performed at runtime by extending the array type in the compiler to augment the
grid with a function pointer to the flattening function, set when the array is allocated.
However, current GPU programming models do not allow indirect calls, so we elect to
perform the propagation of the type change instigated by the compiler in the compiler
itself.

Therefore, we present algorithms for propagating the implicit layout type informa-
tion statically through a program, identifying the pointer references that access the
objects with extended types. The proposed usage scenario is that the user specifies
through annotation the grid on which the compiler should perform automatic layout
transformation, without specifying the actual layout, and the compiler decides the
layout that works best on the given grid for a given architecture, and propagates this
layout information through this analysis.

Our approach involves a source-to-source compiler that transforms the flattening
function of expressions accessing grids annotated with dimension vectors, effectively
deriving layout-transformed arrays, and finally emits CUDA C code that can be fur-
ther compiled by the NVCC compiler with inline-expanded flattening functions on
dynamically-allocated one-dimensional arrays.

We formulate this analysis as a monotonic dataflow analysis. In this framework, a
dataflow analysis is represented as a meet-semilattice and a set of transfer functions.
For this problem, the semilattice is (�, ∧), where each element in the semilattice is
a function: � : P → L ∪ {UT ,⊥}. P is the set of pointer variables in the program,
UT stands for untransformed and ⊥ means incompatible respectively. L is a set con-
taining the definitions of new data layouts, each fully defined by a dimension n ∈ N,
a dimension vector N

n and a flattening function N
n → N. When this function maps a

pointer to a new layout, it is asserting that every data structure the pointer may refer to
shares the specified layout. An untransformed pointer indicates that the data structure
it points to uses RML as its flattening function; an incompatible pointer, however,
indicates that this pointer may point to at least two data structures with incompatible
flattening functions. Two flattening functions FF1 and FF2 are compatible (expressed
as FF1 == FF2) if and only if for all legitimate dimension vectors D and index
vectors I, FF1(D, I) = FF2(D, I). That is, the FF for a float array can be compat-
ible with the RML for a long array as long as their element sizes are the same. This
allows transforming the layout of some structured-grid code, in which non-float typed
elements are accessed through type-casted grid base pointer.

The set of transfer functions f : � → � is created from the operation types in
the flow graph as shown in Table 1. The meet operation of two functions m, n ∈ �

is defined in Table 2. In the table, the binary relationship == for two tuples {l1 =
(n1, D1 ∈ Nexpr

n1, F F1), l2 = (n2, D2 ∈ Nexpr
n2 , F F2)} ∈ L exists if and only

if n1 = n2 and D1 = D2 and F F1 == F F2. In a word, each statement, according
to its operation type, may change the layout bound to a pointer through assignment.

123

18 Int J Parallel Prog (2012) 40:4–24

Table 1 Transfer functions

Operation type Transfer function f (μ) in the form of f (μ) = ν with
ν(w) = μ(w)∀(w �= p1) and ν(p1) = . . ., where
w ∈ P;μ, ν ∈ �

No definition involving any pointer
variables

ν(p1) = μ(p1) (Identity function)

p1 = p2; p1 and p2 are pointers ν(p1) = μ(p2)

p1 = p2 + t; p1 and p2 are
pointers and t is of integer type

ν(p1) = ⊥ if μ(p1) �= UT else UT

Declaring a pointer p ν(p1) = UT

Declaring a pointer p to an
n-dimensional grid G with a
dimension vector DV

ν(p1) = (n,DV, RML)

Apply layout transformation lt to
the data structured pointed by p1

ν(p1) = lt(μ(p1)) where lt is a layout transformation

Table 2 Meet function ∧
l1 U T ⊥

l2 if l1 == l2 then l1 else ⊥ ⊥ ⊥
UT ⊥ UT ⊥
⊥ ⊥ ⊥ ⊥

Transformed and untransformed layouts, as well as dimension vectors of grids, are
thus propagated.

The meet function ∧ deals with the join of control flows. Since most programming
models for the GPU do not allow indirect function calls in general, for each grid
access expression only one flattening function is allowed to bind with that expression.
The meet function basically aborts data layout transformation for a particular grid if
there are multiple incompatible flattening functions that need to be bound with any
expression that accesses the grid (i.e. the binary relation == does not hold for these
functions). This restriction can surely be slightly relaxed using versioning, but this is
left for future work.

6 Experimental Results

Three CUDA benchmarks, namely CFD, Heat [5], and LBM [24], were used to explore
the significance of memory-level parallelism for memory-bound structured grid appli-
cations and the validity of the data layout transformation heuristic presented in the
paper. CFD is an implementation of the red-black Gauss-Seidel method for a 3D Na-
vier-Stokes solver, Heat is a 3D heat equation solver using the Jacobi method, and LBM
is an implementation of the SPEC2006CPU [30] Lattice-Boltzmann method. The first
two benchmarks represent the two major point methods for solving PDEs using the
finite difference method. LBM is an alternative CFD approach using a particle-based
method instead of discretizing the PDE. For each benchmark, the performance of
different layouts is presented in terms of the normalized execution time over several

123

Int J Parallel Prog (2012) 40:4–24 19

Fig. 4 LBM: varying X

Fig. 5 LBM: varying Y

ranges of grid sizes, changing the size of one dimension at a time. The experiments
were run on an Nvidia Tesla T10 GPU with 4GB of memory.

We first manually convert each of the benchmarks into a layout-neutral form and
apply our automated layout transformation methodology on the main grids on which
it operates. Because our compiler infrastructure does not yet support variable-length
array syntax, we use annotations to communicate that information to the compiler.
After automatic transformation, the nearby regions of the space of potential layout
transformations where the solution was found are manually searched for the best can-
didate.

The results show the criticality of a data layout for maximizing bandwidth utiliza-
tion by both vectorizing memory accesses into bursts, and parallelizing them across

123

20 Int J Parallel Prog (2012) 40:4–24

Fig. 6 LBM: varying Z

Fig. 7 Heat: varying X

interleaved memory channels and banks. The relative performance of a layout depends
on its divergence from the optimal layout in both of these two criteria.

For the LBM benchmark, Figs. 4–6 contrast the performance of the layout derived
from the transformation heuristic to the array-of-structures (AoS) and structure-of-
arrays (SoA) layouts. On average, switching from the AoS layout to the SoA layout
improves the performance by 7.2X, mainly due to improved burst-level parallelism
from better memory coalescing. However, the layout which maps busy bits to steer-
ing bits more prudently, thereby achieving higher memory-level parallelism, further
improves the performance by 1.52X. Moreover, such a layout is more persistent to
grid size variations.

Figures 7–9 show the merits of using an MLP-aware layout for the Heat bench-
mark over a layout oblivious to it. While both layouts result in fairly coalesced memory

123

Int J Parallel Prog (2012) 40:4–24 21

Fig. 8 Heat: varying Y

Fig. 9 Heat: varying Z

access patterns, the layout derived from the transformation heuristic is 2.74X faster
on average.

Figures 10–12 compare the performance of the layout of the CFD benchmark de-
rived from the transformation heuristic to the default row-major layout (RML) defined
by the programming language. Effective tiling for the memory interleaving hardware,
which also results in marginally better memory coalescing, improves the performance
of the derived layout by 1.16X on average over RML.

Our experiments show that even with extra overhead computing memory addresses,
the transformed benchmarks still gain performance by improving the efficiency of
accessing memory. This highlights both the bandwidth-boundedness of the bench-
marks themselves, and the validity of trading extra address calculation instructions for
better bandwidth utilization in bandwidth-bound applications.

123

22 Int J Parallel Prog (2012) 40:4–24

Fig. 10 CFD: varying X

Fig. 11 CFD: varying Y

7 Conclusion and Future Work

We presented a formulation and language extension that enable automatic data layout
transformation for structured grid codes in CUDA. We also benchmarked an Nvidia
Tesla GPU to reveal its DRAM banking and interleaving scheme. Based on the mi-
crobenchmark results, we developed a layout transformation methodology that can
significantly speed up various structured-grid codes by distributing concurrent mem-
ory requests evenly to DRAM channels and banks.

Our methodology does not preclude opportunities of applying other transfor-
mations that aim at improving reuse. Future work investigating holistic data lay-
out transformations addressing temporal locality, spatial locality, and MLP will be

123

Int J Parallel Prog (2012) 40:4–24 23

Fig. 12 CFD: varying Z

paramount to achieving the highest levels of performance for important, bandwidth-
bound structured grid applications.

Acknowledgments This work was funded by the Universal Parallel Computing Research Center at the
University of Illinois at Urbana-Champaign. The Center is sponsored by Intel Corporation and Microsoft
Corporation. This work utilized the AC cluster [14] operated by the Innovative Systems Laboratory (ISL) at
the National Center for Supercomputing Applications (NCSA) at the University of Illinois. The cluster was
funded by NSF SCI 05-25308 and CNS 05-51665 grants along with generous donations of hardware from
NVIDIA, Nallatech, and AMD. We would like to thank Chris Rodrigues, Nady Obeid, and anonymous
reviewers for their comments.

References

1. Anderson, J.M., Amarasinghe, S.P., Lam, M.S.: Data and computation transformations for multipro-
cessors. SIGPLAN Not. 30(8), 166–178 (1995)

2. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K., Patterson, D.A.,
Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The landscape of parallel computing re-
search: a view from berkeley. Technical report UCB/EECS-2006-183, EECS Department, University of
California, Berkeley, Dec 2006

3. Bakhoda, A., Yuan, G.L., Fung, W.W.L., Wong, H., Aamodt, T.M.: Analyzing cuda workloads using
a detailed gpu simulator. In: ISPASS, pp. 163–174. IEEE (2009)

4. Baskaran, M.M., Bondhugula, U., Krishnamoorthy, S., Ramanujam J., Rountev, A., Sadayappan, P.: A
compiler framework for optimization of affine loop nests for gpgpus. In: ICS ’08: Proceedings of the
22nd annual international conference on Supercomputing, pp. 225–234. ACM, New York, NY, USA
(2008)

5. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson, D., Shalf, J., Yelick,
K.: Stencil computation optimization and auto-tuning on state-of-the-art multicore architectures. In:
SC08: Proceedings of the 2008 Conference on Supercomputing, pp. 1–12. Piscataway, NJ, USA (2008)

6. Demmel, J.W.: Applied Numerical Linear Algebra. Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA (1997)

7. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (1999)
8. Girbal, S., Vasilache, N., Bastoul, C., Cohen, A., Parello, D., Sigler, M., Temam, O.: Semi-automatic

composition of loop transformations for deep parallelism and memory hierarchies. Int. J. Parallel
Prog. 34(3), 261–317 (2006)

123

24 Int J Parallel Prog (2012) 40:4–24

9. Gundolf, C.D., Douglas, C.C., Haase, G., Hu, J., Kowarschik, M., Weiss, C.: Portable memory hierar-
chy techniques for PDE solvers, part II. SIAM News 33, 8–9 (2000)

10. Ipek, E., Mutlu, O., Martínez, J.F., Caruana, R.: Self-optimizing memory controllers: A reinforcement
learning approach. Comp. Arch. News 36(3), 39–50 (2008)

11. Jang, B., Mistry, P., Schaa, D., Dominguez, R., Kaeli, D.: Data transformations enabling loop vector-
ization on multithreaded data parallel architectures. In: PPoPP ’10: Proceedings of the 15th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 353–354. ACM,
New York, NY, USA (2010)

12. Ju Y.-L., Dietz, H.G.: Reduction of cache coherence overhead by compiler data layout and loop trans-
formation. In: Proceedings of the Fourth International Workshop on Languages and Compilers for
Parallel Computing, pp. 344–358. Springer, London, UK (1992)

13. Kennedy, K., Kremer, U.: Automatic data layout for high performance fortran. In: Supercomputing
’95: Proceedings of the 1995 ACM/IEEE conference on Supercomputing (CDROM), pp. 76. ACM,
New York, NY, USA (1995)

14. Kindratenko, V., Enos, J., Shi, G.: Gpu clusters for high-performance computing. In: Proceedings of
the Workshop on Parallel Programming on Accelerator Clusters. Jan 2009

15. Kwon, Y.-S., Koo, B.-T., Eum, N.-W.: Partial conflict-relieving programmable address shuffler for
parallel memories in multi-core processor. In: ASP-DAC ’09: Proceedings of the 2009 Asia and South
Pacific Design Automation Conference, pp. 329–334. IEEE Press, Piscataway, NJ, USA (2009)

16. Lu, Q., Alias, C., Bondhugula, U., Henretty, T., Krishnamoorthy, S., Ramanujam, J., Rountev, A.,
Sadayappan, P., Chen, Y., Lin, H., Ngai, T.-f.: Data layout transformation for enhancing data local-
ity on nuca chip multiprocessors. In: Proceedings of the 18th International Conference on Parallel
Architectures and Compilation Techniques, pp. 348–357 (2009)

17. Mace, M.E.: Memory Storage Patterns in Parallel Processing. Kluwer, Boston (1987)
18. Mahapatra, N.R., Venkatrao, B.: The processor-memory bottleneck: problems and solutions. Cross-

roads 5(3es), 2 (1999)
19. McVoy, L., Staelin, C.: lmbench: portable tools for performance analysis. In: Proceedings of the 1996

USENIX Annual Technical Conference, pp. 23–23 (1996)
20. Morton, K.W., Mayers, D.F.: Numerical Solution of Partial Differential Equations: An Introduc-

tion. Cambridge University Press, New York, NY (2005)
21. Moscibroda, T., Mutlu, O.: Distributed order scheduling and its application to multi-core DRAM con-

trollers. In: Proceedings of the 27th Symposium on Principles of Distributed Computing, pp. 365–374
(2008)

22. Mutlu, O., Moscibroda, T.: Parallelism-aware batch scheduling: enhancing both performance and fair-
ness of shared DRAM systems. Comput. Arch. News 36(3), 63–74 (2008)

23. nVIDIA: nvidia cuda programming guide 2.0 (2008)
24. Pohl, T., Kowarschik, M., Wilke, J., Iglberger, K., Rüde, U.: Optimization and profiling of the cache

performance of parallel lattice boltzmann codes. Parallel Process. Lett. 13(4), 549–560 (2003)
25. Qian, Y.H., D’Humieres, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equation. Europhys.

Lett. 17(6), 479–484 (1992)
26. Rivera, G., Tseng, C.-W.: Tiling optimizations for 3D scientific computations. In: SC00: Proceedings

of the 2000 conference on Supercomputing, p. 32 (2000)
27. Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S., Kirk, D.B., Hwu, W.-m.W.: Optimization

principles and application performance evaluation of a multithreaded gpu using cuda. In: Proceedings
of the 13th Symposium on Principles and Practice of Parallel Programming, pp. 73–82 (2008)

28. Sellappa, S, Chatterjee, S.: Cache-Efficient multigrid algorithms. Int. J. High Perform. Comput.
Appl. 18(1), 115–133 (2004)

29. Shao, J., Davis, B.T.: A burst scheduling access reordering mechanism. In: Proceedings of the 13th
International Symposium on High Performance Computer Architecture, pp. 285–294 (2007)

30. Spradling, C.D.: Spec cpu2006 benchmark tools. Comput. Arch. News 35(1), 130–134 (2007)
31. Volkov, V., Demmel, J.W.: Benchmarking gpus to tune dense linear algebra. In: SC08: Proceedings of

the 2008 Conference on Supercomputing, pp. 1–11 (2008)
32. Zhao, Y.: Lattice Boltzmann based PDE solver on the GPU. Vis. Comput. 24(5), 323–333 (2008)

123

	Data Layout Transformation Exploiting Memory-Level Parallelism in Structured Grid Many-Core Applications
	Abstract
	1 Introduction
	2 Common Access Patterns of PDE Solvers on Structured Grids
	3 Related Work
	4 Data Layout Transformations for Structured Grid C Code
	4.1 Grids and Flattening Functions

	5 Directing Data Layout Transformation
	5.1 Benchmarking and Modeling Memory System Characteristics
	5.2 Data Transformation for Structured Grid Codes on a Two-level SPMD Programming Model
	5.2.1 Characterizing Thread Indices in Two-level SPMD Programming Models
	5.2.2 Automated Discovery of Ideal Data Layouts

	5.3 Propagating Layout Information as Extended Types with Pointers

	6 Experimental Results
	7 Conclusion and Future Work
	Acknowledgments
	References

