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Abstract Multiprocessor task scheduling is an important problem in parallel appli-
cations and distributed systems. In this way, solving the multiprocessor task sched-
uling problem (MTSP) by heuristic, meta-heuristic, and hybrid algorithms have been
proposed in literature. Although the problem has been addressed by many research-
ers, challenges to improve the convergence speed and the reliability of methods for
solving the problem are still continued especially in the case that the communication
cost is added to the problem frame work. In this paper, an Immune-based Genetic
algorithm (IGA), a meta-heuristic approach, with a new coding scheme is proposed
to solve MTSP. It is shown that the proposed coding reduces the search space of
MTSP in many practical problems, which effectively influences the convergence speed
of the optimization process. In addition to the reduced search space offered by the
proposed coding that eventuate in exploring better solutions at a shorter time frame,
it guarantees the validity of solutions by using any crossover and mutation operators.
Furthermore, to overcome the regeneration phenomena in the proposed GA (gener-
ating similar chromosomes) which leads to premature convergence, an affinity based
approach inspired from Artificial Immune system is employed which results in better
exploration in the searching process. Experimental results showed that the proposed
IGA surpasses related works in terms of found makespan (20% improvement in aver-
age) while it needs less iterations to find the solutions (90% improvement in average)
when it is applied to standard test benches.
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Abbreviations
AT (Affinity threshold) When the SR for two chromosomes is

smaller than this threshold, the worst one
is re-initialized

CAPET (Coding based on addressing The proposed coding
Potentially executable tasks)

Clr (Closeness ratio) It shows that the fitness for chromosomes
is becoming close to each other

DAG (Directed acyclic graph) is a directed graph to present a MTSP
GA (Genetic algorithm) A population-base optimization method
IGA (Immune-based genetic algorithm) is the proposed GA enhanced by an

affinity mechanism
MTSP (Multiprocessor task A famous and classical scheduling

scheduling problem) problem
nt Number of tasks
np Number of processors
PET (Potentially executable Tasks) A queue that contains all tasks which can

be executed now that are the tasks which
all of their predecessors have been
executed

Petc The length of PET
PSc (Processors sequence) is an array of processors which its

elements are prepared by decoding the
genes in a chromosome genes in a
chromosome

SR (Similarity ratio) Shows the similarity for two chromosomes
SSR (Search space ratio) is a ratio which compares the search

space between two coding
TS (Task sequence) is an array of tasks which its elements

are prepared by decoding the genes in
a chromosome

1 Introduction

Scheduling problems in multiprocessor, parallel, and distributed systems are classi-
fied in the NP-hard class of problems [1]. These problems are employed in different
important applications such as information processing, weather forecasting, image
processing, database systems, process control, economy, and operation research. In
these problems, there are several tasks that should be assigned to different processors
in a way that (i) the semantics are preserved, and (ii) the total run-time of all processes
is minimized by considering the task dependencies and communication costs [1–5].
The input of these problems is usually considered as a directed acyclic graph (DAG)
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which provides precedence, dependency, priority among tasks, and cost for commu-
nication between two relative tasks. With regards to these aspects, all available mul-
tiprocessor task scheduling methods try to allocate limited or undetermined number
of processors to a set of tasks such that the minimum execution time for all tasks is
attained. The total run-time of all processes is called makespan in literature.

To solve the Multiprocessor Task Scheduling Problem (MTSP), many heuristic and
meta-heuristic methods have been proposed so far, each of which contain their merits
and drawbacks. The basic idea of heuristic methods is to determine an optimal order
of tasks regarding to their execution priority. Afterwards, the tasks are executed on
appropriate processors in the determined order. Therefore, it is seen that each heuristic
approach is composed of two main parts: finding an order of the tasks and allocating
a processor to each of them. Also, meta-heuristics such as Genetic Algorithms (GAs),
Ant Colony Optimizations (ACO), Particle Swarm Optimization (PSO) are good
candidates to be applied to MTSP [6–8]. Although there is immense number of meth-
ods to confront the MTSP, solving the problem more faster and reliable has remained
as an open research field which encourages the researchers for further investigations.

Here, we propose a new and efficient coding scheme and genetic method to solve
the problem when communication costs exist. The proposed coding technique is called
CAPET (Coding based on Addressing the Potentially Executable Tasks) and works
based on addressing a queue of potentially executable tasks. It is shown that CA-
PET reduces the search space in many practical cases in comparison to other existing
coding. In addition, the simplicity of the CAPET enabled us to use simple GA opera-
tors which influence the execution time of the algorithm. Moreover, to overcome the
regeneration phenomena that is usually occurred in GA, an artificial immune system
operator is employed to help exploring better results from the search space [9,10].
The proposed method was applied on several benchmarks and results were compared
to several state-of-the-art algorithms. Experimental results showed that the proposed
method improved the results of related works in terms of makespan and number of
needed generations.

The rest of the paper has been organized as follows. Some backgrounds includ-
ing the multiprocessor task scheduling problem and genetic algorithm are introduced
in Sect. 2. Section 3 surveys several previous methods for the MTSP. The proposed
genetic approach is explained in Sect. 4. Section 5 is dedicated to the experimental
results and comparison with other methods, finally we conclude the paper in Sect. 6.

2 Background

2.1 Multiprocessor Task Scheduling Problem

As mentioned earlier, the multiprocessor task scheduling problem (MTSP) focuses on
achieving an order of tasks so that the makespan is minimized. Difficulty of this prob-
lem depends on various parameters such as topology of the task graph for the problem
at hand, dependencies conditions among tasks, topology of the multiprocessor sys-
tem, tasks execution time, communication cost among processors, and etc. [11,12].
Generally, MTSP is defined as follows: there are several processors (np) and some
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Fig. 1 A typical Multiprocessor
task scheduling problem of four
tasks presented by a DAG, each
task has an execution time and a
communication cost in the
relation with others
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related tasks (nt), the tasks can be executed if and only if all of their predecessors have
been executed so far. Also, each task needs a certain amount of time for execution
and if a task and its successors executed on two different processors, the successors
should be executed after a transition time called communication cost. It is worth men-
tioning that the communication cost is considered if and only if the task and its last
predecessors are executed on different processors, otherwise it is considered as zero.
In fact, the communication cost is the cost of switching between processors. The aim
of this problem is to find an order of tasks and best processor allocation for each task
in a way that executing the tasks in the found order on the offered processors leads to
minimum makespan.

Usually, the input problem is described by a Directed Acyclic Graph (DAG) that
represents dependencies and communication cost among available tasks, as well as
execution time of each one. An example of such DAG has been shown in Fig. 1. In
this figure four tasks are available (nt = 4), e.g. task T1 is the predecessor of T2
and T3 and the communication cost between them is 1 and 20 respectively while the
execution time of task T1 is 5. Task T4 has two predecessors (T2 and T3) and it can
be executed after they executed both.

In the MTSP, the number of processors is np) should be specified. Therefore, the
goal of solving problem is to find an order of tasks and the best processor to execute
each task, without violating the precedence constraints.

Because all combination of processors can be assigned to each sequence of tasks,
the problem space of the MTSP grows exponentially with regards to np. Also, without
considering the precedence constraint of tasks, the problem space is grown with a
factorial coefficient of nt. All in all, we can say that nt !∗npnt is an upper bound for
the space of the MTSP that is happened when all sequences of tasks are valid. This
occurs when no precedence constraint exists. Note that the actual problem space for
a specific MTSP depends on the precedence constraints of the tasks in its DAG but it
is smaller than the mentioned upper bound. The lower bound for the problem space
of MTSP happens when all tasks are related to each other in a chain which has been
shown in Fig. 2.

In this case, there is just one valid sequence of tasks that reduces the problem space
to npnt .
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Fig. 2 When tasks are linked together in a chain, there is just one valid sequence of tasks which reduces
the problem space

2.2 Genetic Algorithm

Genetic Algorithm is an evolutionary computational method proposed by Rechenberg
and Holland [13]. This method imitates the process of biological evolution in nature,
and classified as random search techniques. The Genetic based methods are appro-
priate for exploring large search spaces, therefore, they can effectively used when an
NP-Hard or NP-Complete problem is in hand. In such methods, various candidate solu-
tions are chased during the search procedure in the system, and the population evolves
until a candidate solution satisfies a predefined criteria. Each solution (individual) is
represented as a sequence (chromosome) of elements (genes) and is assigned a fitness
value based on the value given by an evaluation function. The way that the problem
is mapped into a sequence of numbers is called “coding” procedure. The fitness value
measures how close the individual is to the optimum solution. To calculate the fitness
value, each chromosome is “decoded” and evaluated. A set of individuals constitutes
a population that evolves from one generation to the next through the creation of new
individuals and deletion of some old ones. The process starts with an initial population
created in some way, e.g. through a random process. Evolution can take two forms:

I. Crossover

Two selected chromosomes can be combined by a crossover operator; the result
is replaced with the lowest fitness chromosome in the population. Selection of each
chromosome is performed by an algorithm that ensures the selection probability is
proportional to the fitness of chromosome. New chromosome has the chance to be
better than the replaced one. The process is oriented towards the sub-regions of the
search space, where optimal solution is supposed to exist [13].

II. Mutation

In mutation process, a gene from a selected chromosome is randomly changed. This
provides additional chances of entering unexplored sub-regions. Finally, the evolution
is stopped when either the goal is reached or a maximum generation has been spent.

3 Related Works

Since now, different approaches have been employed to solve MTSP such as heuris-
tic algorithms [14–16], evolutionary approaches [7,8,11,17–20], and hybrid methods
[21–27]. In this section, a brief survey study on some solutions of MTSP is represented,
in which it is tried to investigate the best ones in terms of their results. This section is
divided into two sub-sections. In the first sub-section, heuristic methods are surveyed
while second subsection contains a review of meta-heuristic methods.
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3.1 Heuristic Methods for Solving the Multiprocessor Task Scheduling Problem

There are various heuristic algorithms for MTSP [12,28–31]. The best heuristic
approaches are based on task list technique [28–35]. In this technique, a list of tasks
in descending priority order is made. Then, a task is removed from the head of sorted
list and is assigned to a processor. These methods are classified as: static and dynamic.

In the static approaches, a static order is assigned to each problem and tasks are
removed from the head of priority list till the last node comes out [35–38]. In the
dynamic approaches, the order of the list is not constant and it might be changed
dynamically after executing each task. Dynamic approaches such as [1,16,39] can
reach better makespan in compare to static ones while they have higher time com-
plexity due to updating the priorities after assigning processor to the tasks. . . In the
following, some of them are overviewed.

In [40], a scheduling method has been proposed which uses list scheduling heuristic
called ISH (Insertion Scheduling) followed by DSH (Duplication scheduling) that is a
task duplication method [40]. Another method which uses task duplication technique
is CPFD (Critical Path Fast Duplication) [41]. This work is based on a classical tech-
nique in finding the critical path in the DAG of input problem. CPFD assigns higher
priority to the tasks which are placed in the critical path. Kasahara and Narita proposed
another algorithm based on the critical path and most immediate successor in the input
DAG [15]. Also, a method based on a dynamic critical path was proposed in [16]. In
this work, at first the critical path of the DAG is determined and then the schedule
on each processor is rearranged dynamically based on this path such that a suitable
processor for a task in the critical path is assigned by looking ahead the potential start
times of the remaining tasks on that processor. MCP (Modified Critical Path) which
has been presented by Wu and Gajski [42] is another work in the class of heuristic
algorithms for MTSP that was based on critical path.

Apart from the task duplication and critical path approaches, there are two other
attributes, called t-level (top level) and b-level (bottom level), for assigning priority to
the processors [29,31,34]. These attributes are elicited from the input problem DAG
and frequently used in related researches. The t-level of node ni in the input DAG is
the length of a longest path from an entry node to ni (excluding ni ). The b-level of
node ni is the length of a longest path from ni to an exit node and hence the b-level
of a node is bounded from above by the length of DAG critical path [32]. Besides the
mentioned approaches, there is another frequently-used parameter in the MTSP that
is called ALAP (As Late As Possible) start time [16,42], which defines the longest
possible execution time that a task can be postponed.

There are several other features and definitions of DAGs [39] which are used in heu-
ristic methods such as HLFET (Highest Level First with Estimated Times), HLFNET
(Highest Levels First with No Estimated Times), Random (the assigned tasks priority
are random), SCFET (Smallest Co-levels First with Estimated Times) and SCFNET
(Smallest Co-levels First with No Estimated Times) [34], CP/MISF (critical path/most
immediate successors first) [15], HNF (Heavy Node First) and WL (Weighted Length)
[28]. All of these attributes act based on level concept in the DAG and without consid-
eration of communication cost. Moreover, DF/IHS [15], EZ (Edge-zeroing) algorithm
[43], LC (Linear Clustering) algorithm [44], DSC (Dominant Sequence Clustering)

123



Int J Parallel Prog (2012) 40:225–257 231

algorithm [1,45], MD (Mobility Directed) [42], DCP (Dynamic Critical Path) [16],
ETF (Earliest Task First) [14] and greedy heuristics [46] are other heuristic methods.

Although many fast heuristic methods have been proposed in the past four decades,
these methods are not considered as intense as before because they do not have good
results in all cases. Therefore, nowadays applying combinatorial optimization algo-
rithms such as GA, meta-heuristics, and hybrid methods for solving MTSP has attracted
a lot of attentions.

3.2 Genetic Based Methods for Solving the Multiprocessor Task Scheduling Problem

Whereas genetic algorithm has tackled different engineering problems successfully
[47], solving MTSP using this evolutionary computing approach has attracted many
attentions and various related studies have been reported in the literature [7,8,11,17–
20]. Three main differences can be considered among GA-based methods for solv-
ing MTSP: (1) chromosome representations (coding technique), (2) genetic operators
such as crossover and mutation which are dependent to the chromosome representa-
tion and (3) the simplicity of the algorithm that affects the complexity of evolutionary
optimization process. In the following paragraphs, some of these methods are sur-
veyed.

One of the first methods which utilized GA to solve MTSP was presented by Hou,
Ansari and Ren (HAR) [8]. In HAR algorithm, the task height in the input DAG is
the main feature. The chromosomes in this method have a simple structure and each
chromosome is composed of several strings. Each string shows a schedule of some
tasks based on their heights; also, the number of strings is equal to the number of
processors. Despite the simplicity and low computational complexity, the algorithm
does not seek the problem space thoroughly and some feasible schedules are not reach-
able at all [33]. By re-designing the chromosome representation, another algorithm
was proposed in [48] which improved the performance of HAR. Also, Correa et al.
[19] proposed a method to overcome the drawbacks of HAR. They proposed CGL
(Combined Genetic List) as a combinatorial approach which consists of improved GA
with introduction of some knowledge about the scheduling problem by list heuristics
in genetic operators. This work used a chromosome that its structure was similar to
proposed chromosomes in HAR, but it used knowledge augmented genetic operators.
Although the presented method overcame the problems of HAR and it was a suit-
able algorithm in terms of solutions quality, it caused a heavy computational load in
crossover and mutation operators.

Combining GA and list scheduling led to a new algorithm called Problem-space
GA (PSGA) [27]. This method is one of the pioneer approaches in hybrid GAs to
solve MTSP which encouraged researchers to design other combinational algorithms.
For example, in [20], a GA-based multiprocessor scheduling in combination with task
duplication approach has been presented. The authors showed that task duplication is
a useful technique for shortening the length of schedules. This study proposed some
genetic operators to control the degree of tasks replication.

In 2000 and 2001, two genetic based methods were proposed that considered load
balancing in parallel systems [49,50]. Load balancing includes partitioning a program
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into smaller tasks that can be executed concurrently and mapping each of these tasks
to a computational resource such as a processor. In these methods, some important
parameters in load balancing like memory locality, scheduling overhead, threshold pol-
icies, information exchange criteria, inter-processor communication and their effects
on load balancing have been considered.

With advances in genetic methods for solving MTSP, some researchers tried to mod-
ify the conventional approaches of genetic algorithm and combine them with other
problem solving techniques such as divide and conquer. In 2003, a genetic approach
called PGA (Partitioned Genetic Algorithm) has been proposed [17], which divides
the input DAG to some partial graphs using a b-level partitioning algorithm, and each
of these separated parts is solved separately using GA. Afterwards subgroups are cas-
caded and formed the final solution through a conquer algorithm. As it was claimed
by authors, a better scheduling time in comparison to a pure GA was reached by
their method. Beside this work, two other articles were published in 2003 [33,51].
In [33], a genetic algorithm called TEOL (Task Execution Order List) was presented
in which all feasible schedules were surely reachable with the same probability. The
aim of this work was overcoming the drawbacks of two previous works ([8] and
[19]). Its results showed its enhanced shortening execution time in comparison to
[8], but it had similar execution time or in some cases worse results in compare to
[19].

After the third year of new century, many attempts were made by researchers
for solving the problem with better optimality [6,18,52–54]. These methods used
new selection techniques [52], new chromosome representations [8,18], dynamic and
parallel GAs [53,54], investigating the stagnant state of GA and facing shortcom-
ings using memetic algorithm [6], variable length chromosomes for GA [22], Bipar-
tite genetic algorithm(BGA) [1], and Priority-based Multi-Chromosome (PMC) [18].
To evaluate the results of proposed method in the present paper, we selected BGA,
PMC and Incremental GA that are the most recent and have better results in com-
pare with others; therefore, in next paragraph these methods are surveyed in more
details.

Wu et al. [8] proposed an incremental genetic technique which reached valid solu-
tions gradually. Main contribution of their paper was presenting a novel, flexible and
adaptive chromosome representation. In this method, each solution or individual was
shown by a set of cells, each of which consisted of a pair (t, p) that t and p corre-
spond with processor and task numbers respectively, i.e., each task should be executed
on its couple processor. Flexibility of each chromosome is due to this fact that each
individual may have a different length in comparison to others’. This feature formed
the incremental procedure of this algorithm in constructing valid solutions. Another
important issue about this method is that duplicating tasks in an individual is accept-
able.

One of the recent genetic based methods that considered communication costs has
been presented in [18]. The authors of this paper proposed the extension of the pri-
ority-based coding method as priority-based multi-chromosome (PMC). Moreover,
a new crossover method which was compatible with this new encoding was pro-
posed, called weight mapping crossover (WMX). The priority-based encoding is the
knowledge of how to handle the problem of producing encoding that can treat the
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precedence constraints efficiently [33]. As far as we studied, PMC method is one
of the best works that has been presented so far. It has a simple chromosome struc-
ture that embeds all required information for scheduling in only one dimension. The
suitable and intelligible design of GA operators resulted in valid solution production
and also algorithm time reduction. In [9], we defined a new and fast heuristic for
the problem, which was used to provide the initial population in initialization phase.
The used coding scheme and GA operators in this paper were the same as those in
PMC. In this work, an Immune –based operator were adjoined to the GA to facili-
tate the convergence process. This operator worked based on the Euclidean distance
between chromosomes and decision about omitting a chromosome was made based
on a threshold.

Also, recently we have published a new GA based method called Bipartite Genetic
Algorithm (BGA) which efficiently deals with MTSP [1]. The method contains two
parts; finding an optimized sequence of tasks and assigning processors. In fact, there
are two populations, one for tasks sequences and the other for processors, which
co-operate with each other to solve the problem. First, the population of tasks sequences
is evolved in a certain number of generations. This process is evaluated according to
the best fit processor array in the population of processors. Then, the population of
processors is evolved by another genetic algorithm which tries to find best processor
array for the sequences in the tasks population. After a certain number of generations,
both parts are redone until the optimum sequence of tasks and the best fit processor
array obtained [1].

4 Proposed Genetic Method

The proposed genetic method is based on a new and efficient chromosome structure.
Because of the simplicity in chromosome representation, the method consumes low
execution time and converges faster in comparison to related approaches (See Sect. 5).
In this section, at first we describe the proposed coding and discuss its usefulness. After
that, other parts of the proposed genetic algorithm such as its reproduction operators
and selection algorithm are thoroughly explained. In addition, we pose an immune
mechanism that is combined with other population-based methods to overcome the
regeneration phenomena which is described in Sect. 4.3.

4.1 Coding/Decoding of Solutions (Chromosome Representation)

There are two aspects in MTSP that should be addressed by a coding solution: a
sequence of tasks which does not violate the precedence constraints in the input prob-
lem and a corresponding processor assignment to this sequence which minimizes the
makespan of the presented schedule. It has been shown that coding can affect the
difficulty of genetic operators as well as the algorithm potential for convergence to an
optimal schedule [51].

In this paper, a coding called CAPET (Coding based on Addressing the Potentially
Executable Tasks) is proposed. CAPET uses a one dimensional array of nt (number
of tasks) integer numbers in the interval [1, np∗m] (m is defined in next paragraphs)
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Fig. 3 An Example of the proposed chromosome structure, each number is generated randomly based on
the mentioned notes. Using these random numbers two facts may be discovered, first a task for executing
(Eq. 1), and second a processor for executing this task (Eq. 2)

for each chromosome. These numbers are interpreted in decoding phase to extract a
sequence of tasks and their corresponding processors.

To decode a chromosome a queue is used which contains all potentially executable
tasks. This queue is called PET and consists of tasks that all of their predecessors have
been executed and they are ready to be executed now. PET initially is filled by the
tasks at the first level of input DAG (these tasks have no predecessor). Also, as it was
mentioned, each gene of a chromosome contains an integer in the interval [1, np∗m]
where m is the maximum length of the PET and np is the number of processors. Each
gene is interpreted to address a task for execution according to Eq. (1):

T Si = P ET [(Ci mod petc) + 1] (1)

In this equation, petc is the size of PET, Ci is i th integer in the chromosome (i th gene),
PET is the defined queue, and T Si is the task that should be executed now. The symbol
PET[.] refers to the indexes of the array PET. Note that PET is indexed from 1 to nt
but the result of mod operator is ranged from 0 to nt − 1, hence, the array index has
been added by one. To assign an appropriate processor to task T Si , this gene (Ci ) is
interpreted by the following equation:

P Sci =
(⌊

Ci

petc

⌋
mod np

)
+ 1 (2)

In this equation, np is the number of processors and P Sci is the processor that should
be assigned to the xi . Indeed, by applying Eqs. 1 and 2 on each gene Ci , the pair
(T Si , P Sci ) is extracted. Because the value of Ci is in the interval [1, np∗m], the

outcome of the term
⌊

Ci
petc

⌋
is in the interval [0, np + e] or equal to zero; therefore,

in Eq. (2) mod operator has been used to find the corresponding processors. After
applying Eqs. (1) and (2) on Ci and executing the T Si on processor P Sci , the queue
(PET) is updated and this process continues until all genes in the chromosome are
analyzed.

We will show that by using this coding/decoding procedure, the chromosomes are
always valid and no repairing procedure is needed. Also, CAPET does not need to be
permutation of numbers (repetition of the genes values is allowed). Hence, a simple
version of crossover and mutation can be used in reproduction phase. Figure 3 shows
a sample chromosome which presents a solution candidate of a nine task problem
shown in Fig. 4. Algorithm 1 shows the step by step procedure for decoding phase of
a chromosome.
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Fig. 4 An example problem
with nine tasks and
communication costs that is
shown by a DAG
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Algorithm 1- Chromosome Decoding:
Input: the chromosome C, DAG of input problem, m (maximum length for the
PET), np (number of processors)
Output: a valid task sequence (TS), a processor schedule (PSc) corresponded to TS
Begin
1) Find all nodes in the DAG which can be scheduled now, they are the tasks in
the first height of the DAG for the initial stage. Add these nodes to PET (Potential Executable Task Set);
2) For i=1 to chromosome length (nt)

2.1) TS (i) =PET [ (Ci mod petc)+1];
2.2) PSc (i) = [(Ci div petc) mod np] + 1;
2.3) Discard TS(i) from PET;
2.4) Adjoin all potential executable tasks (the tasks that can be scheduled now) to PET;

3) End for
4) Output: TS (a valid task sequence), PSc (Processor Schedule corresponded to TS)

End of algorithm 1

Table 1 shows the step by step decoding procedure (Algorithm 1) of the chromo-
some in Fig. 3 when the problem in Fig. 4 is considered as input problem. In addition,
the Gantt chart of decoded solution is illustrated in Fig. 5. It is worth mentioning that
in this example the number of processors was considered as 2 (np=2) and the value of
m is 4 (the procedure of computing the value of m is presented in the next paragraphs).

From the table, it is seen that in the first step the PET contains all tasks which have
no precedence (in this example, task 1). Then, the first gene is interpreted by Eq. 1
and the first task is selected for execution. As it is seen, the only task in the PET
is selected for execution. Afterwards, by using Eq. 2, a processor is assigned to this
task. As it has been shown in the table, the first processor has been assigned to the
first task. Then, the PET is updated (column 2 of the table) which shows the execut-
able tasks after executing the first task. According to the second gene, Eqs. 1, 2, PET
[1] is the selected task for execution and it should be executed on processor 1. This
procedure continues until all genes are processed. In each step, a task from PET is
selected and a processor is assigned to this task.
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Fig. 5 The Schedule Generated by the proposed algorithm for the problem in Fig. 4 by coding in Fig. 3

It is worth mentioning that CAPET covers the problem space thoroughly if the value
of m is calculated correctly. To show the capability of the CAPET in covering all the
problem space we have to show that the chromosomes, which have been coded by this
coding scheme, can be decoded in a way that

(1) They can address all feasible sequences of tasks
(2) They can assign all combination of processors to these tasks.

First of all, we have to show that all feasible sequences of tasks are reachable
by decoding phase. In other words, if we show that each task can appear in
all indexes of the decoded sequence (TS in Algorithm 1) we can say that all
sequences of the tasks can be achieved. To show this, note that all tasks in TS
are the tasks which their predecessors have been executed. In fact, TS(i) contains
a task which all of its predecessors have been executed. This is because of this
fact that the task in TS(i) has been selected according to Eq. 1 which selects the
tasks from PET that contains the executable tasks, the tasks which their predeces-
sors have been executed. Hence, TS(i) will be a task which is executable. Now,
we have to show that all feasible sequences of the tasks are reachable. Consider
we are interpreting i th gene in the input chromosome (Ci ). As it was mentioned,
in each step of the decoding algorithm the PET just contains executable tasks.
Also, Ci carries an integer in the interval [1 . . . np∗m] which is used to extract
the tasks from PET. By considering this fact that m is bigger than or equal to
the number of tasks in PET (Maximum length of PET), np*m is always bigger
than or equal to the length of the PET. Thus, for various values of Ci , the term
[(Ci mod petc) + 1] can generate all numbers between 1 and the current length
of PET. Consequently, we can say that all indexes in PET have this chance to be
addressed by Ci . So, all feasible order of tasks can be generated by this decoding
procedure.

At this time, we are going to show that the interpretation of each gene for addressing
the processors (Eq. 2) is in a way that a task in kth index of the queue has this chance
to be scheduled on any processor. In fact, by using this equation, all processors have
this chance to be assigned to all tasks. To prove the latter claim, consider that task i
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is in the kth index of the queue. We are trying to show that i th gene can address this
task and assign all processors to this task. In the worst case, petc (the current size of
PET) is equal to m which leads to address this task (task i that is kth index of PET) by
exactly np integers in the interval [1, np∗m] that are k, k+petc, …, k+(np-1)*petc. In
fact, by considering each of these values in Ci , the kth task in PET is addressed when
Eq. 1 is used. The quotient of these integers is an integer in the interval [0, np − 1]
when they are divided by petc (Eq. 2 uses this quotient). Hence, Eq. 2 can address
all processors for each desired task in worst case. Note that, in all DAGs, the tasks are
labeled from left to right according to their heights.

To sum up, we can say that each gene in the proposed chromosome structure have
this chance to address all tasks with assigning all combination of processors.

Let us back to finding the value of maximum length of PET (m). Because designing
an algorithm for finding an upper bound for petc in an input DAG is not easy in general,
to calculate the value of m we used a preprocessing procedure in combination with
an adaptive approach. Indeed, before start of optimization algorithm, the value of m
is set as nt which is its maximum possible value (the length of PET is always smaller
than nt). Then, several chromosomes are generated (in the simulations we generated
1,000 chromosomes) randomly and all of them are decoded. In this way, we calculate
the maximum length of the PET for these chromosomes and use this value plus one
as the value of m. Afterwards, the initial population is generated using this value of m
and the optimization algorithm (IGA) is started. Algorithm 2 shows the preprocessing
procedure.

Algorithm 2- Initial value of m:
Input: Population p, DAG of the problem
Output: initial value of m
Begin

m=nt
generate 1000 chromosomes randomly
decode the chromosomes
m= the maximum value for the petc
m=m+1

End of algorithm 2

Because this algorithm does not guarantee to test all combinations of integers in
chromosomes, the calculated value of m may be smaller than the maximum possible
length of PET. Hence, it has been added by 1 as a confidence bound. Because this
confidence bound may not be enough as well, the value of m is updated in the evo-
lution procedure adaptively by following criteria: if there is a sequence of tasks and
processors which needs a queue with size m, the value of m is added by one and the
new value of m is used thereafter. Note that if the initial value of m be smaller than
the maximum possible length of PET, the mutation operator gives us this chance to
get missed genes values in next generations. As an example, the value of m for the
input DAG in Fig. 4 is 4. In addition, our simulations showed that in more than 98%
of tests, the initial value of m was the correct one and is not updated in the evolution
procedure. Moreover, the exact value of m can be easily calculated for many practical
problems (see Sect. 4.3).
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4.2 Proposed Method Overview and Its Operators

The proposed algorithm pursues the conventional GA mechanism that is shown in
Algorithm 3.

Algorithm 3-Conventional genetic algorithm pseudo code:
Calculate the initial value of m using Algorithm 2
Initialize Population;
While terminating condition is not emerged
Calculate objective value (fitness) for all of the chromosomes;
Perform Selection;
Perform cross over;
Perform mutation;
Update m:
If there is any chromosome which needs a PET for decoding that its length is equal to m then m=m+1

End of algorithm 3

Each step of the algorithm is described in next sub-sections. Also, the fitness values
(Eq. 3) for the chromosomes is calculated according to their makespan, therefore, the
smaller value of the fitness is desired.

Fitness(C) = makespan(Decoding(C)) (3)

The decoding procedure has been described in Algorithm 1. In this procedure, the
maximum needed length of PET for all chromosomes is stored and is used to update
the value of m.

4.2.1 Selection Algorithm

In this study, we used a famous selection method called roulette wheel [55]. In roulette
wheel, the chromosomes are selected according to their fitness values in a way that
if the fitness value for chromosome a is better than the fitness value for chromosome
b, the chromosome a participates in further evaluations with a greater probability.
This selection method allows GA to give more chance to good individuals with better
fitness values to be survived while the individuals which their fitness values are unfa-
vorable have small chance to participate in reproduction, but they are not removed
permanently. In other words, poor chromosomes have a chance to participate in repro-
duction phase as well as privileged chromosomes have, but with a lower probability.
In consequent, we can say that through the roulette wheel procedure, some of the good
individuals are reproduced, whereas some of the bad ones are eliminated and hence,
the population is likely to be dominated by high-quality individuals.

4.2.2 Reproduction Operators

Because of the simple structure of chromosomes that is non-permutation, using com-
plex crossover operators is not needed. In the proposed method, we used simple
crossover operators such as “two points” and “one point”. In n-point crossover, two
chromosomes are selected and exchange their subsequences with each other. This
process is performed with probability Pc.

123



240 Int J Parallel Prog (2012) 40:225–257

Also, we used two well-known mutation methods in this paper, “Creep” and “Ran-
dom Resetting”. In the creep mutation, a gene in a chromosome is increased by a ran-
dom value while in Random Resetting the value of a gene in a chromosome is randomly
selected from the problem space. The mutation operator is applied to each gene of each
chromosome with probability pm . Moreover, in this study, the condition of attending
a determined number of generations is applied as terminating criterion. We have to
note that the population is initialized via a random process using the initial value of m.

After applying the mutation and crossover, some new chromosomes are prepared.
To produce the new population, best chromosomes among ones in the current popula-
tion are selected together with all new generated ones (generated by the mutation and
crossover operators).

4.3 Proposed Immune Genetic Algorithm (IGA)

In genetic algorithm, when a population is formed, some similar solutions may be
created which cause the search process traps in a local optimum. Also, it is possible
that the chromosomes become similar [10,56] while the algorithm is in progress. This
phenomenon is called “regeneration”, in this case, the search process stocks in a local
optimum. Therefore, evolution process improves slowly or even become stagnant. To
overcome the regeneration problem, we can check the similarity of solutions in the
evolution procedure and eliminate solutions which are similar to the previous ones
and substitute new solutions instead. Indeed, when the similarity of two chromosomes
is more than a predefined threshold, one of these chromosomes are replaced by a
new regenerated one. This method is nominated as an affinity mechanism. Simula-
tions results showed that the proposed affinity mechanism together with presented GA
structure caused a significant improvement in compare to the pure GA. There are two
important points that should be considered for this mechanism. The first point is “What
is the similarity?” and the other is “The value of threshold”. Here, the number of tasks
that are in the same place and should be executed on the same processor is defined
as the similarity between two chromosomes. The following algorithm is introduced
which returns the similarity ratio.

Algorithm 4: Similarity Ratio
Input: Chromosomes C1and C2
Output: Similarity Ratio (SR)
[TS1PSs1]=Decoding (C1)
[TS2PSs2]=Decoding (C2)
Counter=0
For i=1 to length of C1

If TS1,i is TS2,i and PSs1,i is PSs2,i
Counter=Counter+1

End if
End for
S R = Counter

Length(C1)

End of algorithm 4

If Similarity Ratio (SR) is more than Affinity Threshold (AT) then the worse chromo-
some between C1 and C2 is reinitialized. It is worth mentioning that SR is calculated
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for all chromosomes in the current population. Algorithm 5 shows how the procedure
of affinity mechanism works.

Algorithm 5: Affinity Mechanism
Input: Population Pop
Output: Reformed Pop
For i=1 to number of chromosomes

For j=1 to number of chromosomes
If (Similarity Ratio (Popi , Pop j ) > AT)

If fitness (Popi )< fitness (Pop j )
Reinitialize (Pop j )

Else
Reinitialize (Popi )

End if
End if

End for
End for

End of algorithm 5

The affinity mechanism is applied to the population when one of the following
conditions occurs:

• The Closeness Ratio (Clr) is less than a specified threshold.
• The best chromosome has not been improved for last t iterations.

The Closeness Ratio (Clr) is determined as closeness of chromosomes by Eq. 4.

Clr = Mean of chromosomes′fitnesses - The fitness of best chromosome

Mean of chromosomes′fitnesses
(4)

In the proposed method, we supposed that when Clr is less than 0.01 or the best
chromosome has not changed in last 100 (t) iterations, Algorithm 5 is executed.
The specified values have been identified by experiments. The process of finding
similarity (SR) and reinitializing the chromosomes (Algorithm 5) is added up to the
defined genetic method to strengthen the exploration performance of the evolution
process.

Table 2 compares the coding structure and operators of the proposed IGA with BGA,
Incremental GA and PMC methods. This table compares the search space, feasibility
of chromosomes, and operators used in the mentioned algorithms.

As it has been shown in Table 2, both BGA [1] and Incremental GA [8] utilizes two-
part coding (Incremental GA utilizes a pair for each gene) to represent the solutions. In
contrast, the coding in PMC and CAPET need a one-dimensional chromosome. Also,
PMC exerts a specific crossover that sustains the feasibility of chromosome structures
but CAPET does not need such operator. The search space that is sought by Incremen-
tal GA and BGA is very close to the actual problem space while the PMC seeks a rather
bigger space. In the CAPET, the space that is sought depends on the value of m. Our
experiments showed that the value of m is a value that leads to a highly smaller space
in many practical problems (See the end of this section and “Appendix”). However, in
the Incremental GA method, some chromosomes may contain an incompatible length
and they cannot be decoded. Moreover, the precedence constraints are not consid-
ered in designing the operators in Incremental GA and the method employs a penalty
function in calculation of fitness values, while in the proposed IGA which utilizes the
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Table 2 Comparison of IGA, PMC, Incremental GA and BGA with several important aspects

IGA (CAPET) BGA [1] Incremental
GA [8]

PMC[18]

Needed parts for
chromosomes

1 2 2 1

All problem space
is searched?

Yes Yes Yes Yes

Search space Size (m∗np)nt nt !∗npnt nt !∗npnt P(nt∗np, nt)
where P is
Permutation

Any specific type
of GA operators
needed

No Yes No Yes

Feasibility after
GA operators

Always feasible Needs validation Sometimes Not feasible Always feasible

How treat invalid
chromosomes

Always valid Validate them Discard them Always valid

CAPET in its coding, all chromosomes are always valid and all constraints are satisfied
automatically. In addition, the BGA needs validation phase while IGA does not.

As we just mentioned, the search space that is addressed by CAPET is smaller than
that of the BGA and Incremental GA in many cases. Also, by considering the points
in Sect. 2.1, the problem space for MTSP depends on the structure of the DAG of
the problem, which is bounded between nt !∗npnt and npnt . Nevertheless, the search
space that is addressed by Incremental GA and BGA is equal to the upper bound of
the problem space. On the other hand, the space that is sought by CAPET is mnt∗npnt .
To compare the addressed spaces by CAPET and BGA and Incremental GA methods,
the following equation is defined:

SS R = mnt npnt

nt !npnt
= mnt

nt !
log.

10−→ logSS R
10 = nt logm

10 − log(nt !)
10︸ ︷︷ ︸

nt∑
i=1

logi
10

−→ SS R

= 10
nt logm

10 −
nt∑

i=1
logi

10
(5)

In this equation, SSR is the Search Space Ratio, nt is the number of tasks, np is the num-
ber of processors and m is the maximum length of PET. According to this equation, if
SS R < 1, it means that the CAPET addresses a smaller space and other methods seek
a bigger space that is not necessary. Our experiments showed that in many standard
benchmarks the value of SSR is smaller than 1 (see “Appendix”). As an example, the
effect of the CAPET on the search space of distributing the tasks of Gauss-Jordan
method on multi-processors is demonstrated here. Figure 6 shows the Gauss-Jordan
DAG in a general view:

It is obvious that in this problem the maximum value for petc is s (that is number
of levels in input DAG) because the maximum number of independent nodes that can
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Fig. 6 The general form of the DAG for Gauss-Jordan problem

be executed together are in the first height of the DAG. Also, using Algorithm 2, the
value of m for these kinds of DAGs which contain s levels (heights) is equal to the
number of nodes in the first height which is s. Hence, the space that is addressed by
the CAPET is snt ∗npnt while this space for two other methods is nt !∗npnt in which nt
is s(s+1)

2 . Thus, by substituting in Eq. 5 we have:

SS R = 10
nt logm

10 −
nt∑

i=1
logi

10 m=s,nt= s(s+1)
2−→ SS R = 10

s(s+1)
2 logs

10 −
s(s+1)

2∑
i=1

logi
10

(6)

Figure 7 shows the curve of SSR as a function of sfor this equation.
It is seen that the CAPET addresses a space that is highly smaller than that of

the other methods. For instance, in a 465 tasks Gauss-Jordan problem (30 levels) an
algorithm which utilizes the CAPET for its coding seeks 10350 times smaller space in
comparison to the other coding. This fact helps the optimization method to converge
much faster to better solutions. For more information about the problem space that is
sought by the CAPET in other DAGs see “Appendix”. Note that, although the CAPET
seeks a considerably smaller space, it addresses all feasible sequences and thoroughly
covers the problem space.

The following algorithm shows the procedure of the proposed IGA using CAPET.
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Fig. 7 The ratio of the addressed space by the CAPET to other methods

Algorithm 6: Solve MTSP by IGA
Input: DAG of the Problem, Number of processors (np), Number of tasks (nt)
Output: Gantt chart for executing the tasks
Use Algorithm 2 to find an appropriate value for m
Initialize the population
For i=1 to max_gen

Do selection as described in Section 4.2.1
Do crossover and mutation as explained in Section 4.2.2 and produce new chromosomes
Decode the chromosomes according to Algorithm 1 and calculate fitness (Section 4.2)
Replace the population by the best chromosomes among the previous chromosomes and newly generated ones
Apply Algorithm 4 and 5 to the current population if the related conditions met (Section 4.3)
Update the value of m (maximum PET length plus one)

End for
Decode the best chromosome and draw the Gantt chart
End of Algorithm 6

5 Simulation and Experimental Results

To evaluate the proposed method, we implemented it in MATLB 7.6 environment and
the results were compared with related works. We used a PC with 1.66 Ghz of CPU
ad 2 GB of RAM in all tests.

Parameters The used parameters in simulations are as follows:

• Closeness Ratio (Clr): 0.01
• Number of iterations without improvement to apply Affinity Mechanism: 100
• Pc: 0.9
• Pm: 0.01
• Population Size: min(np*nt, 400)
• Mutation/Crossover methods: Random Reset/One point
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• Affinity Threshold (AT ): min
(
0.95, nt−1

nt

)
The values of these parameters have been adjusted by trial to get the best results. Also,
the value of number of iterations is different for each test and has not been mentioned
here. About AT, we have to note that if the value of nt be a small number (say 10 for
example), the value of SR is always smaller than 0.95 and hence the re-initialization
procedure is just considered for the chromosomes that are exactly the same as each
other (SR=1). Hence, the value min

(
0.95, nt−1

nt

)
has been considered for AT (when

nt=10 then AT = 0.9 and the chromosomes which their similarity ratio for them is
more than 0.9 are reinitialized). The population is initialized randomly in all runs.

Related Works for Comparison: To show the effectiveness of the proposed method,
the methods in [1,8,18,20,42,57,58] were selected for comparison purposes because
to the best of our knowledge these methods have gained valuable results for the prob-
lem, they consider communication cost in their original form, and they are highly cited
in the literature.

In all tests, we applied the proposed method 10 times on the problems and the
results were reported.

The comparison part is composed of three main phases. At first, the proposed IGA
is compared with pure GA (without affinity mechanism) to show the effects of affin-
ity mechanism. Afterwards, results of comparison with some traditional heuristic list
scheduling algorithms are reported. Finally, the proposed method is compared with
other state-of-the-art GA-based methods.

Test Benches: To compare the presented method with other related works, we
applied it on various set of test benches that were often used in literature. These
test problems were stemmed from [1,18,20,40,42,57,59]. Some selected problems
for comparison purposes have been listed in Table 3. Also, Fig. 8 shows an 18 tasks
problem which was stated in [18] and used in evaluation of proposed method. In addi-
tion, for further comparisons, we used some problems from [42,59]. These problems
belong to the set of problems called STG which does not contain communication cost
in their original form. The communication costs have been considered in the same
way that was reported in [1].

5.1 Effects of Affinity Mechanism

As it was mentioned, at first we compare the results of the IGA and pure GA when
both of them use CAPET for their chromosome coding. The results have been reported
in Table 4. The used data base stemmed from STG [59].

The averages have been calculated over 10 runs. From the table, it is clear that the
IGA found the known optimum solutions in all selected cases at least for 4 runs in all
10 runs. Also, the IGA met the optimum solutions more than 7.3 times over 10 runs in
average in all cases while this average is 4.4 for pure GA (40% improvement). This
shows that the immune mechanism has a significant impact on the performance of the
algorithm. Figure 9 shows the Gantt chart (output of our program) for the problem
“Rand0002” when 4 processors were considered.
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Table 3 Nine selected problems which have been used in different scheduling methods, all of them are
prepared in [8], the source column shows the original source of problem and description column shows the
usage of problems

Problem No. tasks Communication costs Source Description

P1 15 25 Tsuchiya et al. [20] Gauss-Jordan algorithm

P2 15 100 Tsuchiya et al. [20] Gauss-Jordan algorithm

P3 14 20 Tsuchiya et al. [20] LU decomposition

P4 14 80 Tsuchiya et al. [20] LU decomposition

P5 15 Declared in graph Kruatrachue and Lewis [40] Not identified

P6 17 Declared in graph Mouhamed [57] Not identified

P7 18 Declared in graph Wu and Gajski [42] Not identified

P8 16 40 Wu and Gajski [42] Laplace

P9 16 160 Wu and Gajski [42] Laplace

Fig. 8 A sample problem with
18 tasks [18] T1
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Fig. 9 The Gantt chart for a 50 tasks problem (Rand0002). The makespan on 4 processors was 71 (that is
the optimum value for this problem)

Table 5 Comparative results among some previous heuristics and the proposed methods for problem in
Figs. 4 and 8

Problem in: Algorithms MCP DSC MD DCP Proposed IGA

Fig. 4 No. processors 3 4 2 2 2 3 4

Best solution 29 27 32 32 21 21 21

Fig. 8 No. processors 4 6 3 3 3 4 6

Best solution 520 460 460 440 440 440 440

The number of generations was 200. Best found solutions have been reported. The values are makespan of
problems in time unit
Bold numbers are the best values reported

5.2 The Proposed IGA Versus Other Heuristic Methods

In this part, first, the proposed IGA is applied to two problems, have been shown in
Figs. 4 and 8, and the results are compared with previous methods such as DSC [1],
DCP [16], MCP, and MD [42]. Simulation results for different number of processors
have been reported in Table 5. As it is clear in this table, the proposed IGA have a
significant superiority in comparison to these heuristics. In each row of this table, the
best achieved results have been bolded.

Also, the performance of the IGA was compared to some other previous heuristics
such as Insertion Scheduling Heuristic (ISH) [40], Duplication Scheduling Heuristic
(DSH) [40], and Critical Path Fast Duplication (CPFD) [41] in Table 6. The best value
of each row has been bolded.

As Table 5 shows, IGA outperforms ISH, the only heuristic in the table without task
duplication, in 6 cases over 9 and works same as this method in 3 remaining cases.
But, in compare to DSH and CPFD, IGA works same in 4 cases and better than them in
1 case. This is because IGA does not use any task duplication but CPFD and DSH use
this technique which strongly improves the performance of these methods. The listed
methods in the table need a fraction of second (0.08 s for ISH, 0.1 s for CPFD and DSH
in average) to solve the problem at hand while IGA needs a considerable amount of
time (1.2 s in average) to converge in compare to them. It is worthwhile to mention that
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Table 6 Comparative results among some previous heuristics and the proposed methods for nine different
problems which are addressed in Table 3 when Number of processors = 4, and Number of generations =
500

Problem Algorithm ISH DSH CPFD Proposed IGA Cpu time for IGA (s)

P1 Best Solution 300 300 300 300 0.22

P2 Best Solution 500 400 400 420 0.73

P3 Best Solution 260 260 260 260 0.9

P4 Best Solution 400 330 330 360 1.53

P5 Best Solution 650 539 446 438 0.88

P6 Best Solution 41 37 37 37 1.47

P7 Best Solution 450 370 330 390 1.4

P8 Best Solution 760 760 760 760 1.67

P9 Best Solution 1220 1030 1040 1070 1.98

The values are makespan of problems in time unit
Bold numbers are the best values reported

heuristic methods create solutions by considering some predefined criteria and do not
search the problem space which result in faster execution. However, iterative search
algorithms (such as GA) consider a larger number of solutions for the problem at hand
which is a time consuming procedure. In addition, about task duplication we have to
say that these methods offer better makespan in scheduling tasks that is obtained at a
cost of higher utilization of computational resources which might be available or not.
Indeed, depending on the access type to the computation capacity, task duplication
might be justifiable or not. For more information see [60]. Therefore, although DSH
and CPFD outperform IGA in some cases, because of using task duplication, they are
not applicable in all cases and this is a big constraint of these methods.

Figure 10a compares ISH, DSH, HLFET and IGA when all of them were applied
to 15, 21, 28 and 36 tasks Gauss-Jordan elimination problem. Each task took 40 time
units to be processed and all communication costs were 100 time units. The figure
shows that IGA works better than the other methods especially when the number of
nodes increases.

From the figure, it is seen that the results of IGA are much better than that of the ISH
and HLFET in all cases. The results of IGA are the same as DSH in small problems
while its results become better when the problem is big. In this case, the cpu time
for the IGA is bigger than the cpu time for ISH, HLFET, and DSH. But, as it was
mentioned, the results of IGA are better than these methods. Note that DSH uses task
duplication while ISH, HLFET, and IGA do not use this technique. Figure10b shows
the found schedules for Gauss-Jordan problem with 36 tasks by IGA.

5.3 The Proposed IGA Versus Different GA-based Methods

To compare IGA with other GA-based methods, three methods were selected: PMC
[18], BGA [1], and Incremental GA [8]. These methods were selected because they
have been presented recently and have better results among others. At first, the pro-
posed IGA has been compared with the PMC [18] and BGA [1] when they were applied
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Fig. 10 Comparison results among ISH, DSH and IGA when they are applied to Gauss-Jordan problem.
a various number of tasks, b result of scheduling for Gauss-Jordan 36 by IGA

to the problems in Figs. 4 and 8. The comparative results are presented in Table 7. In
this table, some useful parameters such as best, worst, mean, and the standard deviation
of solutions are reported and best value in each row has been bolded.

Table 7 obviously shows that IGA excels PMC and BGA in all cases in terms of
the best, worst, mean, and standard deviation for achieved solutions. Moreover, with
regard to the smaller std (standard deviation) for the found solutions by the IGA, we
can say that the method has the better stability in comparison to PMC and BGA. Also,
IGA have about 13 and 1% improvement in average with regards to PMC and BGA
respectively.

Apart from these tests, to have more robust comparison and evaluation, the sim-
ulations have been performed on STG dataset [59]which contains bigger problems.
We applied IGA on several problems in STG and the results have presented here.
In the first test, we applied IGA and BGA on some problems from STG when 4–
100 processors were considered for scheduling and the results have been reported in
Table 8.
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Table 7 Comparative results of proposed method, BGA and PMC for solving problems in Fig. 3(Fig. 7)
when number of generations was 200 (500)

Problem
in

No. of
Processors

Proposed (IGA) PMC [18] BGA [1]

Best Worst Mean Std Best Worst Mean Std Best Worst Mean Std

Fig. 4 2 21 21 21 0 21 21 22 0.5 21 23 21.9 0.56

3 21 21 21 0 21 21 21 0 21 23 22.4 0.69

4 21 21 21 0 21 21 21 0 21 23 22.3 0.82

Fig. 8 2 440 470 451 6.33 460 470 463 4.83 460 520 491 20.78

3 440 450 446 5.08 440 490 461 12.86 490 600 522 35.21

4 440 470 460 8.2 440 470 461 8.75 500 580 544 25.90

6 460 490 470 10.75 460 490 471 11.00 510 580 556 19.55

The values are makespan of problems in time unit
Bold numbers are the best values reported

Table 8 Comparison of BGA and the proposed IGA

Problem
name

No. of
processors

No. of tasks CP length IGA BGA

Best Average CPU Best Average CPU

Rand0002 4 100 124 140 140 429 143 145.6 777

16 124 124 194 124 124 757

Rand0016 4 63 148 149 432 150 155.4 728

16 63 63.2 418 69 70.2 756

Rand0019 4 137 260 266 631 273 279 1018

16 137 138.1 663 140 141 1089

Rand0028 4 32 137 137 166 138 139.1 363

16 45 46.7 173 47 48.6 369

Rand0043 4 56 245 247.1 170 247 247.3 360

16 83 83.2 177 85 85.9 337

Rand0043 16 300 194 256 260 4602 261 264 7178

100 194 194 4629 253 255.3 14423

Rand0016 16 500 1269 1269 1269 23712 1269 1269 29906

100 1269 1269 22997 1269 1274 31087

Average 267.9 312.1 313.3 4242 319.1 321.3 6367

The number of iterations was 200 in this test and the population size was 400 for both algorithms
Bold and bold italicized numbers are the best values reported

In this table, the column CPU shows the average of CPU time over 10 runs for
200 iterations. The table shows that the IGA converges to better solutions while its
runtime is considerably smaller than BGA (33% improvement). Also, the CP length
shows the critical path length for the problems. It is important to note that even with
infinite number of processors, the makespan cannot be lower than the CP length
and hence it can be considered as the minimum makespan for a schedule. The table
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Table 9 The results of applying IGA, BGA, and PMC on STG dataset with communication costs

Number of
Tasks

Problem
name

Number of
processors

IGA PMC [18] BGA [1]

Mean Std Mean Std Mean Std

50 Rand0002 4 95 1 128.6 5.02 105 6.1

8 95.7 1.34 136.4 4.44 104.2 1.5

Rand0016 4 172.2 3.03 210.8 12.07 166.6 9.2

8 169.8 6.22 189.4 11.71 161 4.3

Rand0019 4 172 4.24 221.2 12.1 167.2 8

8 158.1 2.16 203.4 3.20 176.46 7.5

Rand0028 4 208 1.22 256.4 6.30 207.2 7.3

8 205.4 0.89 239.2 8.78 206.6 7.9

Rand0043 4 65 0 94.6 7.95 77 2.1

8 60.3 0.89 80.2 1.64 71.4 2.9

Improvement in percent 20% 3%

100 Rand0002 4 193.4 0.89 286.6 14.55 223.4 12.1

8 169.4 4.97 262.4 13.86 215.8 7.12

Rand0016 4 146.8 0.44 236.8 11.60 184.2 7.4

8 118 0 199.6 8.61 154.4 6.65

Rand0019 4 262.2 1.30 369.4 19.44 296.2 3.34

8 180 0 274.8 12.49 224.6 1.5

Rand0028 4 138 0 165 10.66 140.6 1.51

8 71 0 108 7 89 0

Rand0043 4 245.2 1.78 271.2 12.39 247 2.73

8 126.7 1.64 159.4 3.57 134.2 3.08

Improvement in percent 30% 13.5%

300 Rand0002 4 460 0 955 22.2 760 4.2

Rand0016 4 828.8 8.04 1496.2 76.55 1006.2 43.9

Improvement in percent – 47% 27%

500 Rand0002 4 1077.5 3.5 2181 11.23 1231 9.68

Improvement in percent 50.5% 12.5%

The values are makespan of problems in time unit
Bold and bold italicized numbers are the best values reported

shows that IGA can find results near to CP length when number of processors is large
enough.

In addition, we applied the IGA, PMC, and BGA on several test problems stemmed
from STG and the results have been reported in Table 9 when communication cost
exists. The STG library contains 180 test cases for 50 to 500 tasks problems but
because of the lack of space we reported the results for some randomly selected prob-
lems from the library. We have to note that the standard version of the STG does not
contain communication costs. Hence, we added communication costs to this dataset
which can be found in [1,61].

123



Int J Parallel Prog (2012) 40:225–257 253

Table 10 Simulation Results of applying IGA method on problems in Table 3 in compare with Incremental
GA, PMC, and BGA methods when number of processors were 4

Test problem IGA Incremental GA [8] BGA [1] PMC [18]

Ave. Num of Gen. Ave. Num of Gen . Ave. Num of Gen. Ave. Num of Gen.

P1 300 2.2 300 682 300 254 300 304

P2 424 44.2 430 1011 440 320 472 375

P3 268 12.2 263 934 270 311 290 340

P4 368 30.4 370 1333 365 361 418 372

P5 438 26 445.9 871 440 311 539 393

P6 37.00 54.4 37.78 1375.46 37.2 374 38.4 384

P7 390 18 380 1316.62 390 380 424 375

P8 760 45.8 782 1168 790 280 810 330

P9 1082 183.2 1101 1627 1088 314 1232 380

The values are makespan of problems in time unit
Bold italicized numbers are the best values reported

In this test, the maximum generation for IGA was 500 while this parameter was
1,000 for BGA and PMC. Also, the number of chromosomes for the IGA was as
mentioned in the start part of Sect. 5 while this value was 400 for PMC and BGA. As
Table 9 shows, IGA surpasses the PMC and BGA in most cases in terms of the average
of makespan (improvement 37 and 14% in average).

To have more comparison and simulations, IGA was applied to the problems in
Table 3 and its results were compared with Incremental GA [8], BGA, and PMC.
Table 10 shows the results. The population size for the Incremental GA was 400 and
the maximum generation was 3,000 while the population size for the IGA was as
mentioned in the beginning of Sect. 5 and the maximum generation was 500. The
population size for BGA and PMC was 400 and the maximum number of generations
was 500 for these methods.

These results show that the IGA excels the Incremental GA, BGA, and PMC in
terms of average of found solutions in 6, 6, and 8 cases over all 9 cases (around 1, 1.2
and 10% improvement in average) respectively. Also, the IGA converges much faster
(as it was predicted in Sect. 4) than the Incremental GA, BGA, and PMC in all (96, 85
and 87% improvement) cases. The average of CPU time in one run for Incremental
GA was 163.3 s while this average was 37.8 s for IGA, 45.3 s for PMC and 69.5 s for
BGA. Furthermore, the average of CPU time for finding the best solution was 63s for
Incremental GA while this average was 3.5 s for the proposed IGA, 32.5 s for PMC,
and 44.8 s for BGA.

6 Conclusions

Each multiprocessor task scheduling problem can be modeled by a DAG which shows
the relation among tasks and determines the communication costs between them. Since
now, various mechanisms based on heuristic and meta-heuristic approaches have been
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presented that all of them try to schedule tasks on multiprocessors in an efficient way.
In this paper, a new genetic-based method which introduces a novel chromosome
structure was presented. The proposed structure was based on a novel and simple
chromosome structure that makes the scheduling problem very simple and fast in
compare to other well-known counterparts and facilitates the usages of GA operators.
Indeed, the proposed coding scheme (called CAPET) could reduce the search space and
hence it makes the convergence to better solutions much faster. The proposed method
strengthened by using an innovative immune inspired approach called Affinity mech-
anism (hence, we call this method as IGA). Experimental results showed remarkable
improvements in decreasing the execution time of parallel tasks in a multiprocessor
system. The proposed method improved the makespan of task scheduling problems
(around 20% improvement in average) while it needed lower number of generations
(around 90% improvement in average) and time. Besides, simulation results demon-
strated that the IGA would be a well organized mechanism in real experimental task
scheduling systems where a huge problem is confronted. Moreover, adjoining the task
duplication approach to the proposed algorithm can improve the performance of the
proposed method. Also, enhancing the method/structure to work in heterogeneous
scheduling frame work can be a valuable field to work on.

Appendix

In this appendix, we will present the reduction space ratio (SSR) for all test cases in
STG dataset. In fact, the Geometric mean of SSR over 100 first problems in 50, 100,
300, and 500 task problems in the STG test bench has been calculated and reported
(in 100 tasks problems in STG, there is just 59 files of problems and our report is
just for these 59 problems). In addition, the mean of initial and final value of m have
been reported in a table. Because the value of SSR for some test cases was very small,
we used geometric mean rather than arithmetic mean. The formula for the geometric
mean is as follow:

G M = n

√√√√ n∏
i=1

SS Ri

In this report, n was 100 (100 test cases) and SSRi is the SSR for i th test case except
for 100 tasks problems which contains 59 problems in the dataset.

Because the result of
∏100

i=1 SS Ri is very small and the calculation would result in
zero (the floating point precision in computer might not be adequate), we considered
this calculation by following simplifications:

G M = n
√

10log(
∏n

i=1 SS Ri ) = n
√

10
∑n

i=1 log(SS Ri ) = 10

∑n
i=1 log(SS Ri )

n

The base of log operator is 10. By substituting SSRi from Eq. 5 we have:

G M = 10

∑n
i=1 log(SS Ri )

n
Eq5→ G M = 10

nt
n

∑n
i=1 (log(mi ))−∑nt

j=1 log( j)
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Now, calculation of
∑

Log(SS Ri ) will result in smaller error in our final calculation.
Table Ap.1 shows the results over the mentioned problems.

To find the maximum value for m to guarantee SSR<1 we used the following
formula which is directly derived from Eq. 5

SS R < 1 → nt logm
10 <

nt∑
i=1

logi
10 → m < 10

∑nt
i=1 logi

10
nt

See “Appendix” Table Ap.1.

Table Ap.1 geometric mean for SSR over 359 problems in STG dataset

Test bench Initial
value
of m

Final value of m Maximum
value of m to
guarantee
SS R < 1

Geometric
mean of
SS R

Number of
problems
in which
SS R > 1

50 tasks problems 13.6 13.61 19.48325 10−10.3561 13

100 tasks problems 24.1 24.22 37.9927 10−25.18 12

300 tasks problems 24.3 24.36 111.7599 10−221.1127 2

500 tasks problems 32.26 33.8 185.4269 10−441.2946 3
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