
Int J Parallel Prog (2012) 40:57–83
DOI 10.1007/s10766-011-0178-1

Managing Data Placement in Memory Systems with
Multiple Memory Controllers

M. Awasthi · D. Nellans · K. Sudan ·
R. Balasubramonian · A. Davis

Received: 4 March 2011 / Accepted: 28 June 2011 / Published online: 7 August 2011
© Springer Science+Business Media, LLC 2011

Abstract Modern processors such as Tilera’s Tile64, Intel’s Nehalem, and AMD’s
Opteron are migrating memory controllers (MCs) on-chip, while maintaining a large,
flat memory address space. This trend to utilize multiple MCs will likely continue and a
core or socket will consequently need to route memory requests to the appropriate MC
via an inter- or intra-socket interconnect fabric similar to AMD’s HyperTransport™, or
Intel’s Quick-Path Interconnect™. Such systems are therefore subject to non-uniform
memory access (NUMA) latencies because of the time spent traveling to remote MCs.
Each MC will act as the gateway to a particular region of the physical memory. Data
placement will therefore become increasingly critical in minimizing memory access
latencies. Increased competition for memory resources will also increase the mem-
ory access latency variation in future systems. Proper allocation of workload data to
the appropriate MC will be important in decreasing the variation and average latency
when servicing memory requests. The allocation strategy will need to be aware of
queuing delays, on-chip latencies, and row-buffer hit-rates for each MC. In this paper,
we propose dynamic mechanisms that take these factors into account when placing
data in appropriate slices of physical memory. We introduce adaptive first-touch page
placement, and dynamic page-migration mechanisms to reduce DRAM access delays
for multi-MC systems. We also introduce policies that can handle data placement
in memory systems that have regions with heterogeneous properties. The proposed
policies yield average performance improvements of 6.5% for adaptive first-touch
page-placement, and 8.9% for a dynamic page-migration policy for a system with

M. Awasthi (B) · D. Nellans · K. Sudan · R. Balasubramonian · A. Davis
School of Computing, University of Utah, Salt Lake City, UT, USA
e-mail: manua@cs.utah.edu

D. Nellans
FusionIO, Cottonwood Heights, UT, USA

123



58 Int J Parallel Prog (2012) 40:57–83

homogeneous DRAM DIMMs. We also show improvements in systems that contain
DIMMs with different performance characteristics.

Keywords DRAM · Phase change memory · Data locality · Heterogeneous memory
hierarchies

1 Introduction

Modern microprocessors increasingly integrate the memory controller (MC) on-chip
in order to reduce main memory access latency. Memory pressure will increase as
core-counts per socket rise resulting in a single MC becoming a bottleneck. In order
to avoid this problem, modern multi-core processors (chip multiprocessors, CMPs)
have begun to integrate multiple MCs per socket [53,57,62]. Similarly, multi-socket
motherboards provide connections to multiple MCs via off-chip interconnects such as
AMD’s HyperTransport™(HT) and Intel’s Quick Path Interconnect™(QPI). In both
architectures, a core may access any DRAM location by routing its request to the
appropriate MC. Multi-core access to a large physical memory space partitioned over
multiple MCs is likely to continue and exploiting MC locality will be critical to overall
system throughput.

Recent efforts [1,36,58,62] have incorporated multiple MCs in their designs, but
there is little analysis on how data placement should be managed and how a partic-
ular placement policy will affect main memory access latencies. In addressing this
problem, we show that simply allocating an application’s thread data to the closest
MC may not be optimal since it does not take into account queuing delays, row-buffer
conflicts, and on chip interconnect delays. In particular, we focus on placement strate-
gies which incorporate: (i) the communication distance and latency between the core
and the MC, (ii) queuing delay at the MC, and (iii) DRAM access latency, which is
heavily influenced by row-buffer hit rates. We show that improper management of
these factors can cause a significant degradation in performance.

Further, future memory hierarchies may be heterogeneous. Some DIMMs may
be implemented with PCM devices while others may use DRAM devices. Alterna-
tively, some DIMMs and channels may be optimized for power efficiency, while others
may be optimized for latency. In such heterogeneous memory systems, we show that
additional constraints must be included in the optimization functions to maximize
performance.

To our knowledge, this is the first attempt at intelligent data placement in a multi-
MC platform. This work builds upon ideas found in previous efforts to optimize data
placement in last-level shared NUCA caches [2,7–10,17,20,34,50,56,63]. One key
difference between DRAM and last level cache placement however, is that caches
tend to be capacity constrained, while DRAM access delays are governed primar-
ily by other issues such as long queuing delays and row buffer hit rates. There are
only a handful of papers that explore challenges faced in the context of multiple
on-chip MCs. Abts et al. [1] explore the physical layout of multiple on-chip MCs
to reduce contention in the on-chip interconnect. An optimal layout makes the per-
formance of memory-bound applications predictable, regardless of which core they

123



Int J Parallel Prog (2012) 40:57–83 59

are scheduled on. Kim et al. [27] propose a new scheduling policy in the context of
multiple MCs which requires minimal coordination between MCs. However, neither
of these proposals consider how data should be distributed in a NUMA setting while
taking into account the interaction of row-buffer hit rates, queuing delays, and on-chip
network traffic. Our work takes these DRAM-specific phenomena into account and
explores both first-touch page placement and dynamic page-migration designed to
reduce access delays. We show average performance improvements of 6.5% with an
adaptive first-touch page-coloring policy, and 8.9% with a dynamic page-migration
policy. The proposed policies are notably simple in their design and implementation.

The rest of this paper is organized as follows: We provide background and moti-
vational discussion in Sect. 2. Section 3 details our proposed adaptive first-touch and
dynamic migration policies and Sect. 4 provides quantitative comparison of the pro-
posed policies. We discuss related work in Sect. 5 and conclusions in Sect. 6.

2 Background and Motivational Results

2.1 DRAM Basics

For JEDEC based DRAM, each MC controls one or more dual in-line memory modules
(DIMMs) via a bus-based channel comprising a 64-bit datapath, a 17-bit row/column
address path, and an 8-bit command/control-path [41]. The DIMM consists of 8 or 9
DRAM chips, depending on the error correction strategy, and data is typically N -bit
interleaved across these chips; N is typically 1, 4, 8, or 16 indicating the portion of the
64-bit datapath that will be supplied by each DRAM chip. DRAM chips are logically
organized into banks and DIMMs may support one or more ranks. The bank and rank
organization supports increased access parallelism since DRAM device access latency
is significantly longer than the rate at which DRAM channel commands can be issued.

Commodity DRAMs are very cost sensitive and have been optimized to minimize
the cost/bit. Therefore, an orthogonal 2-part addressing scheme is utilized where row
and column addresses are multiplexed on the 17-bit address channel. The MC first
generates the row address that causes an entire row of the target bank to be read into
a row-buffer. A subsequent column address selects the portion of the row buffer to be
read or written. Each row-buffer access reads out 4 or 8 kB of data. DRAM sub-array
reads are destructive but modern DRAMs restore the sub-array contents on a read by
over-driving the sense amps. However if there is a write to the row-buffer, then the
row-buffer must be written to the sub-arrays prior to an access to a different row in
the same bank. Most MCs employ some variation of a row-buffer management policy,
with the open-page policy being most favored. An open-page policy maintains the
row-buffer contents until the MC schedules a request for a different row in that same
bank. A request to a different row is called a “row-buffer conflict”. If an application
exhibits locality, subsequent requests will be serviced by a “row-buffer hit” to the
currently active row-buffer. Row-buffer hits are much faster to service than row-buffer
conflicts.

In addition to a row-buffer management policy, the MC typically has a queue of
pending requests and must decide how to best schedule requests. Memory controllers

123



60 Int J Parallel Prog (2012) 40:57–83

(a) (b)

Fig. 1 Platforms with multiple memory controllers. a Logical organization of a multi-socket Nehalem. b
Assumed 16-core 4-MC model

choose the next request to issue by balancing timing constraints, bank constraints,
and priorities. One widely adopted scheduling policy is FR-FCFS (First Ready - First
Come First Serve) [52] that prioritizes requests to open rows and breaks ties based
on age. The requests issued by the memory controller are typically serviced across
a dedicated channel that receives no interference from other memory controllers. As
a result, each memory controller has global knowledge about what memory access
patterns are occurring on their private slice of physical memory.

2.2 Current/Future Trends in MC Design

Several commercial designs have not only moved the MC on chip, but have also
integrated multiple MCs on a single multi-core die. Intel’s Nehalem processor [57]
shown in Fig. 1a integrates four cores and 1 MC with three channels to DDR3 mem-
ory. Multiple Nehalem processors in a multi-socket machine are connected via a QPI
interconnect fabric. Any core is allowed to access any location of the physical memory,
either via its own local MC or via the QPI to a remote processor’s MC. The latency
for remote memory access, which requires traversal over the QPI interconnect, is 1.5x
the latency for a local memory access (NUMA factor). This change is a result of
on-die MCs: in earlier multi-socket machines, memory access was centralized via off-
chip MCs integrated on the north-bridge. This was then connected via a shared bus
to the DIMMs. Similar to Intel’s Nehalem architecture, AMD’s quad-core Opteron
integrates two 72-bit channels to a DDR2 main memory subsystem [53]. The Tile64
processor [62] incorporates four on-chip MCs that are shared among 64 cores/tiles.
A specialized on-chip network allows all the tiles to access any of the MCs, although
physical placement details are not publicly available. The Corona architecture from
HP [58] is a futuristic view of a tightly coupled nanophotonic NUMA system com-
prising 64 4-core clusters, where each cluster is associated with a local MC.

123



Int J Parallel Prog (2012) 40:57–83 61

It is evident that as we increase the number of cores on-chip, the number of MCs
on-chip must also be increased to efficiently feed the cores. However, the ITRS road-
map [23] expects almost a negligible increase in the number of pins over the next
10 years, while Moore’s Law implies at least a 16x increase in the number of cores.
Clearly the number of MCs cannot scale linearly with the number of cores. If it did,
the number of pins per MC would reduce dramatically, causing all transfers to be
heavily pipelined leading to long latencies and heavy contention, which we will show
in Sect. 4. The realistic expectation is that future many-core chips will accommodate
a moderate number of memory controllers, with each MC servicing requests from
a subset of cores. This is reflected in the layout that we assume for the rest of this
paper, shown in Fig. 1b. Sixteen cores share four MCs that are uniformly distributed
at the edge of the chip. On-chip wire delays are an important constraint in minimizing
overall memory latency, this simple layout of memory controllers helps minimize the
average memory controller to I/O pin and core distance.

While FB-DIMM designs [24] are not very popular today, the FB-DIMM philoso-
phy may eventually cause a moderate increase in the number of channels and MCs. In
order to increase capacity, FB-DIMM replaces a few wide channels with many skinny
channels, where each channel can support multiple daisy-chained DIMMs. Skinny
channels can cause a steep increase in data transfer times unless they are accompanied
by increases in channel frequency. Unfortunately, an increase in channel frequency
can, in turn, cause power budgets to be exceeded. Hence, such techniques may cause
a small increase in the number of channels and MCs on a single processor to find the
appropriate balance between energy efficiency and parallelism across multiple skinny
channels.

Finally, there is a growing sentiment that future memory systems are likely to be
heterogeneous. In order to alleviate the growing concerns over memory energy, some
memory channels and DIMMs may be forced to operate at lower frequencies and volt-
ages [15,48]. While FB-DIMM and its variants provide higher capacity, they cause a
steep increase in average latency and power. Therefore, they may be employed in a
limited extent for a few memory channels, yielding heterogeneous properties for data
access per channel. New memory technologies, such as PCM [5], exhibit great advan-
tages in terms of density, but have poor latency, energy, and endurance properties. We
believe that future memory systems are likely to use a mix of FB-DIMM variants,
DDRx, and PCM nodes within a single system. We therefore consider heterogeneous
properties of DIMMs as a first class input into the cost functions used to efficiently
place memory across various NUMA nodes.

2.3 Motivational Data

This paper focuses on the problem of efficient data placement at OS page granular-
ity, across multiple physical memory slices. The related problem of data placement
across multiple last-level cache banks has received much attention in recent years,
with approaches such as cooperative caching [7], page spilling [10], and their deriv-
atives [2,8,9,17,20,34,50,56,63] being the most well known techniques. There has
been little prior work on OS-based page coloring to place pages in different DIMMs

123



62 Int J Parallel Prog (2012) 40:57–83

Fig. 2 Relative queuing delays for 1 and 16 threads, single MC, 16 cores

or banks to promote either DIMM or bank-level parallelism (Zhang et al. [64] propose
a hardware mechanism within the memory controller to promote bank-level paral-
lelism). The DRAM problem has not received as much attention because there is a
common misconception that most design considerations for memory controller policy
are dwarfed by the long latency for DRAM chip access. We argue that as contention
at the memory controller grows, this is no longer the case.

As mentioned in Sect.2.1, the NUMA factor in a modern multi-socket systems can
be as high as 1.5 [57]. This is because of the high cost of traversal on the off-chip
QPI/HT network as well as the on-chip network. As core count scales up, wires emerge
as bottlenecks. As complex on-chip routed networks are adopted, one can expect tens
of cycles in delay when sending requests across the length of the chip [14,62], further
increasing the NUMA disparity.

Pin count restrictions prevent the memory controller count from increasing line-
arly with the number of cores, while simultaneously maintaining a constant channel
width per MC. Thus, the number of cores serviced by each MC will continue to rise,
leading to contention and long queuing delays within the memory controller. Recent
studies [22,33,44,45,65] have identified MC queuing delays as a major bottleneck
and have proposed novel mechanisms to improve scheduling policies. To verify these
claims, we evaluated the impact of increasing core counts on queuing delay when
requests are serviced by just a single memory controller. Section 4 contains a detailed
description of the experimental parameters. For the results shown in Fig. 2, each appli-
cation was run with a single thread and then again with 16 threads, with one thread
pinned on every core. The average queuing delay within the memory controller across
16-threads, as compared to just one thread, can be as high as 16x (Bodytrack). The
average number of cycles spent waiting in the MC request queue was as high as 280
CPU cycles for the 16-thread case. This constitutes almost half the time to service an
average (495 cycles) memory request, making a strong case for considering queuing
delays for optimized data placement across multiple memory controllers.

When considering factors for optimizing memory placement, it is important to
maximize row-buffer hit-rates. For DDR3-1333, there is a factor of 3 overhead, 25
to 75 DRAM cycles, when servicing row-buffer hits versus conflict misses. Figure 3
shows row-buffer hit-rates for a variety of applications when running with 1, 4, and

123



Int J Parallel Prog (2012) 40:57–83 63

Fig. 3 Row-buffer hit rates, dual-socket, quad-core opteron

8-threads. These measurements were made using hardware performance counters [46]
on a dual-socket, quad-core AMD Opteron 2344HE system with 16 2-GB DIMMs.
While there is significant variation in the row-buffer hit-rate among applications, the
key observation is that in all cases moving from a single to multiple threads decreases
the average row-buffer hit-rate seen at the memory controllers due to more frequent
row-buffer conflicts. This supports our hypothesis that there is contention within the
memory controller that is reducing the effectiveness of open-page policy and it may
be possible to alleviate some of this contention through intelligent placement of appli-
cation data across memory controllers.

Three important observations that we make from the above discussion are: (i)
NUMA factor is likely to increase in the future as the relative contribution of wire
delay increases. (ii) Higher core and thread counts per memory controller lead to high
MC contention, raising the importance of actively tracking and managing MC prop-
erties such as queuing delay. (iii) Increased interleaving of memory accesses from
different threads leads to a reduction in row-buffer hit rates. (iv) Intelligent memory
placement policy must balance all three of these first order effects when choosing
where to allocate data to physical memory slice.

3 Proposed Mechanisms

We are interested in developing a general approach to minimize memory access laten-
cies for a system that has many cores, multiple MCs, with varying interconnect laten-
cies between cores and MCs. For this study, we assume a 16-core processor with four
MCs, as shown in Fig. 1b where each MC handles a distinct subset of the aggregate
physical address space and the memory requests (L2 misses) are routed to the appro-
priate MC based on the physical memory address. The L2 is shared by all cores, and
physically distributed among the 16 tiles in a tiled S-NUCA layout [26,63]. Since
the assignment of data pages to an MC’s physical memory slice is affected by the
mapping of virtual addresses to physical DRAM frames by the OS, we propose two
different schemes that manage/modify this mapping to be aware of the DIMMs directly
connected to an MC.

123



64 Int J Parallel Prog (2012) 40:57–83

When a new virtual OS page is brought into physical memory, it must be assigned
to a DIMM associated with a single MC and a DRAM channel associated with that
MC. Proper assignment of pages attempts to minimize access latency to the newly
assigned page without significantly degrading accesses to other pages assigned to the
same DIMM. Ultimately, DRAM access latency is strongly governed by the following
factors: (i) the distance between the requesting core and the MC, (ii) the interconnec-
tion network load on that path, (iii) the average queuing delay at the MC, (iv) the
amount of bank and rank contention at the targeted DIMM, and (v) the row-buffer
hit-rate for the application. To make intelligent decisions based on these factors, we
must be able to both monitor and predict the impact that assigning or moving a new
memory page will have on each of these parameters. Statically generating profiles
offline can help in page assignment, but this is almost never practical. For this work,
we focus on policies that rely on run-time estimation of application behavior.

To reduce memory access delays we propose: adaptive first-touch placement of
memory pages, and dynamic migration of pages among DIMMs at the OS page gran-
ularity. The first scheme is based on DRAM frame allocation by the OS which is
aware of MC load (queuing delays, row-buffer hit-rates and bank contention) and the
on-chip distance between the core the thread is executing on and the MC that will
service requests to this frame. We propose modifications to the OS’ memory allocator
algorithm so that it is aware of these factors in order to create improved virtual-to-
physical mappings only when natural page-faults occur. The second scheme aims to
dynamically migrate data at run-time to reduce access delays. This migration of pages
occurs when there is excess memory bandwidth to support remapping operations. We
also propose mechanisms that allow dynamic migration to occur without stalling CPUs
that are accessing the pages being migrated.

3.1 Adaptive First-Touch Page Placement Policy

In the common case, threads/tasks1 will be assigned to cores rather arbitrarily based
on program completion times and task queues maintained by the OS for each core. The
OS’ task scheduling algorithm could be modified to be aware of multiple-MCs and
leverage profile based aggregated MC metrics to intelligently schedule tasks to cores.
Clever task scheduling must rely on pre-computed profiles that can be inaccurate and
are closely tied to the behavior of co-scheduled applications; this makes achieving a
general purpose approach challenging. Instead, we believe that intelligently placing
data, such that the overall throughput of the system is improved, is likely to out-per-
form coarse grained task scheduling optimization because of the fine granularity at
which changes to the memory mappings can be made and updated at run-time.

In our adaptive first-touch (AFT) approach for page allocation, when a thread starts
executing on some core, each new page it touches will generate a page fault. At this
time, the virtual page is assigned to a DRAM frame (physical page) such that it is
serviced by an MC that minimizes an objective cost function. The intuition behind the
objective function is that most pages associated with a thread will be mapped to the

1 We use threads and tasks interchangeably in the following discussion, unless otherwise specified.

123



Int J Parallel Prog (2012) 40:57–83 65

nearest MC, with a small number of pages being spilled to other nearby MCs, only
when beneficial to overall performance. The following cost function is computed for
each new page and for each MC j :

cost j = α × load j + β × rowhits j + λ × distance j

where load j is the average queuing delay at MC j, rowhits j is the average row-buffer
hit-rate seen by MC j , and distance j is the distance between the core requesting the
memory page and the MC, in terms of number of interconnect hops that need to be
traversed. The role of load and distance is straightforward; the row buffer hit rate is
considered based on the assumption that the new page will be less disruptive to other
accesses if it resides in a DIMM with an already low row buffer hit-rate. The relative
importance of each factor is determined by the weights α, β, and λ. After estimating
the cost function for each MC, the new page is assigned to the MC that minimizes
the cost function. In essence, this is done by mapping the virtual page to a physical
page in the slice of memory address space being controlled by the chosen MC j . Since
allocation of new DRAM frames on a page-fault is on the critical path, we maintain
a small history of the past few (5) runs of this cost function for each thread. If two
consecutive page faults for a thread happen within 5000 CPU cycles of each other, the
maximally recurring MC from the history is automatically chosen for the new page
as well. Once the appropriate MC is selected, a DRAM frame managed by this MC is
allocated by the OS to service the page-fault.

3.2 Dynamic Page Migration Policy

While adaptive first-touch can allocate new pages efficiently, for long-running pro-
grams that aren’t actively allocating new pages, we need a facility to react to changing
program phases or changes in the environment. We propose a dynamic data migration
scheme that tries to adapt to this scenario. Our dynamic migration policy starts out with
the AFT policy described above. Then during the course of the program execution, if
an imbalance is detected in DRAM access latency between memory controllers, we
choose to migrate N pages from the highest loaded MC to another one. Decisions are
made every epoch, where an epoch is a fixed time interval.

The above problem comprises of two parts - (i) finding which MC is loaded and
needs to shed load (the donor MC), and (ii) deciding the MC that will receive the
pages shed by the donor (recipient MC). For our experiments, we assume if an MC
experiences a drop of 10% or more in row-buffer hit rates from the last epoch, it
is categorized as a donor MC2. Other reasonable metrics can also be used, such as
detecting a large imbalance in queuing delays. When finding a recipient MC, care has
to be taken that the incoming pages do not disrupt the locality being experienced at the
recipient. As a first approximation, we choose the MC which (i) is physically proximal

2 This value can be made programmable to suit a particular workload’s needs. After extensive exploration,
we found that 10% works well across all workloads that we considered.

123



66 Int J Parallel Prog (2012) 40:57–83

to the donor MC, and (ii) has the lowest number of row-buffer hits in the last epoch.
Hence for each MC k in the recipient pool, we calculate

costk = � × distancek + � × row_hitsk

The MC with least value for the above cost is selected as the recipient MC. Once
this is done, N least recently used pages at the donor MC are selected for migration.

It is possible to be more selective regarding the choice of pages and the choice of
new MC, but we resort to this simple policy because it is effective and requires very
few resources to implement. We note that even when the dynamic migration policy is
in use, freshly allocated pages are steered towards the appropriate MCs based on the
AFT cost function. Pages that have been migrated are not considered for re-migration
for the next two epochs to prevent thrashing of memory across memory controllers.

When migrating pages, the virtual address of the page does not change, but the
physical location does. Thus, to maintain correctness two steps need to be taken for
pages that are undergoing migration:

1. Cache Invalidate The cache lines belonging to the migrated pages have to be
invalidated across all cores. With our S-NUCA cache, only one location must be
looked up for each cache line. When invalidating the lines, copies in L1 must also
be invalidated through the directory tracking these entries forcing any dirty data
to be written back to memory prior to migration occurring.

2. TLB Update TLBs in all cores have to be informed of the change in the page’s
physical address. Therefore any core with an active TLB mapping must be updated
after the page is physically migrated.

Both of these steps are costly in terms of both power and performance. Thus,
premature page migration is likely to result in decreased system performance. Instead,
migration should only occur when the anticipated benefit outweighs the overhead of
page migration.

To avoid forcing an immediate write back of dirty data when migrating pages, we
propose a mechanism that delays the write-back and forwards any dirty data that is
flushed to the new physical page rather than the old. To do this, we defer invalidating
the TLB entry until an entire page has been copied to its new physical location. Any
incoming requests for the page can still be serviced from the old physical location.
Only after the page has been copied is the TLB shootdown triggered, forcing a cache
write back. The memory controller servicing requests from the old page is notified that
it should redirect writes intended for the old physical location N to the new physical
location M on an alternate memory controller. With this redirection in place, a TLB
shootdown is issued triggering the write back if there is dirty data, and finally the old
physical page can be deallocated and returned to the free page list. Only then can the
memory controller be instructed to stop forwarding requests to the alternate location,
and normal execution resumes. This method of delaying TLB shootdowns is referred
to as lazy-copying in later sections.

123



Int J Parallel Prog (2012) 40:57–83 67

3.3 Heterogeneous Memory Hierarchy

Previously in Sections 3.1 and 3.2, we assumed a homogeneous memory system with
DRAM DIMMs attached to all the MCs. However, future memory systems will likely
be comprised of different memory technologies. These memory technologies will dif-
fer in a number of facets, with access latencies and bit-density being the two important
factors considered in this work. There may also be different channel and wire protocols
for accessing a particular memory type, but for this study we assume a unified standard
which allows us to focus on the memory controller issues, not memory technology
properties.

We assume a scenario where memory controllers in the system can only access
one of two possible types of technologies in the system. For example, in the
4-MC model, one MC controls a gang of DDR3 DIMMs, while the rest control
FB-DIMMs. Alternatively, the NUMA architecture might comprise two MCs con-
trolling DDR3 DRAM while the other two MCs are controlling PCM based devices.
For heterogeneous memory hierarchies, there is an inherent difference between the
capacity and latency of different devices (listed in Table 1). As a result, a uni-
form cost function for device access across the entire memory space cannot be
assumed; care has to be taken to assign/move heavily used pages to faster memory
(e.g. DRAM), while pages that are infrequently used can be moved to slower, but
denser regions of memory (e.g. PCM). To account for the heterogeneity in such sys-
tems, we modify the cost function for the adaptive first touch policy as follows. On
each new page allocation, for each MC j , we evaluate the following cost function:

cost j = α × load j + β × rowhits j

+ λ × distance j + τ × Latency DimmCluster j + μ × Usage j (1)

The new term in the cost function, Latency DimmCluster j , is indicative of the
latency of a particular memory technology. This term can be made programmable
(with the average or worst case access latency), or can be based on runtime infor-
mation collected by the OS daemon. Usage j represents the percentage of DIMM
capacity that is currently allocated; it is intended to account for the fact that different
memory technologies have different densities and pages must be allocated to DIMMs
in approximately that proportion. As before, the MC with the least value of the cost
function is assigned the new incoming page.

Long running applications tend to touch a large number of pages, with some of them
becoming dormant after a period of initial use as the application moves through dis-
tinct phases of execution. To optimize our memory system for these pages we propose
a variation of our initial dynamic page migration policy. In this variation we target two
objectives: (i) For pages that are currently dormant or sparingly (Least Recently Used,
LRU) used in the faster memory nodes, these pages can be migrated onto a slower
memory node, further reducing the pressure on faster node. (ii) Place infrequently
used pages in higher density memory (PCM) allowing more space for frequently used
pages in the faster and lower capacity memory (DRAM). A dynamic migration policy
for heterogeneous memory can be of two distinct flavors: (i) Pages from any MC can

123



68 Int J Parallel Prog (2012) 40:57–83

Table 1 Timing parameters [39,32]

Parameter DRAM (DDR3) DRAM (Fast) PCM Description

tRCD 12.5ns 9ns 55ns Interval between row access com-
mand and data ready at the sense amps

tCAS 12.5ns 12.5ns 12.5ns Interval between column access com-
mand and the start of data burst

tRP 12.5ns 12.5ns 12.5ns Time to precharge a row

tWR 12.5ns 9ns 125ns Time between the end of a write data
burst and a subsequent precharge com-
mand to the same bank

tRAS 45ns 45ns 45ns Minimum interval between row
access and precharge to same bank

tRRD 7.5ns 7.5ns 7.5ns Minimum gap between row access
commands to the same device

tRTRS 2 Bus 2 Bus 2 Bus Rank-to-rank switching delay

Cycles Cycles Cycles

tFAW 45 ns 45 ns 45 ns Rolling time window within which
maximum of 4 bank activations can
be made to a device

tWTR 7.5ns 7.5ns 7.5ns Delay between a write data burst and
a column read command to the same
rank

tCWD 6.5ns 6.5ns 6.5ns Minimum delay between column
access command and the write data
burst

be migrated to any other MC without considering the memory technology attached to
it. (ii) The policy is cognizant of the memory technology. When the memory technol-
ogies considered are extremely different in terms of latency and density, only policy
(ii) is considered. In the former case, the pool of recipient MCs is all MCs except the
donor. In the latter, the pool is restricted to MCs with only slower devices attached to
them. The recipient cost function remains the same in both cases.

3.4 Overheads of Estimation and Migration

Employing any of the proposed policies incurs some system-level (hardware and OS)
overheads. The hardware (MC) needs to maintain counters to keep track of per-work-
load delay and access counts which most of the modern processors already implement
for measuring memory system events (Row-Hits/Misses/Conflicts) [46]. In order to
calculate the value of the cost function, a periodic system-level daemon has to read
the values from these hardware counters. Currently, the only parameter that cannot be
directly measured is load or queuing delay. However, performance monitoring tools
can measure average memory latency easily. The difference between the measured
total memory latency and the time spent accessing devices (which is known by the
memory controller when negotiating channel setup) can provide an accurate estimate
of load. We expect that future systems will include hardware counters to directly
measure load.

123



Int J Parallel Prog (2012) 40:57–83 69

Migrating pages across memory nodes requires trapping into the OS to update
page-table entries. Because we only perform dynamic migration when there is excess
available memory bandwidth, none of these operations are typically on the appli-
cation’s critical path. However, invalidating the TLB on page migration results in a
requisite miss and ensuing page-table walk. We include the cost of this TLB shoot-
down and page table walk in all experiments in this study. We also model the additional
load of copying memory between memory controllers via the on-chip network. We
chose not to model data transfers via DMA because of the synchronization complexity
it would introduce into our relatively simple migration mechanism. Also, our simu-
lation framework does not let us quantify the associated costs of DMA only page
migrations.

4 Results

The full system simulations are built upon the Simics [37] platform. Out-of-order
and cache timings are simulated using Simics’ ooo-micro-arch and g-cache modules
respectively. The DRAM memory sub-system is modeled in detail using a modified
version of Simics’ trans-staller module. It closely follows the model described by
Gries in [39]. The memory controller (modeled in trans-staller) keeps track of each
DIMM and open rows in each bank. It schedules the requests based on open-page
and closed-page policies. The details pertaining to the simulated system are shown in
Table 2. Other major components of Gries’ model that we adopted for our platform are:
the bus model, DIMM and device models, and overlapped processing of commands
by the memory controller. Overlapped processing allows simultaneous processing of
access requests on the memory bus, while receiving further requests from the CPU.
This allows hiding activation and pre-charge latency using the pipelined interface of
DRAM devices. We model the CPU to allow non-blocking load/store execution to sup-
port overlapped processing. Our MC scheduler implements an FR-FCFS scheduling
policy and an open-page row-buffer management policy. PCM devices are assumed to
be built along the same lines as DRAM. We adopted the PCM architecture and timing
parameters from [32]. A detailed list of DRAM and PCM timing parameters is listed
in Table 1.

DRAM address mapping parameters for our platform were adopted from the
DRAMSim framework [61], and was assumed to be the same for PCM devices. We
implemented basic SDRAM mapping, as found in user-upgradeable memory systems,
(similar to Intel 845G chipsets’ DDR SDRAM mapping [21]). Some platform specific
implementation suggestions were taken from the VASA framework [60]. Our DRAM
energy consumption model is built as a set of counters that keep track of each of
the commands issued to the DRAM. Each pre-charge, activation, CAS, write-back
to DRAM cells etc. are recorded and total energy consumed reported using energy
parameters derived from a modified version of CACTI [43]. Since pin-bandwidth is
limited (and will be in the future), we assume a constant bandwidth from the chip to the
DRAM sub-system. In case of multiple MCs, bandwidth is equally divided among all
controllers by reducing the burst-size. We study a diverse set of workloads including
PARSEC [3] (with sim-large working set), SPECjbb2005 (with number of warehouses

123



70 Int J Parallel Prog (2012) 40:57–83

Table 2 Simulator parameters

ISA UltraSPARC III ISA
L1 I-cache 32KB/2-way, 1-cycle

L2 Cache (shared) 2 MB/8-way, 3-cycle/bank access

Hop access time 2 cycles

(Vertical and horizontal)

Processor frequency 3 GHz

On-chip network width 64 bits

CMP size and Core Freq. 16-core, 3 GHz

L1 D-cache 32KB/2-way, 1-cycle

L1/L2 Cache line size 64 Bytes

Router overhead 3 cycles

Page Size 4 KB

On-chip network frequency 3 GHz

Coherence protocol MESI

DRAM parameters

DRAM device parameters Micron MT41J256M8 DDR3-800

Timing parameters [40],

2 ranks, 8 banks/device,

32768 rows/bank, x8 part

DIMM configuration 8 Non-ECC un-buffered DIMMs,

64 bit channel, 8 devices/DIMM

DIMM-level row-buffer size 8KB/DIMM

Active row-buffers per DIMM 8 (each bank in a device
maintains a row-buffer)

Total DRAM capacity 4 GB

DRAM bus frequency 1,600 MHz

Values of cost function constants

α, β, λ, �,�, τ, μ 10, 20, 100, 200, 100, 20, 500

equal to number of cores) and Stream benchmark (number of threads equal to number
of cores).

For all experiments involving dynamic page migration with homogeneous mem-
ory subsystem, we migrate 10 pages (N = 10, Sect. 3) from each MC3, per epoch.
An Epoch is 5 million cycles long. For the heterogeneous memory subsystem, all
pages that have not been accessed in the last two consecutive epochs are migrated to
appropriate PCM MCs.

We (pessimistically) assume the cost of each TLB entry invalidation to be 5000
cycles. We warm-up caches for 25 million instructions and then collect statistics for
the next 500 million instructions. The weights of the cost function were determined

3 Empirical evidence suggested that moving more than 10 pages at a time significantly increased the
associated overheads, hence decreasing the effectiveness of page migrations.

123



Int J Parallel Prog (2012) 40:57–83 71

after an extensive design space exploration4. The L2 cache size was scaled down to
resemble an MPKI (misses per thousand instructions) of 10.6, which was measured
on the real system described in Sect. 2 for PARSEC and commercial workloads.

4.1 Metrics for Comparison

For comparing the effectiveness of the proposed schemes, we use the total system
throughput defined as

∑
i (I PCi

shared /I PCi
alone) where I PCi

shared is the IPC of pro-
gram i in a multi-core setting with one or more shared MCs. I PCi

alone is the IPC of
program i on a stand-alone single-core system with one memory controller.

We also report queuing delays which refer to the time spent by a memory request
at the memory controller waiting to get scheduled plus the cycles spent waiting to get
control of DRAM channel(s). This metric also includes additional stall cycles accrued
traversing the on-chip network.

4.2 Multiple Memory Controllers: Homogeneous DRAM Hierarchy

First we study the effect of multiple MCs on the overall system performance for the
homogeneous DRAM hierarchy (Fig. 4). We divide the total physical address space
equally among all MCs, with each MC servicing an equal slice of the total memory
address space. All MCs for these experiments are assumed to be located along chip
periphery (Fig. 1b). The baseline is assumed to be the case where OS’ page allocation
routine tries to allocate the new page at the nearest (physically proximal) MC. If no
free pages are available at that MC, the next nearest one is chosen.

For a fixed number of cores, additional memory controllers improve performance
up to a given point (4 controllers for 16 cores), after which the law of diminishing
returns starts to kick in. On an average across all workloads, as compared to a single
MC, 4 MCs help reduce the overall queuing delay by 47% and improve row buffer hits
by 28%, resulting in an overall throughput gain of 15%. Adding more than 4 MCs to
the system still helps overall system throughput for most workloads, but for others, the
benefits are minimal because (i) naive assignment of threads to MCs increases inter-
ference and conflicts, and (ii) more MCs lead to decreased memory channel widths
per MC, increasing the time taken to transfer data per request and adding to overall
queuing delay. Combined, both these factors eventually end up hurting performance.
For example, for an eight MC configuration, as compared to a 4 - MC case, ferret
experiences increased conflicts at MC numbers 3,5 and 7, with the row buffer hit rates
going down by 13%, increasing the average queuing delay by 24%. As a result, the
overall throughput for this workload (ferret) goes down by 4%.This further strengthens
our initial assumption that naively adding more MCs doesn’t solve the problem and
makes a strong case for intelligently managing data across a small number of MCs.
Hence, for all the experiments in the following sections, we use a 4 MC configuration.

4 We report results for the best performing case.

123



72 Int J Parallel Prog (2012) 40:57–83

(a) Number of Controllers vs. Throughput

(b) Number of Controllers vs Avg. Queuing Delays

Fig. 4 Impact of multiple memory controllers, homogeneous hierarchy. a Number of controllers versus
throughput, b number of controllers versus avg. queuing delays

4.2.1 Adaptive First-Touch and Dynamic Migration Policies: Homogeneous
Hierarchy

Figure 5 compares the average throughput improvement of adaptive first-touch and
dynamic-migration policies for the homogeneous DRAM hierarchy over the baseline.
On an average, over all the workloads, adaptive first-touch and dynamic page-migra-
tion perform 6.5% and 8.9% better than the baseline, respectively. Part of this improve-
ment comes from the intelligent mapping of pages to improve row-buffer hit rates,
which are improved by 15.1% and 18.2% respectively for first-touch and dynamic-
migration policies. The last cluster in Fig. 5b (STDDEV) shows the standard deviation
of individual MC row-buffer hits for the three policies. In essence, a higher value of
this statistic implies that one (or more) MC(s) in the system is (are) experiencing more

123



Int J Parallel Prog (2012) 40:57–83 73

(a)

(b)

Fig. 5 Adaptive first-touch and dynamic-migration policies versus baseline—homogeneous hierarchy. a
Relative throughput, b Row buffer hits

conflicts than others, hence providing a measure of load across MCs. As compared
to the baseline, Adaptive first-touch and dynamic-migration schemes reduce the stan-
dard deviation by 8.3% and 21.6% respectively, hence fairly distributing the system
DRAM access load across MCs. Increase in row-buffer hit-rates has a direct impact
on queuing delays, since a row-buffer hit costs less than a row-buffer miss or conflict,
allowing the memory system to be freed sooner to service other pending requests.

For the homogeneous memory hierarchy, Fig. 6 shows the breakdown of total mem-
ory latency as a combination of four factors (i) queuing delay (ii) network delay - the
extra delay incurred for traveling to a “remote” MC, (iii) device access time, which
includes the latency reading(writing) data from(to) the DRAM devices and (iv) data
transfer delay. For the baseline, a majority of the total DRAM access stall time (54.2%)
is spent waiting in the queue and accessing DRAM devices (25.7%). Since the base-
line configuration tries to map a group of physically proximal cores onto an MC, the
network delay contribution to the total DRAM access time is comparatively smaller
(13.4%). The adaptive policies change the dynamics of this distribution. Since some
pages are now mapped to “remote” MCs, the total network delay contribution to
the average memory latency goes up (to 18% and 28% for adaptive first-touch and
dynamic page migration schemes respectively). Because of increased row-buffer hit
rates, the device access time contribution to the overall access latency goes down for

123



74 Int J Parallel Prog (2012) 40:57–83

DRAM Access breakdown (Cycles)

Fig. 6 DRAM access latency breakdown—homogeneous hierarchy

Table 3 Dynamic page migration overhead characteristics

Benchmark Total number of pages
copied (shared/un-shared)

Total cacheline
invalidations + Writebacks

Page copying overhead
(percent increase in
network traffic)

Blackscholes 210 (53/157) 134 5.8%

Bodytrack 489 (108/381) 365 3.2%

Facesim 310 (89/221) 211 4.1%

Fluidanimate 912 (601/311) 2687 12.6%

Freqmine 589 (100/489) 856 5.2%

Swaptions 726 (58/668) 118 2.4%

Vips 998 (127/871) 232 5.6%

X264 1007 (112/895) 298 8.1%

Canneal 223 (28/195) 89 2.1%

Streamcluster 1284 (967/317) 3018 18.4%

Ferret 1688 (1098/590) 3453 15.9%

SPECjbb2005 1028 (104/924) 499 4.1%

Stream 833 (102/731) 311 3.5%

the proposed policies, (down by 1.5% and 11.1% for adaptive first-touch and dynamic
migration respectively), as compared to baseline. As a result, the overall average
latency for a DRAM access goes down from 495 cycles to 385 and 342 CPU cycles
for adaptive first-touch and dynamic migration policies, respectively.

Table 3 presents the overheads associated with the dynamic-migration policy. Appli-
cations which experience a higher percentage of shared-page migration (fluidanimate,
streamcluster and ferret) tend to have higher overheads. Compared to baseline, the
three aforementioned applications see an average of 13.5% increase in network traf-
fic as compared an average 4.2% increase between the rest. Because of higher costs
of shared-page migration, these applications also have a higher number of cacheline
invalidations and writebacks.

123



Int J Parallel Prog (2012) 40:57–83 75

4.3 Sensitivity Analysis

Figure 7 compares the effects of proposed policies for a different physical layout of
MCs for the homogeneous DRAM hierarchy. As opposed to earlier, these configu-
rations assume MCs being located at the center of the chip than periphery (similar
to layouts assumed in [1]). We compare the baseline, adaptive first-touch (AFT) and
dynamic migration (DM) policies for both the layouts : periphery and center. For
almost all workloads, we find that baseline and AFT policies are largely agnostic to
choice of MC layout. Being a data-centric scheme, dynamic migration benefits a little
from the new layout. Although, due to the reduction in the number of hops, DM-Center
performs marginally better than DM-periphery.

4.3.1 Effects of TLB Shootdowns

To study the performance impact of TLB shootdowns in Dynamic Migration scheme,
we increased the cost of each TLB shootdown from 5000 cycles (as assumed previ-
ously) to 7500, 10,000 and 20,000 cycles. Since shootdowns are fairly uncommon,
and happen only at epoch boundaries, the average degradation in performance in going
from 5000 to 20,000 cycles across all applications is 5.8%. For the three applications
that have significant sharing among threads (ferret, streamcluster, fluidanimate), the
average performance degradation for the same jump is a little higher, at 6.8%.

4.3.2 Results for Multi-Socket Configurations

To test the efficacy of our proposals in the context of multi-socket configurations,
we carried out experiments with a configuration similar to one assumed in Fig. 1a.
In these experiments, we assume a 4-socket system; each socket housing a quad-core
chip, with similar configuration as assumed in Table 2. Each quad-core incorporates
one on-chip MC which is responsible for a quarter of the total physical address space.

Throughput Sensitivity to Physical Placement of MCs,

Fig. 7 Sensitivity Analysis, Dynamic page migration policy, Homogeneous hierarchy

123



76 Int J Parallel Prog (2012) 40:57–83

Each quad-core has similar L1s as listed in Table 2, but the 2 MB L2 is equally divided
among all sockets, with each quad-core receiving 512 KB L2. The inter-socket laten-
cies are based on the observations in [47] (48 ns). The baseline, as before, is assumed
to be where the OS is responsible for making page placement decisions. The weights
of the cost function are also adjusted to place more weight to distance j , when picking
donor MCs.

We find that adaptive first-touch is not as effective as the earlier, with performance
benefits of 1% over baseline. For the dynamic migration policy, to reduce the overheads
of data copying over higher latency inter-socket links, we chose to migrate 5 pages at
a time. Even with these optimizations, the overall improvement in system throughput
was 1.3%. We attribute this to the increased latency of cacheline invalidations and
copying data over inter-socket links.

4.4 Multiple Memory Controllers: Heterogeneous Hierarchy

In this study, a heterogeneous memory hierarchy is assumed to comprise different
types of memory devices. These devices could be a mix of different flavors of DRAM
(Table 1), or a mixture of different memory technologies, e.g. DRAM and PCM. For
the baseline, we assume the default page allocation scheme, i.e. pages are allocated
based on one unified free-page list, to the most physically proximal MC, without any
consideration for the type of memory technology.

As a first experiment, we divide the total physical address space equally between
DDR3 5 devices and a faster DRAM variant. Such a hierarchy comprising two dif-
ferent kinds of DRAM devices considered in this study (DDR3 and faster DRAM)
is referred to as N DRAM - P Fast hierarchy. For example, 1 DRAM - 3 Fast refers
to a hierarchy with 3 MCs controlling faster DRAM DIMMs, while one with DDR3
DIMMs. Likewise, a hierarchy with N MCs controlling DRAM devices and P MCs
controlling PCM devices is referred to as a N DRAM - P PCM hierarchy.

4.5 Adaptive First-Touch and Dynamic Migration Policies: Heterogeneous
Hierarchy

In this section, we try to explore the potential of adaptive first touch and dynamic page
migration policies in a heterogeneous memory hierarchy.

First, we consider the case of N DRAM - P Fast hierarchies. For these experiments,
we assume similar storage density of both devices. For Adaptive First Touch policy,
the only additional consideration for deciding the relative merit of assigning a page to
an MC comes from Latency DimmCluster j factor in the cost function.

Figure 8 presents the results of these experiments, normalized to the 2 DRAM -
2 Fast baseline. Despite faster device access times, the ratio of average performance
improvement of the proposed polices still remains the same as that for homogeneous
hierarchy. For example, for the 1 DRAM - 3 Fast configuration, adaptive first touch and

5 Unless other specified, all references to DRAM refer to DDR3 devices.

123



Int J Parallel Prog (2012) 40:57–83 77

Fig. 8 Impact of proposed policies in heterogeneous memory hierarchy (N DRAM - P Fast)

and dynamic page migration policies perform 6.2 and 8.3% better than the baseline
for the same configuration.

The other heterogeneous memory hierarchy considered in this study is of the N
DRAM - P PCM variety. For these experiments, we assume PCM to be 8 times as
dense as DRAM. Also, we statically program the Latency DimmCluster j factor to be
the worst case (closed-page) access latency of both DRAM and PCM devices (37.5 ns
and 80 ns respectively).

Figure 9 presents the throughput results for the different combinations of DRAM
and PCM devices. In a 3 DRAM - 1 PCM hierarchy, adaptive first touch and dynamic
page migration policies outperform the baseline configuration by 1.6% and 4.4%
respectively. Overall, we observe that for a given heterogeneous hierarchy, dynamic
page migration tends to perform slightly better than adaptive first touch (2.09% and
2.41% for 3 DRAM - 1 PCM and 2 DRAM - 2 PCM combinations respectively),
because adaptive first touch policy places some frequently used pages into PCM
devices, increasing the overall access latency. For example, in a 3 DRAM - 1 PCM
configuration, 11.2% of the total pages are allocated to PCM address space. This value
increases to 16.8% in 2 DRAM - 2 PCM configuration.

4.6 Sensitivity Analysis and Discussion: Heterogeneous Hierarchy

Sensitivity to Physical Placement of MCs For the best performing heterogeneous
hierarchy (3 DRAM - 1 PCM), for the baseline, performance is completely agnostic
to physical position of MCs. AFT for the same configuration with MCs at the periph-
ery(AFT-periphery), performs 0.52% better with MCs at the center(AFT-center), while
DM-periphery performs 0.48% better than DM-center.

Cost of TLB Shootdowns For the best performing heterogeneous (3 DRAM - 1 PCM)
hierarchy, there is a greater effect of increased cost of TLB shootdowns in Dynamic
Migration scheme. The average degradation in performance in increasing the cost
from 5000 cycles to 10,000 cycles is 7.1%. When increased further to 20,000 cycles,

123



78 Int J Parallel Prog (2012) 40:57–83

Fig. 9 Impact of proposed policies in heterogeneous memory hierarchy (N DRAM - P PCM)

the workloads exhibit an average degradation of 12.8%, with SpecJBB2005 exhibiting
the greatest drop of 17.4%.

5 Related Work

Memory Controllers: Some recent papers [1,36,58,62] examine multiple MCs in a
multi-core setting. Blue Gene/P [19] is an example of a production system that employs
multiple on-chip MCs. Loh [36] takes advantage of plentiful inter-die bandwidth in a
3D chip that stacks multiple DRAM dies and implements multiple MCs on-chip that
can quickly access several fine-grain banks. Vantrease et al. [58] discuss the interac-
tion of MCs with the on-chip network traffic and propose physical layouts for on-chip
MCs to reduce network traffic and minimize channel load. The Tile64 processor [62]
employs multiple MCs on a single chip, accessible to every core via a specialized
on-chip network. The Tile64 microprocessor [62] was also one of the first processors
to use multiple (four) on-chip MCs. More recently, Abts et al. [1] explore multiple
MC placement on a single chip-multiprocessor so as to minimize on-chip traffic and
channel load. None of the above works considers intelligently allocating data and load
across multiple MCs. Kim et al. propose ATLAS [27], a memory scheduling algorithm
that improves system throughput without requiring significant coordination between
the on-chip memory controllers.

Recent papers [44,45] have begun to consider MC scheduler policies for multi-
core processors, but only consider a single MC. Since the memory controller is a
shared resource, all threads experience a slowdown when running concurrently with
other threads, relative to the case where the threads execute in isolation. Mutlu and
Moscibroda [44] observe that the prioritization of requests to open rows can lead to
long average queuing delays for threads that tend to not access open rows. To deal
with such unfairness, they introduce a Stall-Time Fair Memory (STFM) scheduler that
estimates the disparity and overrules the prioritization of open row access if necessary.
While this policy explicitly targets fairness (measured as the ratio of slowdowns for the
most and least affected threads), minor throughput improvements are also observed as

123



Int J Parallel Prog (2012) 40:57–83 79

a side-effect. The same authors also introduce a Parallelism-Aware Batch Scheduler
(PAR-BS) [45]. The PAR-BS policy first breaks up the request queue into batches
based on age and then services a batch entirely before moving to the next batch (this
provides a level of fairness). Within a batch, the scheduler attempts to schedule all
the requests of a thread simultaneously (to different banks) so that their access laten-
cies can be overlapped. In other words, the scheduler tries to exploit memory-level
parallelism (MLP) by looking for bank-level parallelism within a thread. The above
described bodies of work are related in that they attempt to alleviate some of the same
constraints as us, but not with page placement.

Other MC related work focusing on a single MC include the following. Lee et
al. [33] design an MC scheduler that allocates priorities between demand and prefetch
requests from the DRAM. Ipek et al. [22] build a reinforcement learning framework to
optimize MC scheduler decision-making. Lin et al. [35] design prefetch mechanisms
that take advantage of idle banks/channels and spatial locality within open rows. Zhu
and Zhang [67] examine MC interference for SMT workloads. They also propose
scheduler policies to handle multiple threads and consider different partitions of the
memory channel. Cuppu et al. [12,13] study the vast design space of DRAM and
memory controller features for a single core processor.

Memory Controllers and Page Allocation Lebeck et al. [31] studied the interac-
tion of page coloring and DRAM power characteristics. They examine how DRAM
page allocation can allow the OS to better exploit the DRAM system’s power-saving
modes. In a related paper [18], they also examine policies to transition DRAM chips
to low-power modes based on the nature of access streams seen at the MC. Zhang et
al. [64] investigate a page-interleaving mechanism that attempts to spread OS pages in
DRAM such that row-buffers are re-used and bank parallelism is encouraged within
a single MC.

Page Allocation Page coloring and migration have been employed in a variety of
contexts. Several bodies of work have evaluated page coloring and its impact on cache
conflict misses [4,16,25,42,54]. Page coloring and migration have been employed to
improve proximity of computation and data in a NUMA multi-processor [6,11,28–
30,59] and in NUCA caches [2,10,51]. These bodies of work have typically attempted
to manage capacity constraints (especially in caches) and communication distances in
large NUCA caches. Most of the NUMA work pre-dates the papers [12,13,52] that
shed insight on the bottlenecks arising from memory controller constraints. Here, we
not only apply the well-known concept of page coloring to a different domain, we
extend our policies to be cognizant of the several new constraints imposed by DRAM
memory schedulers (row-buffer re-use, bank parallelism, queuing delays, etc.). More
recently, McCurdy et al. [38] observe that NUMA-aware code could make all the dif-
ference in most multi-threaded scientific applications scaling perfectly across multiple
sockets, or not at all. They then propose a data-centric tool-set based on performance
counters which helps to pin-point problematic memory access, and utilize this infor-
mation to improve performance.

Task Scheduling The problem of task scheduling onto a myriad of resources has
been well studied, although not in the context of multiple on-chip MCs. While the
problem formulations are similar to our work, the constraints of memory controller
scheduling are different. Snavely et al. [55] schedule tasks from a pending task queue

123



80 Int J Parallel Prog (2012) 40:57–83

on to a number of available thread contexts in an SMT processor. Zhou et al. [66]
schedule tasks on a 3D processor in an attempt to minimize thermal emergencies.
Similarly, Powell et al. [49] attempt to minimize temperature by mapping a set of
tasks to a CMP comprised of SMT cores.

6 Conclusions

This paper proposes a substantial shift in DRAM data placement policies which must
become cognizant of both the performance characteristics and load on individual
NUMA nodes in a system. We are headed for an era where a large number of programs
will have to share limited off-chip bandwidth through a moderate number of on-chip
memory controllers. While recent studies have examined the problem of fairness and
throughput improvements for a workload mix sharing a single memory controller, this
is the first body of work to examine data-placement issues for a many-core processor
with a moderate number of memory controllers. We define a methodology to compute
an optimized assignment of a thread’s data to memory controllers based on current
system state. We achieve efficient data placement by modifying the OS’ frame alloca-
tion algorithm. We then improve on this first touch policy by dynamically migrating
data within the DRAM sub-system to achieve lower memory access latencies across
multiple program phases of an application’s execution.

These dynamic schemes adapt with current system state and allow spreading a
single program’s working set across multiple memory controllers to achieve better
aggregate throughput via effective load balancing. Our proposals yield improvements
of 6.5% (when assigning pages on first touch), and 8.9% (when allowing pages to be
migrated across memory controllers).

As part of our future work we intend to investigate further improvements to our
original design, for example, considering additional memory scheduler constraints
(intra-thread parallelism, handling of prefetch requests, etc.). Shared pages in multi-
threaded applications may benefit from a placement algorithm that takes the sharing
pattern into account. Page placement to promote bank parallelism in this context also
remains an open problem.

References

1. Abts, D., Jerger, N., Kim, J., Gibson, D., Lipasti, M.: Achieving predictable performance through
better memory controller in many-core CMPs. In: Proceedings of ISCA (2009)

2. Awasthi, M., Sudan, K., Balasubramonian, R., Carter, J.: Dynamic hardware-assisted software-con-
trolled page placement to manage capacity allocation and sharing within large caches. In: Proceedings
of HPCA (2009)

3. Benia, C., et al.: The PARSEC benchmark suite: characterization and architectural implications. Tech-
nical report, Department of Computer Science, Princeton University (2008)

4. Bershad, B., Chen, B., Lee, D., Romer, T.: Avoiding conflict misses dynamically in large direct-mapped
caches. In: Proceedings of ASPLOS (1994)

5. Burr, G.W., Breitwisch, M.J., Franceschini, M., Garetto, D., Gopalakrishnan, K., Jackson, B., Kurdi,
B., Lam, C., Lastras, L.A., Padilla, A., Rajendran, B., Raoux, S., Shenoy, R.S.: Phase Change Memory
Technology. (2010). http://arxiv.org/abs/1001.1164v1

123

http://arxiv.org/abs/1001.1164v1


Int J Parallel Prog (2012) 40:57–83 81

6. Chandra, R., Devine, S., Verghese, B., Gupta, A., Rosenblum, M.: Scheduling and page migration for
multiprocessor compute servers. In: Proceedings of ASPLOS (1994)

7. Chang, J., Sohi, G.: Co-operative caching for chip multiprocessors. In: Proceedings of ISCA (2006)
8. Chaudhuri, M.: PageNUCA: selected policies for page-grain locality management in large shared

chip-multiprocessor caches. In: Proceedings of HPCA (2009)
9. Chishti, Z., Powell, M., Vijaykumar, T.: Optimizing replication, communication, and capacity alloca-

tion in CMPs. In: Proceedings of ISCA-32 (June 2005)
10. Cho, S., Jin, L.: Managing distributed, shared L2 caches through OS-level page allocation. In: Pro-

ceedings of MICRO (2006)
11. Corbalan, J., Martorell X., Labarta J.: Page Migration with dynamic space-sharing scheduling policies:

the case of SGI 02000. Int. J. Parallel Prog. 32(4) (2004)
12. Cuppu, V., Jacob, B.: Concurrency, latency, or system overhead: which has the largest impact on

uniprocessor DRAM-System performance. In: Proceedings of ISCA (2001)
13. Cuppu, V., Jacob, B., Davis, B., Mudge, T.: A performance comparison of contemporary DRAM

architectures. In: Proceedings of ISCA (1999)
14. Dally, W.: Report from Workshop on On- and Off-Chip Interconnection Networks for Multicore

Systems (OCIN). (2006). http://www.ece.ucdavis.edu/~ocin06/
15. Deng, Q., Meisner, D., Ramos, L., Wenisch, T., Bianchini, R.: MemScale: active low-power modes for

main memory. In: Proceedings of ASPLOS (2011)
16. Ding, X., Nikopoulosi, D.S., Jiang, S., Zhang, X.: MESA: Reducing cache conflicts by integrating

static and run-time methods. In: Proceedings of ISPASS (2006)
17. Dybdahl, H., Stenstrom, P.: An adaptive shared/private NUCA cache partitioning scheme for chip

multiprocessors. In: Proceedings of HPCA (2007)
18. Fan, X., Zeng, H., Ellis, C.: Memory controller policies for DRAM power management. In: Proceedings

of ISLPED (2001)
19. Gara, A., Blumrich, M.A., Chen, D., Chiu, G.L.-T., Coteus, P., Giampapa, M.E., Haring, R.A.,

Heidelberger, P., Hoenicke, D., Kopcsay, G.V., Liebsch, T.A., Ohmacht, M., Steinmacher-Burow,
B.D., Takken, T., Vranas, P.: Overview of the blue gene/l system architecture. IBM J. Res. Dev. 49
(2005)

20. Hardavellas, N., Ferdman, M., Falsafi, B., Ailamaki, A.: Reactive NUCA: near-optimal block place-
ment and replication in distributed caches. In: Proceedings of ISCA (2009)

21. Intel 845G/845GL/845GV Chipset Datasheet: Intel 82845G/82845GL/82845GV Graphics and
Memory Controller Hub (GMCH) (2002)

22. Ipek, E., Mutlu, O., Martinez, J., Caruana, R.: Self optimizing memory controllers: a reinforcement
learning approach. In: Proceedings of ISCA (2008)

23. ITRS. International Technology Roadmap for Semiconductors, 2007 Edition
24. Jacob, B., Ng, S.W., Wang, D.T.: Memory systems—cache, DRAM disk. Elsevier, New York (2008)
25. Kessler, R.E., Hill, M.D.: Page placement algorithms for large real-indexed caches. ACM Trans.

Comput. Syst. 10(4) (1992)
26. Kim, C., Burger, D., Keckler, S.: An Adaptive, non-uniform cache structure for wire-dominated on-chip

caches. In: Proceedings of ASPLOS (2002)
27. Kim, Y., Han, D., Mutlu, O., Harchol-Balter, M.: ATLAS: a scalable and high-performance scheduling

algorithm for multiple memory controllers. In: Proceedings of HPCA (2010)
28. LaRowe, R., Ellis, C.: Experimental comparison of memory management policies for NUMA multi-

processors. Technical report (1990)
29. LaRowe, R., Ellis, C.: Page placement policies for NUMA multiprocessors. J. Parallel Distrib. Comput.

11(2) (1991)
30. LaRowe, R., Wilkes, J., Ellis, C.: Exploiting operating system support for dynamic page placement on

a NUMA shared memory multiprocessor. In: Proceedings of PPOPP (1991)
31. Lebeck, A., Fan, X., Zeng, H., Ellis, C.: Power aware page allocation. In: Proceedings of ASPLOS

(2000)
32. Lee, B., Ipek, E., Mutlu, O., Burger, D.: Architecting phase change memory as a scalable DRAM

alternative. In: Proceedings of ISCA (2009)
33. Lee, C., Mutlu, O., Narasiman, V., Patt, Y.: Prefetch-aware DRAM controllers. In: Proceedings of

MICRO (2008)
34. Lin, J., Lu, Q., Ding, X., Zhang, Z., Zhang, X., Sadayappan, P.: Gaining insights into multicore cache

partitioning: bridging the gap between simulation and real systems. In: Proceedings of HPCA (2008)

123

http://www.ece.ucdavis.edu/~ocin06/


82 Int J Parallel Prog (2012) 40:57–83

35. Lin, W., Reinhardt, S., Burger, D.: Designing a Modern memory hierarchy with hardware prefetching.
In: Proceedings of IEEE transactions on computers (2001)

36. Loh, G.: 3D-stacked memory architectures for multi-core processors. In: Proceedings of ISCA (2008)
37. Magnusson, P., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg, J., Larsson, F.,

Moestedt, A., Werner, B.: Simics: a full system simulation platform. IEEE Comput. 35(2), 50–58 (2002)
38. McCurdy, C., Vetter, J.: Memphis: Finding and fixing numa-related performance problems on multi-

core platforms. In: Proceedings of ISPASS (2010)
39. Micron DDR3 SDRAM Part MT41J512M4.(2006) http://download.micron.com/pdf/datasheets/dram/

ddr3/2Gb_DDR3_SDRAM.pdf,
40. Micron Technology Inc. Micron DDR2 SDRAM Part MT47H64M8. (2004)
41. Micron Technology Inc. Micron DDR2 SDRAM Part MT47H128M8HQ-25. (2007)
42. Min, R., Hu, Y.: Improving performance of large physically indexed caches by decoupling memory

addresses from cache addresses. IEEE Trans. Comput. 50(11) (2001)
43. Muralimanohar, N., Balasubramonian, R., Jouppi, N.: Optimizing NUCA organizations and wiring

alternatives for large caches with CACTI 6.0. In: Proceedings of MICRO (2007)
44. Mutlu, O., Moscibroda, T.: Stall-time fair memory access scheduling for chip multiprocessors. In:

Proceedings of MICRO (2007)
45. Mutlu, O., Moscibroda, T.: Parallelism-aware batch scheduling: enhancing both performance and fair-

ness of shared DRAM systems. In: Proceedings of ISCA (2008)
46. Perfmon2 Project Homepage. http://perfmon2.sourceforge.net/
47. Performance of the AMD Opteron LS21 for IBM BladeCenter. ftp://ftp.software.ibm.com/eserver/

benchmarks/wp_ls21_081506.pdf
48. Phadke, S., Narayanasamy, S.: MLP-aware Heterogeneous Main Memory. In: Proceedings of DATE

(2011)
49. Powell, M., Gomaa, M., Vijaykumar, T.: Heat-and-run: leveraging SMT and CMP to manage power

density through the operating system. In: Proceedings of ASPLOS (2004)
50. Qureshi, M.K.: Adaptive spill-receive for robust high-performance caching in CMPs. In: Proceedings

of HPCA (2009)
51. Rafique, N., Lim, W., Thottethodi, M.: Architectural support for operating system driven CMP cache

management. In: Proceedings of PACT (2006)
52. Rixner, S., Dally, W., Kapasi, U., Mattson, P., Owens, J.: Memory access scheduling. In: Proceedings

of ISCA (2000)
53. Romanchenko, V.: Quad-Core Opteron: Architecture and Roadmaps. http://www.digital-daily.com/

cpu/quad_core_opteron
54. Sherwood, T., Calder, B., Emer, J.: Reducing cache misses using hardware and software page place-

ment. In: Proceedings of SC (1999)
55. Snavely, A., Tullsen, D., Voelker, G.: Symbiotic jobscheduling with priorities for a simultaneous mul-

tithreading processor. In: Proceedings of SIGMETRICS (2002)
56. Speight, E., Shafi, H., Zhang, L., Rajamony, R.: Adaptive mechanisms and policies for managing cache

hierarchies in chip multiprocessors. In: Proceedings of ISCA (2005)
57. Swinburne, R.: Intel Core i7—Nehalem Architecture Dive. http://www.bit-tech.net/hardware/2008/

11/03/intel-core-i7-nehalem-architecture-dive/
58. Vantrease, D., et al.: Corona: system implications of emerging nanophotonic technology. In: Proceed-

ings of ISCA (2008)
59. Verghese, B., Devine, S., Gupta, A., Rosenblum, M.: Operating system support for improving data

locality on CC-NUMA compute servers. SIGPLAN Not. 31(9) (1996)
60. Wallin, D., Zeffer, H., Karlsson, M., Hagersten, E.: VASA: a simulator infrastructure with adjustable

fidelity. In: Proceedings of IASTED International Conference on Parallel and Distributed Computing
and Systems (2005)

61. Wang, D., et al.: DRAMsim: A memory-system simulator. In: SIGARCH Computer Architecture News
(September 2005)

62. Wentzlaff, D., et al.: On-Chip Interconnection Architecture of the Tile Processor. In: IEEE Micro 22,
(2007)

63. Zhang, M., Asanovic, K.: Victim replication: maximizing capacity while hiding wire delay in tiled
chip multiprocessors. In: Proceedings of ISCA (2005)

64. Zhang, Z., Zhu, Z., Zhand, X.: A permutation-based page interleaving scheme to reduce row-buffer
conflicts and exploit data locality. In: Proceedings of MICRO (2000)

123

http://download.micron.com/pdf/datasheets/dram/ddr3/2Gb_DDR3_SDRAM.pdf
http://download.micron.com/pdf/datasheets/dram/ddr3/2Gb_DDR3_SDRAM.pdf
http://perfmon2.sourceforge.net/
ftp://ftp.software.ibm.com/eserver/benchmarks/wp_ls21_081506.pdf
ftp://ftp.software.ibm.com/eserver/benchmarks/wp_ls21_081506.pdf
http://www.digital-daily.com/cpu/quad_core_opteron
http://www.digital-daily.com/cpu/quad_core_opteron
http://www.bit-tech.net/hardware/2008/11/03/intel-core-i7-nehalem-architecture-dive/
http://www.bit-tech.net/hardware/2008/11/03/intel-core-i7-nehalem-architecture-dive/


Int J Parallel Prog (2012) 40:57–83 83

65. Zheng, H., et al.: Mini-Rank: Adaptive DRAM architecture for improving memory power efficiency.
In: Proceedings of MICRO (2008)

66. Zhou, X., Xu, Y., Du, Y., Zhang, Y., Yang, J.: Thermal management for 3D processor via task sched-
uling. In: Proceedings of ICPP (2008)

67. Zhu, Z., Zhang, Z.: A Performance comparison of DRAM memory system optimizations for SMT
processors. In: Proceedings of HPCA (2005)

123


	Managing Data Placement in Memory Systems with Multiple Memory Controllers
	Abstract
	1 Introduction
	2 Background and Motivational Results
	2.1 DRAM Basics
	2.2 Current/Future Trends in MC Design
	2.3 Motivational Data

	3 Proposed Mechanisms
	3.1 Adaptive First-Touch Page Placement Policy
	3.2 Dynamic Page Migration Policy
	3.3 Heterogeneous Memory Hierarchy
	3.4 Overheads of Estimation and Migration

	4 Results
	4.1 Metrics for Comparison
	4.2 Multiple Memory Controllers: Homogeneous DRAM Hierarchy
	4.2.1 Adaptive First-Touch and Dynamic Migration Policies: Homogeneous Hierarchy

	4.3 Sensitivity Analysis
	4.3.1 Effects of TLB Shootdowns
	4.3.2 Results for Multi-Socket Configurations

	4.4 Multiple Memory Controllers: Heterogeneous Hierarchy
	4.5 Adaptive First-Touch and Dynamic Migration Policies: Heterogeneous Hierarchy
	4.6 Sensitivity Analysis and Discussion: Heterogeneous Hierarchy

	5 Related Work
	6 Conclusions
	References


