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Abstract Many researchers have developed applications using transactional mem-
ory (TM) with the purpose of benchmarking different implementations, and studying
whether or not TM is easy to use. However, comparatively little has been done to
provide general-purpose tools for profiling and optimizing programs which use trans-
actions. In this paper we introduce a series of profiling and optimization techniques for
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TM applications. The profiling techniques are of three types: (i) techniques to iden-
tify multiple potential conflicts from a single program run, (ii) techniques to identify
the data structures involved in conflicts by using a symbolic path through the heap,
rather than a machine address, and (iii) visualization techniques to summarize how
threads spend their time and which of their transactions conflict most frequently. Alto-
gether they provide in-depth and comprehensive information about the wasted work
caused by aborting transactions. To reduce the contention between transactions we
suggest several TM specific optimizations which leverage nested transactions, trans-
action checkpoints, early release and etc. To examine the effectiveness of the profiling
and optimization techniques, we provide a series of illustrations from the STAMP TM
benchmark suite and from the synthetic WormBench workload. First we analyze the
performance of TM applications using our profiling techniques and then we apply var-
ious optimizations to improve the performance of the Bayes, Labyrinth and Intruder
applications. We discuss the design and implementation of the profiling techniques in
the Bartok-STM system. We process data offline or during garbage collection, where
possible, in order to minimize the probe effect introduced by profiling.

Keywords Profiling · Transaction memory · Application

1 Introduction

Transactional Memory (TM) is a concurrency control mechanism which allows a
thread to perform a series of memory accesses as a single atomic operation [22]. This
avoids the need for the programmer to design fine-grained concurrency control mech-
anisms for shared-memory data structures. Typical implementations of TM execute
transactions optimistically, detecting any conflicts which occur between concurrent
transactions, and aborting one or other of the transactions involved [18].

However, if a program is to perform well, then the programmer needs to under-
stand which transactions are likely to conflict and to adapt their program to minimize
this [4]. Several studies report that the initial versions of transactional applications can
have very high abort rates [15,27,29]—anecdotally, programmers tend to focus on the
correctness of the application by defining large transactions without appreciating the
performance impact.

Various ad hoc techniques have been developed to investigate performance prob-
lems caused by TM. These techniques are typically based on adding special kinds of
debugging code which execute non-transactionally, even when they are called from
inside a transaction. This non-transactional debugging allows a program to record sta-
tistics about, for example, the number of times that a given transaction is attempted.

In this paper we describe a series of methodical profiling and optimization tech-
niques which aim to provide a way for a programmer to examine and correct perfor-
mance problems of transactional applications. We focus, in particular, on performance
problems caused by conflicts between transactions: conflicts are a problem for all TM
systems, irrespective of whether the TM is implemented in hardware or software, or
exactly which conflict detection mechanisms it uses.
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We introduce our profiling techniques in Sect. 2. We follow two main principles.
First, we want to report all results to the programmer in terms of constructs present
in the source code (e.g., if an object X in the heap is subject to a conflict, then we
should describe X in a way that is meaningful to the programmer, rather than simply
reporting the object’s address). Second, we want to keep the probe effect of using the
profiler as low as we can: we do not want to introduce or mask conflicts by enabling
or disabling profiling.

We identify three main techniques for profiling TM applications. The first technique
identifies multiple conflicts from a single program run and associates each conflict with
contextual information. The contextual information is necessary to relate the wasted
work to parts of the program as well as constructing the winner and victim relationship
between the transactions. The second technique identifies the data structures involved
in conflicts, and it associates the contended objects with the different places where
conflicting accesses occur. The third technique visualizes the progress of transactions
and summarizes which transactions conflict most. This is particularly useful when first
trying to understand a transactional workload and to identify the bottlenecks that are
present.

Our profiling framework is based on the Bartok-STM system [20] (Sect. 2.5). Bar-
tok is an ahead-of-time C# compiler which has language-level support for TM. Where
possible, the implementation of our profiling techniques aims to combine work with
the operation of the C# garbage collector (GC). This helps us reduce the probe effect
because the GC already involves synchronization between program threads, and dras-
tically affects the contents of the processors’ caches; it therefore masks the additional
work added by the profiler. Although we focus on Bartok-STM, we hope that the data
collected during profiling is readily available in other TM systems.

We introduce our optimization techniques in Sect. 3. These techniques can be used
after profiling a TM application to improve its performance by reducing the abort rate
and wasted work. First, the programmer can try to change the location of the most con-
flicting write operations by moving them up or down within the scope of the atomic
block. Depending on the underlying TM system, these changes may have significant
impact on the overall performance making the application to scale well or bad (see
Fig. 16). Second, scheduling mutually conflicting atomic blocks to not execute in
parallel would reduce the contention but when overused it may introduce new aborts
and also serialize transactions. Third, checkpointing the transactions just before the
most conflicting statements would reduce the wasted work by re-executing only the
invalid part of the transaction. Forth, using pessimistic reads or treating transactional
read operations as if they are writes can increase the forward progress in long running
read-only transactions. Fifth, excluding memory references from conflict detection
would increase the single-threaded performance and decrease aborts substantially.
While the last approach might be very effective, applying it is rather subtle because
such transformations do not preserve the program correctness.

In Sect. 4 we present a series of case studies to illustrate the use of our profiling and
optimization techniques. We describe how we ported a series of TM programs from
C to C#. Initially, three of these applications did not scale well after porting (Bayes,
Labyrinth and Intruder from the STAMP suite [5]). Profiling revealed that our ver-
sion of Bayes had false conflicts due to Bartok-STM’s object-level conflict detection.
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Another performance problem in Bayes was the wasted work caused by the aborts of
the longest atomic block which is read-only. The remedy for the former problem
was to modify the involved data structures and the remedy for the latter problem was
to schedule the atomic block to not execute together with the atomic blocks which
cause it to abort. Labyrinth did not scale well because the compiler instrumented calls
to the STM library for all memory accesses inside the program’s atomic blocks. In
contrast, the C version performed many of these memory accesses without using the
STM library. We were able to achieve good scalability in the C# version by using early
release to exclude the safe memory accesses from conflict detection. The authors of
the STAMP benchmark suite report that Intruder scales well on HTM systems but does
not scale well on some STMs. Indeed, initially, Intruder scaled badly on Bartok-STM.
However, after replacing a contended red-black tree with a hashtable, and rearranging
a series of operations, we achieved scalability comparable to that of HTM implementa-
tions. We also showed how to reduce wasted work by using nested atomic blocks. In
Intruder, wrapping the most conflicting statements in nested atomic blocks reduces
the wasted work from 45.5 to 36.8% (Table 7 versions Base and Nested Insert). Finally,
we verified that our modified version of Intruder continued to scale well on other STMs
and HTMs. These results illustrate how achieving scalability across the full range of
current TM implementations can be extremely difficult. Aside from these example, the
remaining workloads we studied performed well and we found no further opportunities
for reducing their conflict rates.

Finally, we discuss related work in Sect. 5 and conclude in Sect. 6.

2 Profiling Techniques

As with any other application, factors such as compiler optimizations, the operating
system, memory manager, cache size, etc. will have effect on the performance of
programs which use TM. However in addition to these factors, performance of trans-
actional applications also depends on (i) the performance of the TM system itself (e.g.,
the efficiency of the data structures that the TM uses for managing the transactions’
read-sets and write-sets), and (ii) the way in which the program is using transactions
(e.g., whether or not there are frequent conflicts between concurrent transactions).

Fig. 1 An example loop that
atomically executes a task and
updates array elements based on
the task’s result

int taskResult = 0;

1: while (!taskQueue.IsEmpty) {
2: atomic {
3: Task task = taskQueue.Pop();
4: taskResult = task.Execute();
5: for (int i < 0; i < n; i++) {
6: if (x[i] < taskResult) {
7: x[i]++;
8: } else if (x[i] > taskResult) {
9: x[i]--;
10: }
11: }
12: }
13: }

123



Int J Parallel Prog (2012) 40:25–56 29

Figure 1 provides a contrived example to illustrate the difference between TM-
implementation problems and program-specific problems. The code in the example
executes transactional tasks (line 4) and, depending on the task’s result, it updates
elements of the array x. This code would execute slowly in TM systems using naïve
implementations of lazy version management: every iteration of the for loop would
require the TM system to search its write set for the current value of variable task-
Result (lines 6 and 8). This would be an example of a TM-implementation problem
(and, of course, many implementations exist that support lazy version management
without naïve searching [18]). On the other hand, if the programmer had placed the
while loop inside the atomic block, then the program’s abort rate would increase
regardless of the TM implementation. This would be an example of a program-specific
problem.

Our paper focuses on program-specific problems. The rationale behind is that reduc-
ing conflicts is useful no matter what kind of TM implementation is in use; optimiz-
ing the program for a specific TM implementation may give additional performance
benefits on that system, but the program might no longer perform as well on other
TM systems. Nevertheless, together with the knowledge about the underlying TM
implementation the same profiling techniques can give valuable information about the
bottlenecks related to the TM-implementation.

In this section we describe our profiling techniques for transactional memory appli-
cations. We follow two main principles. First, we report the results at the source code
language such as variable names instead of memory addresses or source lines instead
of instruction addresses. Results presented in terms of structures in the source code
are more meaningful as they convey semantic information relevant to the problem and
the algorithm. Second, we want to reduce the probe effect introduced from profiling,
and to present results that reflect the program characteristics and are independent from
the underlying TM system. For this purpose, we exclude the operation time of the TM
system (e.g. roll-back time) from the reported results.

2.1 Conflict Point Discovery

In an earlier paper we introduced a “conflict point discovery” technique that identifies
the first program statements involved in a conflict [43]. However, after using this tech-
nique to profile applications from STAMP, we identified two limitations: (i) it does
not provide enough contextual information about the conflicts and (ii) it accounts only
for the first conflict that is found because one or other of the transactions involved is
then rolled back. In this paper we refer to our earlier approach as basic conflict point
discovery.

In small applications and micro-benchmarks most of the execution occurs in one
function, or even in just a few lines. For such applications, identifying the statements
involved in conflicts would be sufficient to find and understand the TM bottlenecks.
However, in larger applications with more complicated control flow, the lack of con-
textual information means that basic conflict point discovery would only highlight the
symptoms of a performance problem without illuminating the underlying causes.
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Fig. 2 In this example code two threads call functions which increment a shared counter with different
probabilities. Basic conflict point discovery will only report that the conflicts happen in increment.
However, without knowing which function calls increment most, the user cannot find and optimize the
sequence of function calls where most time is wasted. In this example the important calls would be via
probability(80) to increment

For example, in Fig. 2 the two different calls to functionprobability atomically
increment a shared counter by calling the function increment with a probability of
80 and 20%. When probability(80) and probability(20) are called in a
loop by two different threads, basic conflict point discovery will report that all conflicts
happen inside the function increment. But this information alone is not sufficient
to reduce conflicts because the user would need to distinguish between the different
stack back-traces that the conflicts are part of. In this case, the calls involving prob-
ability(80) should be identified as more problematic than those going through
probability(20). Similarly, for other transactional applications, the reasons for
the poor performance would most likely be for using, for example, inefficient parallel
algorithms, using unnecessarily large atomic blocks, or using inappropriate data
structures which has low degree of parallelism.

The second disadvantage of basic conflict point discovery is that it only identifies
the first conflict that a transaction encounters. It is possible that two transactions might
conflict on a series of memory locations and so, if we account for only the first conflict,
the profiling results will be incomplete. As a consequence, the user will not be able
to properly optimize the application and most likely will need to repeat the profiling
several times until all the omitted conflicts are revealed. The programmer can end up
needing to “chase” a conflict down through their code, needing repeated profile-edit-
compile steps. Figure 3 provides an example: basic conflict point discovery would
only identify the conflicts on obj1 (line 2 for Thread 1 and line 5 for Thread 2). How-
ever, the remaining statements are also conflicting and most likely will be revealed
by subsequent profiles once the user has eliminated the initial conflicting statements.
We address the described limitations namely by providing contextual information
about the conflicts and accounting for all conflicting memory accesses within aborted
transactions.

The contextual information comprises the atomic block where the conflict hap-
pens and the call stack at the moment when the conflict happens. It is displayed via two
views: top-down and bottom-up (Fig. 4). In both cases, each node in the tree refers to
a function in the source code. However, in the top-down view, a node’s path to the root
indicates the call-stack when the function was invoked, and a node’s children indicate

123



Int J Parallel Prog (2012) 40:25–56 31

Fig. 3 Basic conflict point
discovery would only display the
first statements where conflicts
happen. On the given examples
these statements are line 2 for
Thread 1 and line 5 for Thread 2.
However, the remaining
statements are also conflicting
and most likely revealed on the
subsequent profiles

2daerhT//1daerhT//
{cimota{cimota:1

...;1t=x.1jbo:2

...;2t=x.2jbo:3

...;3t=x.3jbo:4
;1t=x.1jbo...:5
;2t=x.2jbo...:6
;3t=x.3jbo...:7

}}:8

Top-down Bottom-up

Fig. 4 On the left is top-down tree view and on the right bottom-up tree view obtained from the 4-
threaded execution of non-optimized Intruder application. The top-down view (left) shows that almost
100% (82.6% + 17.4% summed from the two trees) of the total wasted work is accumulated at function
ProcessPackets. The bottom-up view (right) shows that 64.5% of the total wasted work is attributed
to function ProcessPackets, and 27.2% to function Queue.Push which is called from Proces-
sPackets and the rest to other functions. The non-translated addresses are internal library calls. Because
of different execution paths that follow from the main program thread and the worker threads the top-down
view draws 2 trees instead of 1

the other functions that it calls. The leaf nodes indicate the functions where conflicts
happen. Consequently, a function called from multiple places will have multiple par-
ent nodes. Conversely, in the bottom-up view, a root node indicates a function where
a conflict happens and its children nodes indicate its caller functions. Consequently, a
function called from multiple places will have multiple child nodes. Furthermore, to
help the programmer find the most time-consuming stack traces in the program, each
node includes a count of the fraction of wasted work that the node (and its children)
are responsible for.
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Fig. 5 Per-object bottom-up abort tree. This view shows the contended objects and the different locations
within the program where they have been involved in conflicts. Results shown are obtained from the 4
threaded execution of non-optimized Intruder application. For example, object fragmentedMapPtr has
been involved in conflict at 5 different places—3 in function ProcessPackets, 1 in Delete and 1
in Insert. Each object is also cumulatively assigned wasted work. Non-translated addresses are internal
library calls

To find all conflicting objects in an aborting transaction, we simply continue check-
ing the remaining read set entries for conflicts. In the rare case, when the other trans-
actions that are involved in a conflict are still running, we force them to abort and
re-execute each transaction serially. This way we collect the complete read and write
sets of the conflicting transactions. By intersecting the read and write sets, we obtain
the potentially conflicting objects. Unlike basic conflict point discovery, our approach
will report that all statements in the code fragment from Fig. 3 are conflicts. Our
profiling tool displays the relevant information about the conflicting statements and
conflicting objects in the bottom-up view (Fig. 4) and the per-object view respectively
(Fig. 5).

Besides identifying conflicting locations, it is important to determine which of them
have the greatest impact on the program’s performance. The next section introduces
the performance metrics which we use to do this, along with how we compute them.

2.2 Quantifying the Importance of Aborts

The profiling results should draw the user’s attention to the atomic blocks whose
aborts cause the most significant performance impact. As in basic conflict point dis-
covery, a naïve approach to quantify the effect of aborted transactions would only
count how many times a given atomic block has aborted. In this case results will
wrongly suggest that a small atomic block which only increments a shared counter
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and aborts 10 times is more important than a large atomic block which performs
many complicated computations but aborts 9 times. To properly distinguish between
such atomic blocks we have used different metric called WastedWork. WastedWork
counts the time spent in speculative execution which is discarded on abort.

Besides quantifying the amount of lost performance, it is equally important that the
profiling results surface the possible reasons for the aborts. For example, the Bayes
application has 15 separateatomicblocks, one of which aborts much more frequently
than the others (FindBestInsertTask). The WastedWork metric will tell us at
which atomic block the performance is lost, but to reduce the number of aborts the
user will also need to find the atomic blocks which cause FindBestInsert-
Task to abort. To mitigate this, we have introduced an additional metric ConflictWin.
ConflictWin counts how many times a given transaction wins a conflict with respect
to another transaction which aborts.

Using the information from the WastedWork and ConflictWin metrics, we con-
struct the aborts graph; we depict this graphically in Fig. 12, although our current
tool presents the results as a matrix. The aborts graph summarizes the commit-abort
relationship between pairs of atomic blocks; it is similar to Chakrabarti’s dynamic
conflict graphs [8] in helping to link the symptoms of lost performance to their likely
causes.

2.3 Identifying Conflicting Data Structures

Atomic blocks abstract the complexity of developing multi-threaded applications.
When using atomic blocks, the programmer needs to identify the atomicity in the
program whereas using locks the programmer should identify the shared data struc-
tures and implement atomicity for the operations that manipulate them. However, based
on our experience using atomic blocks, it is difficult to achieve good performance
without understanding the details of the data structures involved [15,42].

If the programmer wants transactional applications to have good performance it
is necessary to know the shared data structures and the operations applied to them.
In this case the programmer can use atomic blocks in an optimal way by trying to
keep their scope as small as possible. For example, as long as the program correct-
ness is preserved, the programmer should use two smaller atomic blocks instead
of one large atomic block or as in Fig. 1 put the atomic block inside the while
loop instead of outside. In an earlier paper, we illustrated examples where smaller
atomic blocks aborted less frequently and incurred less wasted work when they did
abort [15,23,28].

In addition, the underlying TM system may support language-level primitives to
tune performance, or provide an API that the programmer can use to give hints about
the shared data structures. For example, Yoo et al. [40] used the tm_waiver key-
word [26] to instruct the compiler to not instrument thread-private data structures with
special calls to the STM library. In Haskell-STM [17] the user must explicitly identify
which variables are transactional. To reduce the overhead of privatization safety, Spear
et al. [34] have described a system that lets the programmer explicitly indicate which
transactions privatize data [35]. We believe that profiling results can help programmers
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Fig. 6 This figure demonstrates our method of identifying conflicting objects on the heap. The code frag-
ment on the left creates a linked list with 4 elements. When the TM system detects a conflict in the atomic
block, it logs the address of the contended object. During GC, the conflicting address is traced back to the
GC root which is the list node. Then the memory allocator is queried at which instruction the memory at
address “0x08” was allocated. At the end, by using the debugger engine the instruction is translated to a
source line

use these techniques by describing the shared data structures used by transactions, and
how conflicts occur when accessing them.

In small workloads which in total have few data structures, the results from conflict
point discovery (Sect. 2.1) would be sufficient to identify the shared data structures.
For example, in the STAMP applications, there are usually only a small number of
distinct data structures, and it is immediately clear which transaction is accessing
which data. However, in larger applications, data structures can be more complex, and
can also be created and destroyed dynamically. To handle this kind of workload, our
prototype tool provides a tree view that displays the contended objects along with the
places where they are subject to conflicts (Fig. 5). In the example, the object frag-
mentedMapPtr has been involved in conflicts at 5 different places which have also
been called from different functions.

In our profiling framework we have developed an effective and low-overhead
method for identifying the conflicting data structures, both static and dynamic. It
is straightforward to identify static data structures such as global shared counters: it
is sufficient to translate the memory address of the data structure back to a variable.
However, it is more difficult when handling dynamically allocated data structures such
as an internal node of a linked list; the node’s current address in memory is unlikely
to be meaningful to the programmer.

For instance, suppose that the atomic block in Fig. 6 conflicts while executing
list[2] = 33 (assigning a new value to the third element in a linked list). To describe
the resulting conflict to the programmer, we find a path of references from an address
that is mapped to a symbol to the internal list node. This approach is similar to the
way in which the garbage collector (GC) finds non-garbage objects. Indeed, in our
environment, we map the conflicting objects to symbols by finding the GC roots that
they are reachable from. In particular, when a conflict happens we log the address
of the conflicting object. Later on, when GC traverses the memory for the reachable
objects we maintain list of paths which begin with a GC root and keep every path
which contains a conflicting object. If the GC root is a static object then its address
can be immediately translated to a variable name by using a debugger engine. If the
GC root is dynamically created, we use the memory allocator to find the instruction at
which GC root was allocated and translate the instruction to a source line. To do this,
we extended the memory allocator to record allocation instructions (i.e. places where
objects are allocated).
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2.4 Visualizing Transaction Execution

The next aspect of our profiling system is a tool that plots the execution of all the
transactions on a time line (Fig. 7). In the view pane the transactions start from the
left and progress to the right. Successfully committed transactions are colored black
and aborted transactions are colored gray. The places where a color is missing means
that no transaction has been running. The view in Fig. 7 plots the execution of the
Genome application from STAMP. From this view we can easily identify the phases
where aborts are most frequent. In this case, most aborts occur during the first phase
of the application when repeated gene segments are filtered by inserting them in a
hashtable and during the last phase when building the gene sequence.

The transaction visualizer provides a high-level view of the performance. It is par-
ticularly useful at the first stage of the performance analysis when the user identifies
the hypothetical bottlenecks and then analyzes each hypothesis thoroughly. Another
important application of the transaction visualizer is to identify different phases of the
program execution (e.g., regions with heavily aborting transactions).

To obtain information at a finer or coarser granularity, the user can respectively
zoom in or zoom out. Clicking at a particular point on the black or gray line displays
relevant information about the specific transaction that is under the cursor. The infor-
mation includes: read set size, write set size, atomic block id, and if the transaction
is gray (i.e., aborted) it displays information about the abort. By selecting a specific
region within the view pane, the tool automatically generates and displays summarized
statistics only for the selected region.

Existing profilers for transactional applications operate at a fixed granularity [2,
6,28,31]. They either summarize the results for the whole execution of the program
or display results for the individual execution of atomic blocks. Neither of these
approaches can identify which part of a program’s execution involves the greatest
amount of wasted work. But looking at Fig. 7 we can easily tell that in Genome
transactions abort at the beginning and the end of the program execution.

The statistical information summarized for the complete program execution is too
coarse and hides phased executions, whereas per-transaction information is too fine
grain and misses conclusive information for the local performance. Obtaining local

Fig. 7 The transaction visualizer plots the execution of Genome with 4 threads. Successfully committed
transactions are colored in black and aborted transactions are colored in gray. From this view, we can easily
distinguish the different phases of the program execution such as regions with high aborts. By selecting dif-
ferent regions in this view, our tool summarize the profiling data only for the selected part of the execution.
To increase the readability of the data, we have redrawn this figure based on a real execution
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performance summary is important for optimizing transactional applications because
we can focus on the bottlenecks on the critical path and then effectively apply Amdhal’s
law.

By using the transaction visualizer, the programmer can easily obtain a local per-
formance summary for the profiled application by marking the region that (s)he is
interested in. This will automatically generate summary information about the con-
flicts, transaction read and write set sizes, and other TM characteristics, but only for
the selected region. The local performance summary from Fig. 7 shows that aborts
at the beginning of the program execution happen only in the first atomic block
and aborts at the end of the program execution happen at the last atomic block in
program order.

The global performance summary that our tool generates includes most of the sta-
tistics that are already used in the research literature. These are total and averaged
results for transaction aborts, read and write set sizes, etc. In addition we build a his-
togram about the time two or more transactions were executing concurrently. This
histogram is particularly useful when diagnosing lack of concurrency in the program.
For example, it is possible that a program has very low wasted work but it still does
not scale because transactions do not execute concurrently.

2.5 Profiling Framework

We have implemented our profiling framework for the Bartok-STM system [20]. Bar-
tok-STM updates memory locations in-place by logging the original value for rollback
in case a conflict occurs. It detects conflicts at object granularity, eagerly for write oper-
ations and lazily for read operations. The data collected during profiling is typical for
many other TM systems, of course.

The main design principle that we followed when building our profiling framework
was to keep the probe effect and overheads as low as possible. We sample runtime
data only when a transaction starts, commits or aborts. For every transaction we log
the CPU timestamp counter and the read and write set sizes. For aborted transactions
we also log the address of the conflicting objects, the instructions where these objects
were accessed, the call stack of aborting thread and the atomic block id of the trans-
actions that win the conflict. We process the sampled data offline or during garbage
collection.

We have evaluated the probe effect and the overhead of our profiling framework on
several applications from STAMP and WormBench (Tables 1, 2). To quantify the probe
effect, we compared the application’s overall abort rate when profiling is enabled ver-
sus the abort rate when profiling is disabled; a low probe effect is indicated by similar
results in these two settings.

Our results suggest that profiling reduces the abort rate seen, but that it does not
produce qualitative changes such as masking all aborts. These effects are likely to
be due to the additional time spent collecting data reducing the fraction of a thread’s
execution during which it is vulnerable to conflicts. In addition, logging on abort has
the effect of contention reduction because it prevents transactions from being restarted
aggressively.
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Table 1 The abort rate (in %) when the profiling is enabled (“+”) and disabled (“−”)

# Threads Bayes+ Bayes− Gen+ Gen− Intrd+ Intrdr− Labr+ Labr− Vac+ Vac− WB+ WB−
2 4.39 4.69 0.09 0.10 3.69 3.51 0.19 0.15 0.80 0.80 0.00 0.00

4 16.29 27.31 0.29 0.50 14.90 13.65 0.35 0.36 2.30 2.45 0.00 0.00

8 53.74 66.08 0.50 0.82 39.64 37.41 0.40 0.47 4.91 5.30 0.02 0.02

Results show that the profiling framework introduces small probe effect by reducing the abort rate for some
applications. Results are average of 10 runs. Results for 1 are omitted because there are no conflicts

Table 2 Normalized execution time with profiling enabled (“+”) and profiling disabled (“−”)

# Threads Bayes+ Bayes− Gen+ Gen− Intrd+ Intrdr− Labr+ Labr− Vac+ Vac− WB+ WB−
1 1.59 1.00 1.28 1.00 1.29 1.00 1.07 1.00 1.26 1.00 0.71 1.00

2 1.00 0.56 0.92 0.65 0.97 0.58 0.64 0.61 0.83 0.59 0.60 0.55

4 0.23 0.23 0.91 0.50 0.91 0.36 0.45 0.46 0.58 0.40 0.41 0.33

8 0.21 0.20 0.72 0.50 1.57 0.38 0.72 0.56 0.53 0.34 0.33 0.22

Results are average of 10 runs and normalized to the single threaded execution of the respective workload
but with profiling disabled

In applications with large numbers of short-running transactions, overheads can be
higher since costs incurred on entry/exit to transactions are more significant. Profiling
is based on thread-private data collection, and so the profiling framework is not a
bottleneck for the applications’ scalability.

3 Profile Guided Optimization Techniques

In this section we describe several approaches to optimize transactional memory appli-
cations. The goal of these optimization techniques is to reduce the contention between
the transactions and also the wasted work incurred on abort. Some of them, for exam-
ple moving statements, are TM-implementation specific and others such as transaction
checkpointing are TM-implementation agnostic. To use the TM-implementation spe-
cific optimizations properly, the programmer should know the implementation of the
underlying TM system, whether it is eager or lazy versioning, conflict detection etc.
Other optimization approaches, such asatomic block scheduling are double edged—
they improve performance for the cost of transaction serialization. In like manner, early
release could be very effective optimization however its use is not safe and should be
used with care.

3.1 Moving Statements

Moving statements such as hoisting loop invariants outside of a loop is a pervasive
technique that optimizing compilers apply. Similarly, to reduce the cache miss rate,
one can decide to pre-fetch data by manually moving a memory reference statement
up in the code. Analogous to these examples, TM applications can also perform better
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detseN//dnE//gninnigeB//
1: atomic { atomic { atomic {
2: counter++ <statement 1> <statement 1>
3: <statement 1> <statement 2> <statement 2>
4: <statement 2> <statement 3> <statement 3>

......>3tnemetats<:5
{cimota;++retnuoc...:6

;++retnuoc}}:7
}:8

}:9

(a) (b) (c)

Fig. 8 A code where the increment of the shared counter is: a moved up (hoisted) to the beginning of the
atomic block, b moved down to the end of atomic block, and c wrapped inside a nested atomic block

by simply moving assignment statements (or statements that update memory) up or
down in the code. Figure 16 plots the execution time of the Intruder application from
the STAMP [5] benchmark suite using Bartok-STM [20]. In Beginning a call to a
method which pushes an entry to a queue is moved to the beginning of the atomic
block, and in End the call to the same method is moved to the end of the atomic
block. Figure 8 is a contrived code example which represent how the code changes in
Beginning and End look like.

The reason for the performance difference lies in the way how memory updates
are handled by the TM system. In Bartok-STM, all update operations first lock the
object and keep it locked until commit. If the requesting transaction sees that another
transaction has already locked the object for update it aborts itself. In STMs like Bar-
tok-STM and TinySTM [14] with encounter time locking, updates at the beginning
of an atomic block on a highly contended shared variable such as a shared counter
(Fig. 8a) may have the effect of a global lock. When one transaction successfully locks
the object it will keep the lock until commit. In the mean time all the threads that try
to execute the same atomic block will not be able to acquire the object’s lock and
will abort. This will serialize the program execution at this point. On the other hand,
when the same update operation is at the end of the atomic block (see Fig. 8b) the
transaction will keep the object locked for short time thus allowing other threads to
execute the code concurrently until the problematic statement.

Because the approach of improving performance by moving the location of the
statements relies on detecting WaW conflicts eagerly, it may not have effect on other
TM systems. For example, when executed on the TL2 STM library [10], the location
of the same statement affects the performance comparatively much less (see Fig. 17).
TL2 buffers updates and detects all types of conflicts lazily at commit time.

We can easily identify the statements to move by using conflict point discovery.
A statement which updates the memory and causes large wasted work would be a
candidate for moving its location. However, the changes that the programmer makes
should preserve the program correctness.

3.2 Atomic Block Scheduling

The purpose of transaction scheduling is to reduce the contention for the cost of serial-
ization. There is significant research on how transaction scheduling can be automated
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but to the best of our knowledge the problem of scheduling atomic blocks statically
has not been studied.

Dynamic transaction scheduling introduces overhead at runtime because of the
additional bookkeeping necessary to decide how to schedule the transactions. Static
scheduling does not introduce such overheads. In addition, the scheduling require-
ments of a transactional application may be simple and not require any adaptive run-
time algorithms. For example, Bayes from STAMP TM benchmark suite [5] has 15
atomic blocks but almost all the wasted work in the application is caused only
by two atomic blocks that abort each other. For this case, a decision to statically
schedule the two atomic blocks to not execute at the same time would be trivial.
To decide exactly which atomic blocks to schedule, the programmer needs to know
the atomic block which is responsible for the major part of the wasted work as well
as the list of the other atomic blocks that it conflicts with. Such information can be
obtained through abort graphs [44] (see Fig. 12). However, the programmer should be
aware that scheduling may not always deliver the expected performance. It is possible
that after setting a specific schedule new conflicts appear or the program execution
serializes.

3.3 Checkpoints

Various mechanisms have been proposed to implicitly checkpoint transactions at run-
time [3,37]. If a checkpointed transaction aborts, it is rolled back up to the earliest
valid checkpoint. Checkpoints can improve the performance of transactional appli-
cations because (i) the transaction is not re-executed from the beginning and (ii) the
valid checkpoints are not rolled back. The latter is particularly important for eager
versioning (i.e. in-place update) TM systems because rollback operations are expen-
sive. For example, suppose that we checkpoint the code in Fig. 8b at line 5. If conflict
is detected at line 6 when incrementing the counter and the remaining part of the
transaction (i.e. lines 1–5) is valid, then only the increment will be rolled back and
re-executed.

Techniques to automatically checkpoint transactions exists, but to the best of our
knowledge there is no study on statically placing checkpoints. In the ideal case, trans-
actions would re-execute only the code that is not valid. To achieve this, every transac-
tional memory reference should be checkpointed, however this would cause excessive
overhead. Therefore, it is necessary to identify where exactly to checkpoint a trans-
action. Good checkpoint locations are just before the memory references that cause
most of the conflicts. We can easily identify these locations by using conflict point
discovery [44]. The programmer can manually checkpoint transactions just before
the statements that cause most of the conflicts or this can be automated via feedback
directed compilation. Similarly to a transaction scheduling (Sect. 3.2), static check-
pointing can be combined with dynamic checkpointing to off-load the runtime for the
known conflicts.

Tables 6 and 7 show the effect of checkpointing an atomic block in Intruder. In
this experiment we used nested atomic blocks as shown in Fig. 8c because our STM
library did not have checkpointing mechanisms. In this case, if the nested atomic
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block is invalid but the code in the outer block is valid, only the nested atomic block
will re-execute. In effect this is the same as checkpointing at line 5 in Fig. 8a.

As we can see, one can implement checkpoints by combining the use of nested
atomic blocks. Furthermore, unlike checkpoints, nested atomic blocks are com-
posable and can be used in functions that are called within other atomic blocks
or outside atomic blocks [19]. A better technique are abstract nested transactions
(ANTs) [21]. Unlike checkpoints and nested transactions, the TM system can re-exe-
cute ANTs at later point when they are detected to be invalid.

3.4 Pessimistic Reads

To detect conflicts between transactions, the underlying TM implementation needs to
know which memory references are accessed for read and for write. High performance
STMs are not starvation-free [13,16], an implication of such design would allow one
transaction be always aborted by another transaction. For example, consider a simple
program of two atomic blocks AB1 and AB2. Suppose that AB1 is a long running
transaction which uses the value of a shared variable X to perform complicated oper-
ations and AB2 has only a single instruction which increments X . In this case, AB2
will cause AB1 to abort repeatedly because AB1 will not be able to reach the commit
point before AB2 (Fig. 9).

To overcome this problem the user may use pessimistic reads or treat read opera-
tions as if they are writes. In the first approach it is necessary to update all transactional
references to X with the proper pessimistic read operations. Without compiler support,
finding all such references manually might be difficult and in some cases impossible.
The latter approach is less intrusive because the programmer does not need to update
the other references to X . Using pessimistic reads or opening X for write in AB1 from
Fig. 9 would subsequently cause AB2 to abort and let AB1 to make forward progress.
However, this kind of modification, while providing forward progress for AB1, may
introduce new aborts.

We can find conflicting read operations such as X in AB1 from Fig. 9 by looking
at the results of conflict point discovery. From these results we can explicitly tell the
compiler to open the read operations involved in many conflicts for write.

3.5 Early Release

Early release is a mechanism to exclude entries in the transaction’s read set from con-
flict detection [30,33]. In certain applications it is possible that the final result of an

Fig. 9 AB1 is a long running
atomic block which uses the
value X and AB2 is a short
running atomic block which
increments X . If AB1 and AB2
execute concurrently, AB1 will
be most of the time aborted by
AB2

2BA//1BA//
{cimota{cimota:1

;++X;X=X_lacol:2
3: <statement 1> }
4: ...
5: <statement N>
6: }
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Fig. 10 Transaction T1 inserts number 2 and transaction T2 inserts number 6 in sorted linked list. Without
using early release T2 will abort and when using early release T2 will commit successfully

atomic block is still correct although the read set is not valid. For example, consider
an atomic block which inserts entries in a sorted linked list (Fig. 10). Thread T1
wants to insert value 2 and thread T2 wants to insert value 6. To find the right place to
insert the new values the two threads iterate over the the list nodes and consequently
add them to the transaction’s read set. T2 aborts because T1 finishes first and invali-
dates T2’s read set. However, T2 could still correctly insert the node although some
entries in its read set are invalid. In this case we can exclude all nodes except 5 from
conflict detection.
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After carefully studying the Lee’s path routing algorithm, Watson et al. [38] have
used early release to exclude a major part of the transaction’s read set from conflict
detection. To achieve similar results, Yoo et al. [40] instructed the compiler and Cao
Minh et al. [5] deliberately skipped inserting calls to the STM library while copy-
ing the shared matrix into a thread local variable in Labyrinth. Caching the values of
shared variables to a thread local storage, as in Bayes, is another form of excluding
the shared variables from conflict detection.

The experience of these studies reports that early release improves the applica-
tion performance significantly. However, the programmer should not forget that it is
not a safe operation (i.e. it can break program correctness). Applying this technique
requires prior knowledge about the shard data structures used in the algorithm and the
operations applied on them—namely wether or not the algorithm can be relaxed. The
available profiling tools can help in identifying the shared objects that are involved
in conflicts (Sect. 2.3). Provided with this information, the programmer can focus
on the specific objects and try to use early release when possible or use different
implementations for the data structures [44].

4 Case Studies

In this section we present a series of case studies of profiling and optimizing the
performance of applications from the STAMP TM benchmark suite [5] and from
the synthetic WormBench workload [41] by using our techniques. The goal of these
case studies is to evaluate the effectiveness of our profiling and optimization tech-
niques: namely wether the profiling techniques reveal the symptoms and causes of the
performance lost due to conflicts in these applications and wether our optimization
techniques indeed improve the performance of these applications.

To see whether our profiling and optimization techniques can be equally applied
across a range of TM implementations we utilize two different STMs—TL2 [10] and
Bartok-STM [20]. TL2 buffers speculative updates and detects conflicts lazily at com-
mit time for both reads and writes. It operates at word granularity by hashing a memory
address to transactional word descriptor. Bartok is an ahead of time C# to x86 compiler
with language level support for STM. Bartok-STM updates memory locations in-place
by logging the original value for rollback in case a conflict occurs. It detects conflicts
at object granularity, eagerly for write operations and lazily for read operations.

For this experiment we have ported several applications from the STAMP suite from
C to C#. We did this in a direct manner by annotating the atomic blocks using the
available language construct that the Bartok compiler supports. In the original STAMP
applications, the memory accesses inside atomic blocks are made through explicit
calls to the STM library, whereas in C# the calls to the STM library are automati-
cally generated by the compiler. WormBench is implemented in the C# programming
language.

4.1 Bayes

Bayes implements an algorithm for learning the structure of Bayesian networks from
observed data. Initially our C# version of this application scaled poorly (see Table 3).
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By examining the data structures involved in conflicts, we found that the most heavily
contended object is the one used to wrap function arguments in a single object of type
FindBestTaskArg (Fig. 11a). Bartok-STM detects conflicts at object granularity,
and so concurrent accesses to the different fields of the same object result in false
conflicts. The false conflicts caused 98% of the total wasted work. With 2 threads the
wasted work constituted about 24% of the program’s execution, and with 4 threads
it increased to 80%. We optimized the code by removing the wrapper object Find-
BestTaskArg and passing the function arguments directly (see Fig. 11b). After this
small optimization Bayes scaled as expected (Table 3).

From this point we wanted to see wether we can improve the performance of Bayes
more. We noticed that out of 15 atomic blocks only one, atomic block AB12,
aborts most and causes 92% of the total wasted work. AB12 calls the method Find-
BestInsertTask and from the per-atomic block statistics we could see that it

Table 3 The normalized execution time of Bayes, Labyrinth and Intruder before and after optimization

# Threads BayesNonOpt BayesOpt IntrdNonOpt IntrdOpt LabrNonOpt LabrOpt

1 1.00 1.00 1.00 1.00 1.00 1.00

2 0.32 0.56 1.16 0.58 5.25 0.61

4 1.49 0.23 2.92 0.36 30.42 0.46

8 4.81 0.20 N/A 0.38 N/A 0.56

Results are average of 10 runs and the execution time for each applications is normalized to its single threaded
execution time. “N/A” means that the application run longer than 10 min and was forced termination

//Function declaration with wrapper object
Task FindBestInsertTask(FindBestTaskArg argPtr) {

Learner learnerPtr = argPtr.learnerPtr;
Query[] queries = argPtr.queries;
...

}
...
// Preparing a wrapper object
FindBestTaskArg argPtr = new FindBestTaskArg();
argPtr.learnerPtr = learnerPtr;
argPtr.queries = queries;
...
// Pass arguments with a wrapper object
FindBestInsertTask(argPtr);

(a)

// Function declaration with explicit parameters
Task FindBestInsertTask(

Learner learnerPtr, Query[] queries, ...)
...
// Passing arguments without a wrapper object
FindBestInsertTask(learnerPtr, queries, ...)

(b)

Fig. 11 Code fragments from Bayes: a the original code with the wrapper object FindBestTaskArg;
b the optimized code with the removed wrapper object and passing the function parameters directly
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Fig. 12 Aborts graph of Bayes
when atomic blocks AB11 and
AB12 are scheduled to not
execute in parallel. In this figure
AB10 aborts AB12 and the
wasted work due to these aborts
is 46% from the total program
execution. Results are obtained
from an execution with 8 threads

Fig. 13 Bayes—this figure shows a histogram of the time

is the longest read-only transaction. Aborts graph shows that atomic block AB12 is
always being aborted by a non-read-only atomic block AB11. AB11 is a very short
running atomic block which updates and caches the shared variables baseLog-
Likelihood and numTotalParent into a thread local variable. Based on this
profiling information we have decided to statically schedule atomic blocks AB11
and AB12 to not execute in parallel. The results in Fig. 12 showed to be slightly better
but not encouraging because new pairs of aborting atomic blocks appeared. Now the
aborts dominated between B10 and AB12 constituting 46% of the total wasted work.
Despite adding an additional schedule between AB10 and AB12 the execution time
did not get better while wasted work was evenly distributed among the non-scheduled
atomic blocks.

Figure 13 is a histogram which shows the time when the execution of two or more
transactions are overlapping and Fig. 14 is a histogram which shows the number of
active transactions at the moment when a new transaction starts. In the both figures
we can see that scheduling atomic blocks limits the parallelism—fewer transac-
tions overlap during execution (Fig. 13) and there are fewer active transactions at the
moment when a new transaction starts (Fig. 14). Furthermore, in Fig. 13 we can see
that in the Base version (i.e. with no scheduling) about 35% of the time there is only
one transaction executing and 14% of the time there are eight transactions executing
in parallel. Considering that 83% of execution in Bayes is spent in transactions [5]
the results from the histogram might suggest that the execution of transactions sim-
ply do not overlap. However, the actual reason is different. Bayes has few very long
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Fig. 14 Bayes—this figure shows a histogram of the number of active transactions when a new transaction
starts execution

running atomic blocks and the remaining atomic blocks are comparably shorter
(e.g. 100×–10,000× shorter). Most of the time only one thread is executing one of
these long transactions and the remaining threads execute the short transactions. This
can be confirmed with the results from Fig. 14. In the Base version 80% of the time
when a new transaction stars there are already 7 other transactions running. After we
schedule AB11 (i.e. a short transaction) and AB12 (i.e. a 40,000 times longer transac-
tion) to not execute in parallel the number of active transactions drops significantly.

In Table 2 the non-optimized version of Bayes scales superlinearly from 1 to 2
threads. This phenomena happens because the algorithm for learning the structures is
relaxed by using a cached version of two shared variables. The subsequent operations
may operate on outdated values and cause the learning process to be shorter or longer.
In our case, for the suggested input the learning process was shorter.

4.2 Intruder

Intruder implements a network intrusion detection algorithm that scans network pack-
ets and matches them against a dictionary of known signatures. The authors of STAMP
report that this application scales well on HTM systems but does not scale well on
STMs [5]. Therefore understanding and eliminating the bottlenecks of this application
was a challenge for us.

Our profiling techniques showed that the most contended objects in Intruder are
fragmentedMapPtr and decodedQueuePtr. In 4-threaded execution, aborts
in which fragmentedMapPtrwas involved caused 67.6% wasted work and aborts
in which decodedQueuePtr was involved caused 27.1% of wasted work. The
wasted work of the both objects constituted 92.7% of the total program execution.
The fragmentedMapPtr object is a map data structure used to reassemble the
fragmented packets. Its implementation is based on red black tree and most important
conflicts were happening during lookup. On the other hand, the lookup was invoked
while adding a new entry to check if it already exists. Our approach of resolving the
bottleneck at fragmentedMapPtr was to replace the underlying implementation
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Table 4 Execution time of Intruder before and after optimization on Scalable-TCC, Eazy-HTM and TL2

# Threads TCC-Orig TCC-Opt Eazy-Orig Eazy-Opt TL2-Orig TL2-Opt

1 1.00 1.01 1.00 0.96 1.00 0.80

2 0.73 0.67 0.61 0.59 0.92 0.60

4 0.51 0.43 0.37 0.35 0.63 0.48

8 0.39 0.31 0.26 0.22 0.65 0.52

Results are average of 10 runs and normalized to the single threaded original version of Intruder

Table 5 The wasted work caused by the aborts of the different atomic blocks in Intruder

# Threads AB1 (%) AB2 (%) AB3 (%)

1 0.00 0.00 0.00

2 5.48 91.01 4.51

4 3.38 94.90 1.72

8 5.45 93.43 1.12

Results are normalized

with a chained hashtable. Unlike red black tree, when using hashtable transactions
access fewer objects (i.e. their read set is smaller) and consequently have lower prob-
ability of conflict. We have experimentally verified that using hashtable instead of
red black tree improves the application performance across different STM and HTM
implementations (see Table 4). For this experiment we used state-of-the-art HTM
systems (Scalable-TCC [7] and Eazy-HTM [36]) in a simulated environment.

Although we achieved satisfiable scalability for Intruder we continued to examine
its performance in more depth. Intruder has in total three atomic blocks and our per-
atomic block profiling showed that only one of them causes significant wasted work
(Table 5). The subjectatomic block contains only a call to methodDecoder.Pro-
cess (see Fig. 15). We used our profiling tool to see exactly which statements from
this atomic block are involved in conflicts. The results of conflict point discovery
are shown in Table 6 (version Base).

Most of the conflicts in our system are read-after-write (RaW) or write-after-read
(WaR) type and therefore detected at commit time (line 39). When the number of
threads is low, significant amount of wasted work is caused due to conflicts at the
statement which calls method decodedQueuePtr.Push (line 31). decoded-
QueuePtr data structure maintains the list of the packets which are assembled from
several segments. Conflicts at this statement are of write-after-write (WaW) type which
Bartok-STM detects eagerly. When the number of threads increases, the wasted work
at the call to method fragmentedListPtr.InsertSorted becomes domi-
nant. fragmentedListPtr is a helper data structure (sorted list) used to assemble
a packet from several segments. Conflicts at the call to InsertSorted are also
WaW. Contention at this point increases with the number of threads because the prob-
ability of multiple threads inserting different segments belonging to the same packet
increases.
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1: public Error Process(Packet packetPtr) {
2: ...
3: if (numFragment > 1) {
4: ...
5: if (fragmentedListPtr == null) {
6: ...
7: } else {
8: ...
9: fragmentedListPtr.InsertSorted(packetPtr);
10: if (fragmentedListPtr.GetSize() == numFragment) {
11: int i, numByte = 0;
12: foreach (Packet fragmentPtr in fragmentedListPtr) {
13: if (fragmentPtr.FragmentId != i) {

;)dIwolf(evomeR.rtPpaMdetnemgarf:41
;ETELPMOCNI_RORRE.rorrEnruter:51

16: }
17: numByte += fragmentPtr.Length;
18: i++;
19: }
20:
21: char[] data = new char[numByte];
22: int dst = 0;
23: foreach (Packet fragmentPtr in fragmentedListPtr){
24: Array.Copy(fragmentPtr.Data, data, dst);
25: dst += fragmentPtr.Length;
26: }
27: Decoded decodedPtr = new Decoded();
28: decodedPtr.flowId = flowId;
29: decodedPtr.data = data;
30:
31: decodedQueuePtr.Push(decodedPtr);
32: fragmentedMapPtr.Remove(flowId);
33: }
34: }
35: } else {
36: ...
37: } // end of if (numFragment > 1)
38: return Error.ERROR_NONE;
39: }

Fig. 15 Code fragment from Intruder. Method Decoder.Process is called inside an atomic block.
Because of space constraints some irrelevant code such as initializations are omitted

We tried to reduce wasted work by moving the call to Push from the end of the
atomic block (line 31) to the beginning of theatomic block (line 8). We anticipated
that detecting conflicts earlier and aborting transactions earlier would generate less
wasted work—speculative execution and state to rollback. However, opposite to our
expectations the performance of the application degraded (see Fig. 16). The conflict
point analysis for the modified version showed that the poor performance is due to
the increase in the number of re-executions and the abort rate of the atomic block
(Table 6 version Push Move Up).

The reason for the increase in the number of re-executions and consequently the
abort rate is specific to the implementation of Bartok-STM. When threads are about
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Table 6 The transactional characteristics of the atomic block which executes function Decoder.
Process from Fig. 15

# Threads Version InsertSorted Push Commit Abort #Re-execute Wasted work
(%) (%) (%) (%) (%)

2 Base 2.94 48.06 49.00 1.88 0.02 2.28

Push Move Up 0.00 100.00 0.00 58.48 1.43 40.16

Nested Push 11.77 9.22 79.01 1.42 0.01 1.14

Nested Insert 60.80 38.79 0.37 1.38 0.01 2.02

Nested Ins. + Push 98.54 0.70 0.76 1.38 0.01 1.36

4 Base 19.16 23.41 57.42 13.78 0.16 14.74

Push Move Up 0.0 100.00 0.0 70.60 2.41 63.30

Nested Push 28.26 2.01 69.73 9.50 0.11 10.60

Nested Insert 88.15 10.33 1.52 18.48 0.27 14.36

Nested Ins. + Push 97.53 0.08 2.39 8.27 0.09 11.30

8 Base 38.38 13.31 48.31 36.16 0.57 40.84

Push Move Up 0.00 100.00 0.0 77.10 3.38 83.45

Nested Push 44.13 0.11 55.76 28.46 0.40 42.02

Nested Insert 90.32 1.50 8.18 13.45 0.16 23.83

Nested Ins. + Push 99.05 0.04 0.91 25.40 0.34 39.60

InsertSorted, Push and Commit indicate the wasted work caused by the conflicts detected respectively at
the calls to methods InsertSorted (line 9), Push (line 31) and when transaction commits (line 39).
Abort indicates the abort rate of this atomic block. #Re-execute indicates the number of consecutive
re-executions when abort happens. Wasted Work indicates the part of this atomic block execution which
was wasted because of aborts

Fig. 16 This figure shows the
effect of changing the location
of only one statement inside an
atomic block on typical STM
systems which detect
Write-After-Write conflicts
eagerly. At Beginning an update
operation is near the beginning
of an atomic block and at End
the update operation is near the
end of the atomic block

to update the decodedQueuePtr object, the TM system first locks the object. In
this case when one thread successfully acquires object’s lock all the other threads fail
and abort until the lock is released during commit. In fact, the updates on decoded-
QueuePtr have the same effect as if it is a global lock. When the update is at the end
of the atomic block (line 31) threads can execute large part of the atomic block
concurrently, but when it is at the beginning of the atomic block (line 8) threads
serialize trying to acquire the lock for decodedQueuePtr. The serialized execution
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Fig. 17 This figure shows the
effect of changing the location
of only one statement inside an
atomic block on typical STM
systems which detect
Write-After-Write conflicts
lazily. At Beginning an update
operation is near the beginning
of an atomic block and at End
the update operation is near the
end of the atomic block

is also confirmed by reading the histogram of the time when transactions are executed
concurrently. However, on TM systems that detect WaW conflicts lazily at commit
time such code changes do not have significant effect. We have performed the same
experiment using TL2. In this case the performance of Intruder is similar in both cases
(see Fig. 17).

As discussed in Sect. 3.3, the high abort rate at the statements which call Push and
InsertSorted suggests that using checkpoints or nested atomic blocks would
improve the performance. We have carried three different experiments: (i) we have
wrapped the call to Push in a nested atomic block (Table 6 version Nested Push),
(ii) we have wrapped the call to InsertSorted in a nested atomic block (Table 6
version Nested Insert) and (iii) we have wrapped both calls in nested atomic blocks
(Table 6 version Nested Ins. + Push). We have extended Bartok-STM to support partial
roll back for nested transactions i.e. if the outer transaction is valid, only the nested
transaction will re-execute.

From conflict point discovery we can see that invoking Push inside a nested trans-
action reduces the wasted work and improves the performance of the outer atomic
block (Table 6 version Nested Push). The nested atomic saves time by preventing
the outer transaction from rollback and re-execution when it is valid. This modifica-
tion has also changed the balance over the sources of wasted work by shifting some
of the wasted work to InsertSorted and Commit. When only InsertSorted
is wrapped in a nested atomic block we can see that the wasted work at the call
to InsertSorted increases with the same amount at which conflicts on Commit
decrease. This suggests that besides the WaW conflicts, there are also RaW and WaR
conflicts which are detected at the end of the commit. When using nested transactions,
most of these conflicts are detected when the nested transaction commits, otherwise
the same conflicts are detected when the outer transaction commits. In other words,
the nested atomic block changes the conflict detection to an earlier point during
the execution of the outer atomic block (i.e. the end of the nested atomic block).
In effect, this reduces the amount of speculative execution due to conflicts which
otherwise would be discovered at the end of the outer atomic block. Using nested
atomic blocks at both places subsumes the observed results from conflict point
discovery (Table 6 version Nested Ins. + Push).
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Table 7 Transactional characteristics of Intruder summarized for the whole program execution

# Threads Version Norm. time Abort (%) WW (%)

2 Base 0.54 2.38 3.20

Push Move Up 0.80 28.35 27.34

Nested Push 0.54 3.14 2.66

Nested Insert 0.54 2.76 3.30

Nested Ins. + Push 0.54 3.08 2.98

4 Base 0.31 11.52 17.56

Push Move Up 0.75 72.22 77.90

Nested Push 0.30 12.64 16.10

Nested Insert 0.31 10.98 18.48

Nested Ins. + Push 0.32 9.93 15.77

8 Base 0.27 32.12 45.50

Push Move Up 0.92 90.10 96.03

Nested Push 0.28 33.40 53.48

Nested Insert 0.25 26.45 36.80

Nested Ins. + Push 0.30 29.78 47.38

Norm. Time is the normalized execution time of each version to its single threaded execution, Abort is the
abort rate, WW is the wasted work caused by aborts

Table 7 shows the summarized results over the whole program execution for the
different versions of Intruder. These results suggest that the best performance for 4
threads is achieved when Push is called inside a nested atomic and for 8 threads
when InsertSorted is called inside nested atomic block. Despite the lower
wasted work the execution time of Intruder is not significantly better than the base
version. The reason is that nested atomic blocks incur small runtime overhead which
is not always amortized by the saved wasted work.

Early release, which is demonstrated in the following section, is another technique
that can squiz a bit more performance from Intruder. As described in Fig. 10, it is
possible to use early release when packet segments are inserted in sorted order in
fragmentedListPtr (Fig. 15 line 9).

Last but not least, we would like to note that the authors of STAMP have designed
this benchmark suite with the purpose to benchmark the performance of different TM
implementations. Therefore, to benchmark broad spectrum of implementations it is
not necessary that applications in this suite are implemented in the most optimal way
and expected to scale. In fact, Intruder is a very useful workload because it illustrates
how an application’s behavior can be dependent on the TM system that it uses. We
also believe that STAMP authors were aware that using hashtable instead of red black
tree would make the application more scalable for STMs.

4.3 Labyrinth

Labyrinth implements a variant of Lee’s path routing algorithm used in drawing circuit
blueprints. The only data structure causing conflicts in this application was the grid
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on which the paths are routed. Almost all conflicts were happening in the method that
copies the shared grid into a thread local memory. The wasted work due to the aborts
at this place amounted to 80% of the total program execution with 2 threads and 98%
with 4 threads. In this case we followed a well known optimization strategy described
by Watson et al. [38]. The optimization is based on domain specific knowledge that
the program still produces correct result even if threads operate on an outdated copy
of the grid. Therefore, we annotated the grid_copymethod to instruct the compiler
to not instrument the memory accesses inside grid_copy with calls to the STM
library, which in fact is functionally the same as using early release. After this opti-
mization Labyrinth’s execution was similar to the one reported by the STAMP suite’s
authors [5] (see Table 3).

Although our prior knowledge of the existing optimization technique, this use case
serves as a good example when TM applications can be optimized by giving hints to
the TM system in similar way as with early release.

4.4 Genome, Vacation, WormBench

Genome, Vacation and WormBench scaled as reported by their respective authors and
had very little wasted work (see Table 8). In these applications, there was not any
opportunity for further optimizations.

In Vacation we saw that the most aborting atomic block encloses a while loop.
We were tempted to move the atomic block inside the loop as in Fig. 1 but that
would change the specification of the application that the user can specify the number
of the tasks to be executed atomically. Moving the atomic block inside the loop
would always execute one task and therefore reduce the conflict rate but the user will
no longer be able to specify the number of the tasks that should execute atomically.
Also, similar changes may not always preserve the correctness of the program because
they may introduce atomicity violation errors. In Genome, though very few, aborts
occurred in the first and the last atomic blocks in the program order (see Fig. 7).

Table 8 Percentage of the wasted work due to aborts in Genome, Vacation and WormBench

# Threads Application Abort (%) Wasted work (%)

2 Genome 0.10 0.10

Vacation 0.80 1.20

WormBench 0.00 0.00

4 Genome 0.50 0.20

Vacation 2.45 4.80

WormBench 0.01 0.02

8 Genome 0.82 0.50

Vacation 5.30 7.90

WormBench 0.03 0.07
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In our setup, WormBench had almost not conflicts—in 8-threaded execution from
400,000 transactions only about 1,100 aborted.

5 Related Work

Chafi et al. developed the Transactional Application Profiling Environment (TAPE)
which is a profiling framework for HTMs [6]. The raw results that TAPE produces
can be used as input for the profiling techniques that we have proposed. This would
enable profiling transactional applications that execute on HTMs or HyTMs.

In a similar manner, the Rock processor provides a status register to understand
why transactions abort [9] (reflecting conflicts between transactions, and aborts due to
practical limits in the Rock TM system). Examples include transactions being aborted
due to a buffer overflow or a cache line eviction. Profiling applications in this way is
complementary to our work which will allow users to further optimize their code for
certain TM system implementations.

Concurrent with our own work, Chakrabarti [8] introduced dynamic conflict graphs
(DCG). A coarse grain DCG represents the abort relationship between the atomic
blocks similar to aborts graph (see Fig. 12). A fine grain DCG represents the conflict
relationship between the conflicting memory references. To identify the conflicting
memory references, Chakrabarti proposed a technique similar to basic conflict point
discovery [43]. Our new extensions over basic conflict point discovery (Sect. 2.1)
would generate more complete DCGs. The more detailed fine grain DCGs would
complement the profiling information by linking the symptoms of lost performance to
the reasons at finer statement granularity. In addition, identifying conflicting objects is
another feature which relates the different program statements where conflicts happen
with the same object and vice versa.

Independently from us, Lourenço et al. [24] have developed a tool for visualizing
transactions similar to the transaction visualizer that we describe in Sect. 2.4. They also
summarize the common transactional characteristics that are reported in the existing
literature such as abort rate, read and write set, etc. over the whole program execution.
Our work complements theirs by reporting results in source language such as variable
names instead of machine addresses. Also, we provide local summary which is helpful
for examining the performance of specific part of the program execution.

In an earlier paper we profiled Haskell-STM applications using per-atomic block
statistics [31]. We extend this work by providing mechanisms to obtain statistics at
various granularity, including per-transaction, per-atomic block, local and global
summary. In addition, our statistics include contextual information comprising the
function call stack which is displayed via the top-down and bottom-up views. The
contextual information helps relating the conflicts to the many control flows in large
applications where atomic blocks can be executed from various functions and where
atomic blocks include library calls. In the same work we also explored the common
statistical data used in the research literature to describe the transactional characteris-
tics of the TM applications: time spent in transactions, read set, write set, abort rate,
etc. In addition to these results we generate a histogram about how much of the trans-
actions’ execution interleave. This information is particularly useful to see the amount
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of parallelism in the program and find cases when a program does not abort but also
does not scale.

Adl-Tabatabai et al. [1] and Harris et al. [20] have described and implemented
transactional memory optimizations in compilers with language level support of soft-
ware transactional memory. Some of these leverage existing compiler optimizations
such as loop transformations or common subexpression elimination on transactional
code. Others are transactional memory specific and target detecting and eliminating
redundant calls to the STM library such as repeated logging of the same object. For,
example when the compiler sees that an object is first read and then updated, then the
compiler can skip instrumenting OpenForRead and instrument only one Open-
ForWrite call for both operations. This can be seen similar to using pessimistic
reads (Sect. 3.4) however pessimistic reads can be used also for objects that are only
read but not updated. Our optimization techniques are complementary and can be
applied on a code which is automatically optimized by the compiler. Unlike automatic
compiler optimizations, our techniques rely on prior profiling information about the
program execution and the underlying TM implementation.

To reduce aborts, Sonmez et al. [32] have interchangeably used pessimistic and opti-
mistic reads in the Haskell runtime. Whenever an object becomes highly congested
it uses pessimistic reads and whenever it becomes less congested it switched back
to optimistic reads. Identifying conflicting objects at runtime and switching between
optimistic and pessimistic logging comes with additional overhead. Using conflict
point discovery, the programmer can easily identify the always conflicting objects and
by using local transactional summaries the programmer can see the phases when an
object is contended and when not. In such case the programmer can statically spec-
ify whether to open an object for read pessimistically and when to switch between
pessimistic and optimistic reads. Static decisions can be used to exclude objects from
dynamic decisions. This would reduce the runtime overhead of identifying conflicting
objects and switching between two logging approaches. On the other side, dynamic
decisions would increase the parallelism by switching between pessimistic and opti-
mistic logging earlier than the static specification.

Several researchers have examined various methods for scheduling transactions
dynamically [11,12,25,39]. Typically transactions are continuously monitored how
frequently they abort. Whenever the abort rate exceeds a certain threshold transac-
tions are serialized to reduce contention. Other approaches go step further by keeping
history of the read and write sets of the transactions and try to predict weather two
atomic blocks will conflict if they are executed concurrently. When possible the
TM system may schedule two atomic blocks that are likely to conflict to execute
on the same core. Unlike, dynamic scheduling, static scheduling cannot be flexible
and adapt to the changing behavior of transactions. However, static scheduling does
not have runtime overheads and might perform better in cases when the transactional
characteristics of atomic blocks are constant. In addition, these two approaches can
be combined to complement each others deficiencies—static scheduling can be used
for the atomic blocks with predictive behavior and dynamic scheduling for those
with non-predictive behavior.
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6 Conclusion

In this paper we have introduced new techniques for profiling and optimizing trans-
actional applications. The goal of our work is to provide the programmers means for
discovering and resolving the TM bottlenecks in their applications. Our profiling tech-
niques produce comprehensive information about transactions’ aborts, wasted work
and conflicts. The detailed profiling information can be subsequently used to optimize
the transaction execution in a way to reduce the conflicts.

To examine the effectiveness of the proposed techniques we have profiled appli-
cations from STAMP TM benchmark suite and WormBench. Based on the profiling
results we could successfully optimize Bayes, Intruder and Labyrinth.
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