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Abstract This paper investigates a high performance implementation of an Arbi-
trary Lagrangian Eulerian moving mesh technique on shared memory systems using
OpenMP environment. Moving mesh techniques are considered an integral part of a
wider class of fluid mechanics problems that involve moving and deforming spatial
domains, namely, free-surface flows and Fluid Structure Interaction (FSI). The mov-
ing mesh technique adopted in this work is based on the notion of nodes relocation,
subjected to a certain evolution as well as constraint conditions. A conjugate gradi-
ent method augmented with preconditioning is employed for solution of the resulting
system of equations. The proposed algorithm, initially, reorders the mesh using an
efficient divide and conquer approach and then parallelizes the ALE moving mesh
scheme. Numerical simulations are conducted on the multicore AMD Opteron and
Intel Xeon processors, and unstructured triangular and tetrahedral meshes are used for
the 2D and 3D problems. The quality of generated meshes is checked by comparing
the element Jacobians in the reference and current meshes, and by keeping track of
the change in the interior angles in triangles and tetrahedrons. Overall, 51 and 72%
efficiencies in terms of speedup are achieved for both the parallel mesh reordering and
ALE moving mesh algorithms, respectively.
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1 Introduction

Adaptive mesh motion techniques constitute a major component of fluid flow problems
where the domain of computation changes as a function of time. This situation arises
both in internal as well as in external flows. Examples of typical external flows are:
free-surface waves interacting with off-shore oil platforms, flows around deformable
structures moving through the fluid domain, and flows around propeller of submarines
and surface ships that constitute their propulsion mechanisms. Likewise, examples
of internal flows are: free-surface oscillations in the liquid storage tanks that lead to
flow induced vibrations in the structures, and cardiovascular blood flow through a
distensible arterial system.

Various viewpoints have been pursued in the literature to develop good mesh mov-
ing techniques. In these works underlying objective is to deliver viable computational
grids that not only satisfy the physics based constraints of uniform evolution of the
mesh with the fluid continuum at the moving boundaries, but also provide high mesh
resolutions in regions of steep gradients in the solution. The methods adopted can be
broadly grouped into three classes: h-refinements or adaptive local mesh refinements,
p-refinement or the local polynomial enhancements, and r-refinements or relocation
of mesh nodal points, while keeping the option of maintaining element connectivity
[1–9] and [10]. Following the r-refinement concept, Masud and Hughes [8] proposed
a method based on Galerkin/Least-Squares type modification of the Laplace equation
that introduces spatially varying scalable-incompressibility effects in the computa-
tional domain. This method was applied to a variety of 2D problems by Masud et al. [9]
and extended to 3D problems by Kanchi and Masud [10]. Tezduyar and co-workers
proposed a solution of modified elasticity equations wherein element Jacobian was
excluded in the numerical calculations, thereby introducing variable stiffening effect
in the computational domain [11] and [12]. Efficient time-integration techniques for
flow problems involving moving and deforming meshes have been pursued by Farhat
et al. [13]. Masud [14] investigated the effects of the moving mesh on the stability of
fluid flow equations to solve moving boundary flow problems in the Arbitrary Lagrang-
ian Eulerian (ALE) frame of reference. In the rest of this paper moving mesh based
on the ALE frame of reference would be termed as ALE moving mesh. Khurram and
Masud [15], and Calderer and Masud [16] also employed the ALE moving mesh con-
cept in multiscale/stabilized formulation of the incompressible Navier-Stokes equa-
tions. A literature review reveals that ALE moving mesh schemes can be applied to
a wide range of FSI problems like human breathing system, blood circulatory sys-
tem, aerodynamic behavior of aircrafts, flows around ships and submarines, seismic
response of liquid storage tanks, propagation of solitary and shock waves and even in
the flow over micro structures.

For computational fluid dynamics, the mesh moving techniques need to be inte-
grated with the partial differential equations that govern the flow of fluid. This is
accomplished by employing the ALE framework, wherein part of the mesh can be
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treated as an Eulerian mesh, while in some other regions the mesh nodal points may
be allowed to move independent of the fluid particle motion to accommodate the
motion and deformation of the domain of computation. Consequently, in ALE based
methods for fluid mechanics, mesh motion is a precursor to the continuously evolving
flow problems in the various time steps. For transient calculations that involve mil-
lions of elements and thousands of time steps, optimizing the mesh moving scheme
for massively parallel architectures can become a formidable task. A literature review
shows that most of the work for parallel adaptive meshes is conducted on distributed
memory systems [17–20] and [21]. Graph partitioning techniques, using the minimum
cut set [19,20] and [21], and octree partition method [17] and [18] have been applied
to compute the mesh refinement in parallel. Mitchell [18] presented better results for
the dynamic load balancing with adaptive meshes using octree based method over
the graph based partitioning, Hilbert space filling curve (HSFC), recursive coordinate
bisection (RCB) and recursive inertial bisection (RIB). Multilevel graph partitioning
techniques using Metis library have been studied to provide the functionality to reorder
and partition the irregular graphs [22,23] and [24].

This paper presents a novel parallel algorithm for the ALE moving mesh problem.
The underlying method is based on the r-refinement involving node relocation, mesh
reordering and work load re-distribution using sampling approach [25] and [26]. The
proposed algorithm is implemented on shared memory machines using OpenMP [27]
and performance results are reported. In particular, quadtree and octree (spatial data
structures) are employed for the 2D and 3D moving mesh problems, respectively, along
with the multi-dimensional quicksort technique to reorder and partition the mesh. For
the case where mesh is already partitioned over multiple threads or processors, we
have introduced a novel approach to reorder mesh that is based on regular sampling
and samplesort techniques [25] and [26]. This approach selects a splitters set from
the original mesh and partitions the mesh for dynamic load balancing. The mesh reor-
dering reduces the cache miss rate, particularly for the processors with small cache
memory. It also reduces the bandwidth of a matrix in the system of linear equations,
which is an NP-hard problem [28] and [29]. Reducing the system matrix bandwidth
is an important issue to solve the problems using finite element methods (FEMs) [30]
and [31]. Numerical simulations are conducted on four cores of AMD machine and
eight cores of Intel Xeon machine. Quality of a mesh is verified by comparing the
element Jacobian in the current mesh with the corresponding element Jacobian in the
reference or the parent mesh. Another check of the quality of the mesh is facilitated by
tracking the change in the interior angles of triangles and tetrahedrons. Interior angles
close to that of the reference triangles and tetrahedral elements indicate a good quality
element.

The rest of the paper is organized as follows. For the sake of completeness, Sect. 2
outlines the underlying variational structure of the moving mesh problem. The serial
algorithm for optimization using preconditioned conjugate gradient method is pre-
sented in Sect. 3. Section 4 presents a mesh reordering algorithm based on quadtree,
octree, quicksort and sampling. Section 5 discusses the parallelization part of the mov-
ing mesh algorithm. Numerical experiments are presented in Sect. 6, discussion on
numerical results is presented in Sect. 7, and conclusion is drawn in Sect. 8.
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2 Boundary Value Problem for the ALE Moving Mesh Scheme

Boundary value problem (BVP) for the ALE moving mesh method is taken from
Masud et al. [8,9] and [10]. The BVP is defined over domain � ⊂ Rnsd with smooth
boundary �, where nsd denotes the number of spatial dimensions. Here, � consists of
the fixed � f and the moving �m boundaries; such that

� = � f ∪ �m (1)

with

∅ = � f ∩ �m (2)

The underlying equations for mesh motion comprise the Laplace equation defined
over domain and the prescribed moving and fixed boundary conditions on parts of the
boundary, respectively.

∇2u = 0 in � (3)

u = g on �m (4)

u = 0 on � f (5)

Equations (3), (4) and (5) are governing equations of the moving mesh problem with
both the moving and fixed boundary conditions, respectively. Spaces relevant to the
BVP are defined as:

S = {u | u ∈ ((H1(�))nsd , u = g on �m and u = 0 on � f } (6)

V = {w | w ∈ (H1
0 (�))nsd } (7)

where H1(�) denotes the space of functions in L2(�) with generalized derivatives
also in L2(�). H1

0 (�) is a subset of H1(�), whose members satisfy the zero bound-
ary conditions and w is an arbitrary weight function [9]. The Laplace equation for the
unknown displacement field works well for problems where the meshes are composed
of approximately equal-sized elements, and the motion of the interface boundary is of
the order of the size of the elements. If the motion of the interface boundary is larger
than the size of the elements adjacent to the moving boundary then employing equa-
tion (3) results in overturning of the elements which results in algorithm breakdown.
Typical fluid meshes invariably have higher resolution close to the moving boundaries
than in the far field. In order to prevent the overturning of the smaller elements we add
a constraint on the gradient of the displacement field:

|∇uh | ≤ α (8)

where α ∈ [0, 1) is a tolerance parameter for the element distortion. In order to impose
this constraint, we design an element based weight function τ e in �e, that is designed
such that it imposes the constraint condition strongly over the smaller elements as
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compared to that over the larger elements. It thus introduces a stiffening effect that is
inversely proportional to the size of the elements. A simple definition of τ e is:

τ e = 1−�min/�max

�e/�max
(9)

where �e,�min and �max are the current, minimum and maximum areas (2D prob-
lem) or volumes (3D problem) of an element. Finite element form of the problem is
defined as [9]:

B(wh, uh) = 0 (10)

B(wh, uh) = (∇wh,∇uh)+
nel∑

e=1

τ e(∇wh,∇uh)�e (11)

where nel is the total number of elements and (·, ·) denotes L2 inner product, which
is bilinear, continuous and symmetric. In general, the L2 inner product of two real
functions f and g on any space X is defined as:

( f, g)L2 =
∫

X

f gdx (12)

Preconditioned conjugate gradient (PCG) solver is employed to solve the finite ele-
ment optimization problem defined in the Eq. (10) and (11) [8,9] and [10]. Both the
tolerance and iterative variables are used to check the convergence of the solution.

3 Description of Serial ALE Moving Mesh Algorithm

The serial ALE moving mesh algorithm uses the following steps to generate a new
mesh using Eqs. (10) and (11):

1. Generate the element stiffness matrix.
2. Move the boundary nodes subject to given constraints.
3. Generate the new nodal values of the mesh using PCG.
4. Update the existing nodal values to generate a new mesh.

Algorithm 1 depicts the serial algorithm to generate the new mesh using PCG method,
described in [8] and [32]. A system of linear equations is defined by Av = b, where A
is the element stiffness matrix. The values of b (vector) are equal to the displacement
of the boundary nodes on the �m , and on internal nodes, values of the respective b are
equal to 0.

Lines 1–10 initialize the uncoupled equations. Line 3 computes the preconditioned
matrix P through the diagonal scaling of the element stiffness matrix A to solve the
system of algebraic equations. Here, P is the nodal matrix and A is the element matrix.
Lines 11–21 iterate j to the specified number of steps to achieve convergence of the
solution that is integrated with the line search method in line 12. Line 13 updates
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Algorithm 1 Precondition conjugate gradient algorithm (Ref [32])
Require: Element stiffness matrix A

Step 1: Initialize the uncoupled equations
1. r0 ← b
2. v0 ← 0
3. P ← diagonal(A)

4. for j ← 0 to nel do
5. if Ai j = 0 ∀ i �= j then
6. v j ← r j P−1

j j
7. r j ← 0
8. end if
9. q1 ← z1 ← P−1 r0
10. end for

Step 2: Iterate j (user defined) to achieve convergence and to update the solution
11. for j ← 1 to given_steps do
12. α j ← r j−1·z j

q j ·Aq j
13. v j ← v j−1 + α j q j
14. r j ← r j−1 − α j Aq j

Check for the convergence (δ is a user defined tolerance)
15. if ‖r j‖ ≤ δ‖r0‖ then
16. return
17. end if

Compute a new conjugate direction
18. z j+1 ← P−1r j

19. β j+1 ← r j ·z j+1
r j−1·z j

20. q j+1 ← z j+1 + β j+1q j
21. end for

the vector v of the algebraic equations and line 14 calculates the new residual for
j th iteration. Lines 15–17 check the convergence of the solution. Finally, lines 18–21
compute the new conjugate direction to update the solution for the next iteration.

A two step methodology is adopted in order to solve the ALE moving mesh problem
in parallel. In the first step, an un-deformed mesh is spatially ordered and a new mesh
is created using the parallel ALE moving mesh generation method.

4 Algorithm for Mesh Reordering

The reordering of mesh nodes and elements is needed to ensure efficient memory map-
ping of neighboring elements and nodes. This is achieved by re-assigning the global
numbering to both the elements and nodes of the mesh such that the associated nodes
of all the elements are stored in contiguous memory locations. Such a mapping would
improve cache miss rate thus reducing the overall execution time. In the case of a
parallel implementation this reordering would also facilitate an efficient partitioning
of the mesh computations over multiple threads. Consequently, mesh reordering also
minimizes the bandwidth of the element stiffness matrix A used in the system of linear
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equations Av = b, which is solved in Algorithm 1. In the following we first present
a serial mesh reordering algorithms and study it performance. This algorithm can be
used prior to mesh partitioning. Subsequently, we present a parallel mesh reordering
algorithm that can be used in situations where mesh has already been partitioned, and
moving mesh algorithm is just a frequent intermediate process.

4.1 Serial Mesh Reordering

A recursive divide and conquer algorithm is developed to reorder the mesh based on
a greedy approach. This algorithm uses Peano-Hilbert space filling curve, recursive
orthogonal bisection/octree (spatial data structures), and quicksort to reduce the matrix
bandwidth. First, this greedy approach calculates the elements’ centroid and creates
a quadtree (for the 2D case) and octree (for the 3D case) using the quicksort based
technique. Then it re-numbers both the elements and nodes of the mesh based on the
geometric locality created by the quadtree/octree method.

This algorithm recursively divides the original mesh m spatially into 2nsd sub-
meshes based on centroid values, where nsd denotes the number of spatial dimensions.
The centroid of a 3D mesh Cm can be calculated using the following formula:

Cm =
{(

xmin + xmax

2

)
,

(
ymin + ymax

2

)
,

(
zmin + zmax

2

)}
(13)

The mesh is divided recursively until the number of elements nsm
el of a sub-mesh (sm)

is less or equal to a user defined threshold value (t). The value of t should be equal to
or a multiple of the size of cache-line of the processor.

Algorithm 2 shows the reordering algorithm of a mesh using the above described
divide and conquer approach. The resultant formulation/output is a tree data structure,
which is either a quadtree (for a 2D mesh) or an octree (for a 3D mesh). Line 3 calls
the rearrangemesh function that partitions the original mesh from the centroid Cm .
Lines 4–6 call the reorder function recursively for all the created sub-meshes. In an
initial call of the reorder (Mesh), the Mesh structure contains the centroid values and
original indices of all the elements, e.g. centroid of a triangular element Ctri can be
calculated by the following formula:

Ctri =
{(

x1 + x2 + x3

3

)
,

(
y1 + y2 + y3

3

)}
(14)

Figure 1 graphically shows a 2D mesh of an oscillating beam that is divided into four
sub-meshes: left top (LT), right top (RT), left bottom (LB) and right bottom (RB).
In the same way a 3D mesh is divided into eight sub-volumes. Figure 2 shows the
possible final state of a 2D oscillating beam after applying the reordering algorithm.
This algorithm also organizes the 2D mesh data into a single dimensional array using
Peano-Hilbert order.

Algorithm 3 shows the Partition function written in Fortran language, which is sim-
ilar to the quicksort partitioning algorithm [33]. This function partitions the mesh into
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Algorithm 2 A divide and conquer algorithm for reordering of a mesh
1. procedure reorder (Mesh)
2. if Mesh.nel ≥ threshold then
3. partitionedmesh← rearrangemesh (Mesh)
4. for i ← 1 to 2nsd do
5. call reorder (partitionedmesh (i))
6. end for
7. Mesh ← parti tionedmesh
8. end if
9. end procedure

10. function rearrangemesh (Mesh)
11. XMeshPar← partition (Mesh, x-axis) {It divides a mesh into two partitions}

12. if Mesh = 1D then
13. return XMeshPar
14. end if

15. YMeshPar← partition(XMeshPar(left), y-axis)
16. YMeshPar← YMeshPar ∪ partition(XMeshPar(right), y-axis)

17. if Mesh = 2D then
18. return YMeshPar
19. end if

20. Z Mesh Par ← ∅
21. if Mesh = 3D then
22. for i ← 1 to 4 do
23. ZMeshPar← ZMeshPar ∪ partition(YMeshPar(i), z-axis)
24. end for
25. return ZMeshPar
26. end if
27. return ∅
28. end function

Fig. 1 Division of a 2D Mesh into four sub-meshes (LT , RT , L B and RB)

upper and lower spaces based on the centroid values. An initial call of the Partition
function is Partition (CentroidofAllElements, IndexofAllElements, 1, nel , min, max, 1,
mid). The following are the description of the variables used in the Partition function:
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Fig. 2 A 2D beam is partitioned
into 52 sub-areas. The number
of elements of all the sub-areas
is less or equal to a user defined
threshold value

Algorithm 3 Fortran implementation of the partition function that partitions a mesh
into two halves in a particular spatial dimension

subroutine
Partition (eleval , eleid , p, r , min, max, axis , mid)
c al l the variables are called by reference

implicit none
integer eleid (1)
real∗8 eleval (3 , 1)
integer p, r , axis , i , j
real∗8 min, max, pivotvalue
integer mid
i = p − 1
pivotvalue = (min + max)/2.0

c axis is equal to 1, 2 and 3 for the x, y and z axis , respectively
do j = p, r

i f ( eleval (axis , j ) . l t . pivotvalue) then
if ( i .ne . j ) then

i = i + 1
call swap( eleval (1 , i ) , eleval (1 , j ))
call swap( eleval (2 , i ) , eleval (2 , j ))
call swap( eleval (3 , i ) , eleval (3 , j ))

call swap( eleid ( i ) , eleid ( j ))
endif

endif
end do
mid = i + 1
return

end

1. The vector eleval contains the centroid of all the elements.
2. The vector eleid contains the values of original indices of all the respective ele-

ments.
3. The variable p contains the starting index of the called mesh.
4. The variable r contains the ending index of the called mesh.
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Table 1 Comparative speedup
results between the ordered and
un-ordered mesh of the 2D big
beam using AMD Opteron with
1MB cache

PEs Ordered mesh Un-ordered mesh

2 1.99 1.71

3 2.96 2.16

4 3.92 2.43

5. The variable min contains the minimum value of all the element centroids for x,
y and z-axis.

6. The variable max contains the maximum value of all the element centroids for x,
y and z-axis.

Initially, all the elements are re-numbered according to the spatial information given
in Fig. 2 and then the nodes are re-numbered anticlock wise. After the re-numbering,
all the boundary conditions associated with the previous node ordering are adjusted
to the newly assigned numbered nodes without loss of information. For this purpose
previous node numbers are stored in an ID vector.

In order to study benefits of the proposed reordering technique, we have executed
the mesh moving scheme on a large 2D mesh corresponding to the oscillating beam
problem, with and without renumbering of the nodes/elements. We have also experi-
mented with two different multicore platforms: AMD Opteron and Intel Xeon based
machines. Table 1 shows the speedup enhancement of the mesh reordering algorithm
with the processing elements (PEs). This experiment is conducted on the four cores
of AMD Opteron machine containing 1MB of cache memory. Our results show that
reordering indeed improves performance of the parallel implementation. On the quad
core Intel Xeon based machine, speedups of 3.56 and 3.48 are achieved with and
without the reordering algorithm, respectively. The Intel machine contains 12MB of
cache memory. The speedup enhancement is less in the Intel Xeon machine as com-
pared to the AMD Opteron machine. The difference of the speedups indicates that
the mesh reordering algorithm might be more useful for processors containing small
cache memory. Small cache memory leads to more cache miss rate. Hussain et al. [34]
presented the 2D ALE moving mesh by applying the serial mesh reordering algorithm
using OpenMP.

Remark 1 The mesh reordering algorithm (Algorithms 2–3) based on the divide and
conquer approach would not terminate if all the elements have the same coordi-
nates/nodal values. But in reality no two elements can occupy the same space. There-
fore the algorithm is guaranteed to terminate. If hypothetically in such a case the
algorithm is invoked, where all the elements have the same coordinates then extra ter-
mination condition should be added, based on the mid variable. Where mid = (l+r)

2
instead of mid = i + 1 in the Partition function.

Remark 2 If both the total spatial dimension and threshold value are equal to 1, then
the algorithm behaves like quicksort. Similarly, for 2D and 3D cases, if the threshold
value is equal to 1, it behaves like quicksort in 2D and 3D cases. The time complexity
of the reordering algorithm is equal to O(n lg(n)), which is equal to an average case
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of the quicksort algorithm [33]. Here, n is equal to the total number of elements in a
mesh.

Remark 3 As a byproduct of the proposed reordering technique, the problem is parti-
tioned into small areas or cubes using a top-down approach. These partitions can also
be used to distribute the mesh in a distributed memory system.

4.2 Parallel Mesh Reordering

For the case when a mesh is already partitioned over multiple threads or processors,
and moving mesh is an intermediate step, this section presents a new parallel mesh
reordering algorithm based on the parallel bucket sort [35], and sampling approach [25]
and [26]. Initially, Frazer and McKeller [25] proposed a new serial samplesort based
on the sampling concept, which has been observed to be very useful for the paral-
lel implementations due to its non overlapped computation (see [26] and references
therein). In this approach a set of s × p elements from the original input data, called
splitters (Sp), are determined. These splitters partition the n input elements into p
groups of elements sp0 . . . spp−1. In particular, every element in the set spi is in the
lower space as compared to every element in the set spi+1. The partitioned sets are then
sorted independently to achieve the overall sorted sequence. In our case, the input is
an un-ordered mesh consisting of n elements, assumed to be distributed evenly over p
threads or processors such that each thread is assigned n/p elements. In the following
we outline the proposed parallel mesh reordering algorithm.

1. Calculate the centroid of all the distributed elements in parallel. This step takes
O(n/p) time.

2. In parallel, all the threads locally reorder sub-meshes by incorporating the spatial
reordering algorithm presented in Algorithm 2. This step also linearizes the mul-
tidimensional data into one dimension. Figure 3 explains the linearization part by
assigning the index number to each leaf node of a quadtree/octree. These index
numbers are stored in the Sp along with the spatial centroid values, which are lat-
ter used in the comparisons. Here, partition 1 contains the leaf nodes [1 . . . n/p],
partition 2 contains the leaf nodes [n/p + 1 . . . 2n/p] and so on. In this way the
partition vector is created in step 6. Expected time of this step is O(n/p lg (n/p)).

3. Create the splitters set Sp of s × p elements in parallel from the locally ordered
sub-meshes. Each thread selects evenly spaced s elements from its n/p associated
centroids along with their respective indices. Here, s is a user defined constant,
normally it is assigned the value n/p2. Each element of the set Sp contains three

Fig. 3 Local reordering of a mesh and linearization of all centroids
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Fig. 4 Selection, reordering and distribution of splitters

values: Centroid, original index and partition value (the partition value is calcu-
lated in step 6 to reduce the number of exchange operations). Time to do this step
is O(n/p2) in parallel.

4. Spatially reorder the set Sp by calling the serial reordering algorithm. The expected
time of this step is O(n/p lg (n/p)).

5. Distribute the ordered set Sp evenly over all the threads, such that i th thread gets
s elements of a sub-splitter (spi ) set from the Sp, where sp0 = Sp[1 . . . s], sp1 =
Sp[s+1 . . . 2s], . . . ., spp−1 = Sp[((n−1)s)+1 . . . n s]. The creation, reordering
and distribution of the splitters is graphically depicted in Fig. 4.

6. Calculate the partition vector using the original index value for all the spi in par-
allel, which gives the information about the partition index, defined in step 3. The
time complexity of this step is O(n/p2).

7. Two splitters cannot be compared spatially, so the partition vector is utilized to
compare the splitter within each thread, which is calculated in the previous step.
The i th thread sorts its spi set in parallel based on the partition vector using a
stabilized sorting algorithm e.g. counting sort. This step takes O(n/p2) time.

8. Select a set of p−1 evenly spaced elements from all the spi of the subset assigned
to i th thread and store them into a S̄p: S̄p = {Sp[s], Sp[2s], . . . , Sp[(p−1)×s]}.
The S̄p is sent to the master thread or written down in the shared memory. This
step takes O(1) time.

9. Create the local partition (lpvi ) and index vectors (livi ) for all the i th thread of size
p, in parallel. These vectors are obtained by incorporating the maximum index
value of i th partition of respective spi and S̄p. This step takes O(p) time.

10. Thread i sorts the livi vector in ascending order by calling insertion sort, where
lpvi is used as the satellite data. This step is done in parallel. Insertion sort is
used because most of the values of these vectors are already spatially ordered,
thus less insertions are required during the sort operation. In the worst case, this
step takes O(p2) time. Quicksort algorithm can be employed as an alternative to
reduce the worst case scenario to O(p lg(p)) time. All these vectors are combined
row wise to construct a global partition and index (G P I ) matrix. The dimension
of the G P I matrix is p × p, where each row represents the current processor
ID and each column represents the initial partition number. Figure 5 graphically
elaborates the sorting of all the spi sets and the creation of G P I matrix using the
spi sets.
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Fig. 5 Assume spatially ordered total eight splitters are selected for submarine mesh using four threads.
First step shows the sorting of all sub-splitter sets (spi ) and next step shows the creation of global partition
and index matrix from sorted sub-splitters. i th row of this matrix represents the lpvi and livi vectors. Both
partition and index values are separated by ’,’

11. Calculate the new distribution of all the sub-meshes using the sorted G P I matrix
in serial. This step also takes O(p2) time. Overall, step 6–11 are used to calculate
the criteria to distribute the centroids over all the threads based on the Sp. It is
worth mentioning that the splitter value cannot be compared spatially to the cen-
troid value. The key point here is to utilize both the index and partition numbers
that make possible to compare the splitter with all the centroids.

12. Copy data to the local memory of all the threads in parallel using the new distri-
bution, which is calculated in the pervious step. This step takes O(p2)+ O(n/p)

time.
13. Reorder the newly distributed partition in parallel by calling the spatial tree based

reordering algorithm. Expected time of this step is O(n/p lg(n/p)).

The threshold value in Algorithm 2 is set to 1 for all the above stated steps. The
total time complexity of the parallel mesh reordering Tp is defined as:

Tp = O

(
n

p

)
+ O (p lg(p))+ O

(
p2

)
+ O

(
n

p
lg

(
n

p

))
(15)

Since the complexity of the serial spatial mesh reordering algorithm is O(n lg(n)),
so the overall isoefficiency function [36] of the parallel spatial mesh reordering is
O(p2 lg(p))+O(p3). Thus, the problem size should be at least of the order of �(p3),
in order to maintain a fixed efficiency.
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5 Description of Parallel ALE Moving Mesh

Initially, the parallel ALE moving mesh takes an un-deformed ordered mesh as an
input and partitions the mesh element-wise over all the PEs. Next, the parallel algo-
rithm calculates the element stiffness matrix and then solves the under study BVP in
parallel using the PCG method.

Load balancing is an important issue in parallel algorithms. OpenMP preprocessor
directives are used to partition the problem for all the PEs of a shared memory system.
Most of the time, simple OpenMP preprocessor directives with the static scheduling
are used to parallelize the code such as reduce functions and parallel do loops.

5.1 Communication

We note that intensive inter-processor communication is involved in solving the equa-
tion given in line 12 of Algorithm 1. Here, initially an element solution is computed
for all the elements of the given mesh. Then, the computed solution is transformed
to their nodal solution. This process requires communication of the nodal solution of
all the shared nodes among the different threads. A similar procedure is required to
compute P−1 (inverse of P) in line 6 of Algorithm 1. The rest of the equations are
solved using parallel loops over all the nodes or all the elements independently. The
result is communicated using the reduce function of OpenMP library.

The communication among different threads is achieved using an extra temporary
bin vector with the memory size of O(nsn ∗ n pe), where n pe and nsn are the total
number of threads and shared nodes of the given mesh, respectively. In this concept,
a process or thread has its own local list of bins against each shared node, where it
stores the particular nodal result. Here, nsn represents the total number of bins. All the
threads complete their tasks and store their result in their own local bins, which are
later combined in parallel using a reduction operation. Finally, the result is stored in a
resultant data structure for further processing. Figure 6 shows a scenario in which two
threads generats a new mesh and communicate the information related to the shared
nodes. Main reason to use the said concept is that OpenMP does not perform well in
the tree data structures instead of the array.

Algorithm 4 depicts the segment of the Fortran code that combines the results stored
in all the bins by calling the simple addition function. It also stores the final result
in the resultant vector (q), where n and i are the indices variables. This method is
used to increase the speedup, without using a synchronization directives like omp
lock available in OpenMP library.

5.2 Time Complexity Analysis

The total serial computation time of the ALE moving mesh (T s
ale) includes the time

to calculate the element stiffness matrix (T s
esm) and the PCG solver (T s

pcg). Assuming
n to be the total number of elements in the mesh, the total serial computation time is:

T s
ale = T s

esm + T s
pcg (16)
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Fig. 6 Communication of shared nodes

Algorithm 4 Parallel do loop for the synchronization using the bins’ concept.

!$omp do
do n = 1, TotalSharedNodes

do i = 1, TotalProcessors
q(n) = q(n) + bin(n, i )

enddo
enddo

where

T s
esm = O(n2) (17)

T s
pcg = O(k n2) (18)

Here, k is the total number of iterations in the PCG solver. Hence, the total serial
computation time is:

T s
ale = O(n2)+ O(k n2) (19)

The total parallel computational time of the ALE moving mesh (T p
ale) is:

T p
ale = T p

esm + T p
pcg + T p

oh (20)

where T p
esm and T p

pcg are the parallel time of the calculation of the element stiffness
matrix and PCG solver, respectively, and T p

oh is the parallel overhead time including
the extra process and communication:

T p
oh = O(n)+ O(nsn) (21)
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and

T p
esm = O

(
n2

p

)
(22)

T p
pcg = O

(
k n2

p

)
(23)

Thus, total time for the parallel ALE moving mesh is:

T p
ale = O

(
n2

p

)
+ O

(
k n2

p

)
+ O(n)+ O (nsn) (24)

Where nsn is the total number of shared nodes and k is the total number of iterations
used in the PCG solver. The isoefficiency function [36] of the parallel ALE mov-
ing mesh is O(p2). Thus, the problem size should be increased with the number of
processors with the order of �(p2), in order to maintain a fixed efficiency.

6 Performance Evaluation

Numerical experiments are conducted on AMD as well as Intel multicore processor
based machines. The AMD machine contains two Dual Core AMD Opteron Proces-
sors (285) 2.6 GHz with 667 MHz FSB and 1MB L2 cache memory. The Intel machine
contains two Quad Core Intel Xeon Processors (E5405) 2.0 GHz with 1,333 MHz front
side bus (FSB) and 12MB L2 cache memory.

The mesh database used in our experiments is comprised of three 2D meshes and
three 3D meshes for the different problems and sizes (see Table 2 for details). The
mesh generation code is written in Fortran programming language and OpenMP pre-
processor directives. GNU Fortran compiler (GCC) 4.2.3 (Gentoo 4.2.3 p1.0) is used
for the compilation of the code. The code was compiled without using an optimization
flag to get an unbiased speedup on a shared memory system. Optimization flags uti-
lize the vector processors available in AMD and Intel processors, e.g. sse2, ssse3 and
3dnow. The mesh visualization code is written in C++ programming language using
an OpenGL library.

Table 2 Mesh database for the
ALE moving mesh

Dimensions Mesh name No. of elements No. of nodes

2D Big beam 230,806 116,518

Small beam 9,509 5,024

Small submarine 9,177 4,683

3D Sphere 30,930 5,861

Flexible cylinder 43,648 9,132

Rigid cylinder 43,648 9,132
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Unstructured triangular and tetrahedral elements are employed for both the 2D and
3D problems, respectively. Four noded bi-linear quadrilateral shape functions are used
for the triangular element, where 3rd and 4th nodes coalesced to create a triangle:

N (e)
1 =

1

4
(1− ξ)(1− η) (25)

N (e)
2 =

1

4
(1+ ξ)(1− η) (26)

N (e)
3 =

1

4
(1+ ξ)(1+ η) (27)

N (e)
4 =

1

4
(1− ξ)(1+ η) (28)

The linear shape functions are used for four noded tetrahedral element and defined as:

N (e)
1 = ξ (29)

N (e)
2 = η (30)

N (e)
3 = ζ (31)

N (e)
4 = (1− ξ − η − ζ ) (32)

where N (e)
i represents the shape function of i th node of the element e and ξ, η and

ζ are used to map the values from the physical domain �e(x, y, z) to the reference
domain �e(ξ, η, ζ ). Numerical integration is done using Gauss quadrature formula to
calculate the element stiffness matrix using the shape functions. The Gauss quadrature
formulas for the reference elements in 2D and 3D are defined in Eqs. (33) and (34),
respectively:

1∫

−1

1∫

−1

f (ξ, η)dξdη =
nQ1∑

Q1=1

nQ2∑

Q2=1

wQ1wQ2 f (ξQ1 , ηQ2) (33)

1∫

−1

1∫

−1

1∫

−1

f (ξ, η, ζ )dξdηdζ =
nQ1∑

Q1=1

nQ2∑

Q2=1

nQ3∑

Q3=1

wQ1wQ2wQ3 f (ξQ1 , ηQ2 , ζQ3) (34)

where the values of the weights wQi and the coordinates ξQ1, ηQ2 and ζQ3 of the
quadrature points nQi are taken from [37]. Two point Gauss quadrature formula is
used for the numerical integration of the triangular element to obtain full quadrature,
and is also known as 2 × 2 integration rule [9]. One point Gauss quadrature formula
is used for the numerical integration of the tetrahedral element, because its derivative
is a constant [10].
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7 Experimental Results and Discussion

7.1 Mesh Reordering

A total of seven different 2D and 3D meshes are used to evaluate the speedup and
execution time of the parallel spatial reordering algorithm based on the sampling and
quicksort algorithms. Two additional meshes of 2D biunit square are included in addi-
tion to the meshes used in Table 2. The dimensions of the biunit square meshes are
specified in Table 3.

The numerical experiments are repeated 10 times to get an average behavior of the
speedup. Table 4 shows the maximum speedup factor and minimum time in seconds
for the parallel reordering algorithm executed on different meshes using the eight
cores of the Intel Xeon machine. The maximum speedup is obtained for the 2D mesh
problems. This is due the fact that less communication and exchanges of data occur
for the 2D case, compared to the 3D case. On an eight core machine, the parallel mesh
reordering yielded 51% more efficiency in terms of speedup compared to the serial
mesh reordering, where

Efficiency = Speedup

Total processors
× 100 (35)

7.2 2D ALE Moving Mesh

As a case study for the 2D problems, oscillating beam and submarine maneuvering
are used in our experiments to study the performance of the proposed parallel ALE
moving mesh algorithm. The oscillating beam is a classical example of FSI problems.
It covers a wide range of applications in the field of civil and mechanical engineerings

Table 3 Mesh database used
for the parallel spatial reordering
algorithm

Dimensions Mesh name No. of elements No. of nodes

2D Small biunit square 22,910 11,656

Big biunit square 92,006 46,404

Table 4 Mesh results in terms
of the speedup and average time
in seconds using eight PEs

Dimensions Mesh name Speedup Time in seconds

2D Big beam 4.53 4.93E-02

Small beam 4.71 1.70E-03

Small submarine 4.61 1.80E-03

Small biunit square 3.96 4.80E-03

Big biunit square 3.96 2.01E-02

3D Sphere 3.39 4.80E-03

Multiple cylinders 3.45 1.19E-02
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Table 5 The speedup for 2D
problems on a four core AMD
machine

PEs Big beam Small beam Small submarine

2 1.99 1.87 1.87

3 2.97 2.66 2.71

4 3.95 3.44 3.4

Table 6 The speedup for 2D
problems on a eight core Intel
machine

PEs Big beam Small beam Small submarine

2 1.86 1.82 1.83

3 2.81 2.59 2.64

4 3.57 3.29 3.24

5 4.37 3.86 3.95

6 5.12 4.42 4.5

7 5.76 4.79 4.85

8 6.37 5.23 5.22

and has major utilization in the microelectromechanical systems (MEMS). Similarly,
the submarine maneuvering is an important case study for flows around propeller of
submarines and surface ships that constitute their propulsion mechanisms. A detailed
discussion about these problems is given in [3] and [9].

Table 5 shows the speedup results of the 2D problems using two dual core AMD
Opteron processors. A maximum efficiency of 98.64% in terms of speedup is obtained
for the larger mesh (corresponding to the oscillating beam), which contains 230,806
number of elements and 116518 number of nodes. Whereas, 84.89 and 85.9% effi-
ciencies are recorded for the maneuvering of the small submarine and oscillation of
the small beam problems, respectively.

These efficiencies are reduced due to less computational data in the small meshes as
compared to the big mesh, as the total number of equations are a multiple of the total
number of elements. A similar behavior is also observed in the Intel Xeon processor,
see Table 6 for details. In addition, better speedup is produced on the AMD Opteron
as compared to the Intel Xeon whereas the Intel Xeon has larger L2 cache memory
as compared to the AMD Opteron. The difference in the speedup might be due to the
difference in their architectures.

The zoomed views for maneuvering of the submarine and oscillation of the beam
problems are shown in Figs. 7 and 8, respectively.

7.3 3D ALE Moving Mesh

As a case study for the 3D problems, meshes corresponding to flexible and rigid defor-
mation of multiple cylinders and oscillation of sphere are used in our experiments.
These selected problems have great utilization in heat transfer applications [10].

Tables 7 and 8 show the speedup results of 3D problems using four AMD Opteron
processors and eight Intel Xeon processors, respectively. The maximum efficiency of
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Fig. 7 Zoomed view of the deformed meshes for the 2D oscillating beam at two different instants. a Beam
is moved up, b Beam is moved down

93.55% in terms of speedup is obtained for the flexible multiple cylinders using four
AMD Opteron processors. Whereas, 92.87 and 92.88% efficiencies are recorded for
both the oscillating sphere and rigid multiple cylinders, respectively. The maximum
of 89.82, 88.03 and 92.19% efficiencies are obtained for the flexible cylinders, rigid
cylinders and oscillating sphere problems, respectively, using four PEs of the Intel
machine. On the average 74% efficiency is recorded for eight Intel processors. Over-
all, the AMD Opteron produces slightly better speedup as compared to the Intel Xeon
using four PEs, in conformance to the result of 2D problems.

The 3D problems produced better speedup as compared to the 2D problems, since
computation to communication (CC) ratio increases in the higher dimension space.
For instance, 22×4 = 16 equations need to be solved for one iteration of one element
inside the loop of Gauss quadrature points for the 2D problems, and 32×4 = 36 equa-
tions need to be solved for the 3D problems. At the most, results of four nodes may be
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Fig. 8 Zoomed view of the deformed meshes for the 2D submarine at two different instants. a Submarine
is moved up, b Submarine is moved down

Table 7 The speedup for 3D
problems on a four core AMD
machine

PEs Flexible cylinder Rigid cylinder Sphere

2 1.97 1.93 1.96

3 2.88 2.9 2.89

4 3.72 3.74 3.71

communicated among different PEs for the triangular and tetrahedral elements. In the
worst case scenario, CC ratios turn out to be 4:1 and 9:1 for the 2D and 3D problems,
respectively. In general CC ratio will be 2nsd : nne, where nne denotes the total number
of nodes per element.

Table 2 depicts that the ratio of the number of elements to the number of nodes are
approximately 2:1 and 4:1 in the 2D and 3D problems, respectively. This shows that
less information needs to be communicated in the 3D problems. This causes a decrease
in the CC ratio for the 3D problems as compared to the 2D problems, especially in the
PCG solver.
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Table 8 The speedup for 3D
problems on a eight core Intel
machine

PEs Flexible cylinder Rigid cylinder Sphere

2 1.90 1.87 1.91

3 2.81 2.75 2.87

4 3.59 3.52 3.69

5 4.34 4.3 4.48

6 5.02 4.93 5.3

7 5.73 5.66 5.99

8 5.93 5.83 6.07

Fig. 9 The 3D multiple cylinders with the different views. a Element view, b Surface view

To visualize the working of the developed parallel code, the results of flexible defor-
mation of the multiple cylinders and oscillation of the sphere problems are shown in
Figs. 9 and 10, respectively.

7.4 The Improvement in Results using Reordering

In order to see the effectiveness of the developed reordering algorithm for the smaller
cache memory processor, the biased speedup is utilized and defined as follows:

Biased speedup = Serial time without reordering

Parallel time
(36)
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Fig. 10 The 3D oscillating sphere with the different views. a Element view, b Surface view

Table 9 Increase in the biased
speedup with four cores of AMD
machine for 3D problems

PEs Flexible cylinder Rigid cylinder Sphere

1 1.02 1.04 1.02

2 2 2.05 1.98

3 2.95 2.99 2.97

4 3.78 3.85 3.83

Tables 7 and 9 explain the difference of calculated speedup of the 3D problems
on the AMD Opteron machine by dividing the sequential time of the ordered and un-
ordered meshes, respectively. It clearly shows that reordering produces better results
for the serial computation, as shown in the first row of Table 9. It also shows that the
serial time of the ALE moving mesh is decreased due to the reordering of mesh, which
decreases the cache miss rate and bandwidth of the matrix. The result depicts that the
reordering overhead is less dominant over the whole process of the ALE moving mesh
generation due to decrease in the cache miss rate and bandwidth of the matrix.
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Table 10 The average
bandwidth values of different
meshes with the standard
deviations

Problem Reordering Average SD

Small beam Yes 70.54 244.74

No 372.74 598.29

Big beam Yes 350.24 2, 705.10

No 1, 654.46 7, 587.01

Submarine Yes 90.93 290.97

No 204.82 639.02

Oscillating sphere Yes 383.12 714.70

No 2, 087.52 1, 304.15

Multiple cylinders Yes 425.58 828.64

No 3, 385.55 2, 186.28

Table 11 The average bandwidth values of different meshes for eight PEs

PEs Small beam Big beam Submarine Sphere Cylinders
O UO O UO O UO O UO O UO

1 72.2 361.8 339.8 1, 637.4 90.2 206.1 367.7 2, 080.4 430.6 3, 345.5

2 69.4 381.4 348.1 1, 671.7 98.2 209.6 385.3 2, 067.4 422.4 3, 406.3

3 77.9 363.4 334.2 1, 647.7 91.8 213.6 385.4 2, 065.8 426.4 3, 326.5

4 68.1 384.1 374.9 1, 664.0 97.2 170.3 377.2 2, 082.6 422.7 3, 365.9

5 76.1 365.6 349.6 1, 642.6 88.9 213.6 381.8 2, 082.6 425.7 3, 454.6

6 61.9 383.5 357.6 1, 660.1 88.6 197.5 378.1 2, 072.4 425.4 3, 423.0

7 65.5 355.8 343.4 1, 644.1 92.2 207.1 378.3 2, 067.4 425.9 3, 384.8

8 73.2 386.3 354.3 1, 668.1 80.3 220.8 371.4 2, 082.1 425.4 3, 377.8

O ordered mesh, UO un-ordered mesh

An average bandwidth B(M) is utilized for a non-symmetric matrix M (for unstruc-
tured meshes), which is equal to the average value of all B(Mi ), where the Mi is i th
row of a matrix. The B(Mi ) (bandwidth of i th row of the matrix) is the maximum
difference between two non-zero values. It is formally defined as |l − m| such that
Mi k1 = 0 and Mi k2 = 0,∀ k1, k2, where l ≤ m, k1 < l and k2 > m. The bandwidth
of a diagonal matrix is zero.

Table 10 shows the average bandwidth of the different meshes along with their
respected standard deviation values. It clearly shows that the bandwidth of all these
meshes is decreased due to the proposed reordering algorithm. In summary, the max-
imum of 7.96 times average bandwidth is decreased for the 3D multiple cylinders
problem and the minimum of 2.25 times average bandwidth is decreased for the 2D
submarine problem. Table 11 shows the average bandwidth of distributed meshes of
the different problems over eight PEs. It shows that the bandwidth of each PE’s matrix
for the ordered mesh is also less than the bandwidth of the un-ordered mesh.

Metis is a well known library that is employed to order and partition a mesh over
different PEs. This library is based on a k-way graph partitioning algorithm using a
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Table 12 The average bandwidth values of different meshes for eight PEs using Metis library

PEs Small beam Big beam Submarine Sphere Cylinders

1 86.60 926.92 32.23 368.85 407.96

2 123.17 1, 065.61 58.06 333.07 534.23

3 107.27 1, 106.77 92.74 398.86 662.56

4 93.15 1, 377.44 145.74 587.72 451.94

5 98.19 1, 548.31 68.18 502.98 1, 006.89

6 266.03 1, 824.93 144.16 754.34 1230.93

7 207.77 1, 153.89 120.55 1, 004.98 968.79

8 176.67 1, 399.07 258.14 891.71 1, 175.34

minimum cut set [22] and [23]. The resultant partitions are mainly used on a distrib-
uted memory system. Table 12 shows the average bandwidth values of the different
meshes using Metis library for eight PEs. It indicates that for these meshes on a shared
memory system, the tree based reordering algorithm is more effective than the k-way
graph partitioning algorithm using Metis library.

7.5 Reliability of the Parallel ALE Moving Mesh Algorithm

The mesh generated by the parallel ALE moving mesh scheme should be similar to
the mesh generated by the serial algorithm to ensure its reliability. This is concluded
from the measured average absolute error of 10−6 by taking the difference of the nodal
values of both the serial and parallel algorithms.

The reliability is also ensured by checking both the element Jacobian and internal
angles of all the elements, as an element Jacobian is only a scalar function of area
(in 2D) or volume (in 3D) of an element and therefore does not account for better
element distortion. Therefore, an angle information is also used for the reliability of a
mesh using law of cosines and the following threshold variable:

Tmin = Amin − 1

2
σ (37)

Tmax = Amax + 1

2
σ (38)

where Tmin and Tmax are the threshold minimum and maximum angles, Amin and Amax
are the actual minimum and maximum angles and σ is the standard deviation of all
angles in the given mesh. If the internal angle of any element is less than Tmin or
greater than Tmax, a new mesh is generated for the current time step in a transient
analysis.

Figures 11 and 12 show the quality of meshes for the 2D oscillating beam at tip and
the 2D submarine, respectively using the serial and parallel ALE moving mesh gen-
eration algorithms under the maximum deformation. The quality of the mesh around
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Fig. 11 Comparison of the ALE moving mesh for the 2D oscillating beam. a Undeformed mesh, b Mesh
generated in serial, c Mesh generated in parallel using four PEs

the submarine and tip of the oscillating beam is also comparable to the quality of these
regions in the initial un-deformed mesh. These un-deformed meshes are passed as an
input to the parallel ALE moving mesh algorithm.
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Fig. 12 Comparison of the ALE moving mesh for the 2D submarine. a Undeformed mesh, b Mesh gen-
erated in serial, c Mesh generated in parallel using four PEs

8 Conclusions

We have presented a parallel adaptive mesh motion and mesh generation algo-
rithm for solving 2D and 3D FSI problems using OpenMP on shared memory sys-
tems. The proposed algorithm incorporates a novel tree based mesh reordering using
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sampling approach, combined with recursive bisections and quicksort methods. The
mesh reordering algorithm improved the cache memory performance due to the geo-
metric memory locality of both the element and nodes via their global re-numbering.
The result of the reordering algorithm can also be incorporated to partition a mesh
on a distributed memory system. In addition, this algorithm can be applied to higher
order elements for both 2D and 3D problems. Overall, the parallel mesh reordering
produced 51% average efficiency as compared to the serial mesh reordering using
eight PEs for all the meshes employed herein.

A new mesh is generated by employing the un-deformed ordered mesh using the
parallel ALE moving mesh technique. The numerical results in terms of speedup
showed that the AMD Opteron based multicore machine produced better results for
the parallelism as compared to the Intel Xeon for all the mesh formulations studied.
Both the element Jacobian and angles of triangle and tetrahedral elements are used
to verify the correctness of the parallel ALE moving mesh code. Overall, 72% aver-
age efficiency of the parallel ALE moving mesh is achieved for both the 2D and 3D
problems using eight PEs. On the average, absolute error of 10−6 is measured using
the difference of the nodal values of both the serial and parallel algorithms for the
reliability.
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