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Abstract Exploiting the full computational power of current hierarchical multipro-
cessor machines requires a very careful distribution of threads and data among the
underlying non-uniform architecture so as to avoid remote memory access penalties.
Directive-based programming languages such as OpenMP, can greatly help to per-
form such a distribution by providing programmers with an easy way to structure the
parallelism of their application and to transmit this information to the runtime sys-
tem. Our runtime, which is based on a multi-level thread scheduler combined with
a NUMA-aware memory manager, converts this information into scheduling hints
related to thread-memory affinity issues. These hints enable dynamic load distribution
guided by application structure and hardware topology, thus helping to achieve per-
formance portability. Several experiments show that mixed solutions (migrating both
threads and data) outperform work-stealing based balancing strategies and next-touch-
based data distribution policies. These techniques provide insights about additional
optimizations.
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1 Introduction

Modern computing architectures are increasingly parallel. While the High Perfor-
mance Computing landscape is still dominated by large clusters, the degree of par-
allelism within cluster nodes is increasing. This trend is obviously driven by the
emergence of multicore processors that dramatically increase the number of cores,
at the expense of a poorer memory bandwidth per core. To minimize memory conten-
tion, hardware architects have been forced to go back to a hierarchical organization
of cores and memory banks or, in other words, to NUMA architectures (Non-Uniform
Memory Access). Such architectures are now becoming mainstream thanks to the
spreading of AMD HyperTransport and Intel QPI technologies.

Running parallel applications efficiently on previous generation of multiprocessor
machines was mainly a matter of careful task scheduling. In this context, parallel
runtime systems such as Cilk [12] or TBB [27] have proved to be very effective. In
fact, these approaches can still behave well over hierarchical multicore machines with
cache-oblivious applications. However, in the general case, successfully running par-
allel applications on NUMA architectures requires a careful distribution of tasks and
data to avoid “NUMA penalties” [4,28]. Moreover, applications with strong memory
bandwidth requirements need data to be physically allocated on the “right” memory
banks in order to reduce contention. This means that high-level information about the
application behavior, in terms of memory access patterns or affinity between threads
and data, must be conveyed to the runtime system.

Several programming approaches provide means to specify task-memory affinities
within parallel applications (OpenMP [25], HPF [15], UPC [7]). However, retrieving
affinity relations at runtime is difficult; compilers and runtime systems must tightly
cooperate to achieve a sound distribution of thread and data that can dynamically evolve
according to the application behavior. Our prior work [6] emphasized the importance of
establishing a persistent cooperation between an OpenMP compiler and the underlying
runtime system on multicore NUMA machines. We designed ForestGOMP [6] that
extends the GNU OpenMP implementation, GOMP, to make use of the BubbleSched

flexible scheduling framework [26]. Our approach has proved to be relevant for appli-
cations with nested, massive parallelism.

In this paper, we introduce a major extension to our OpenMP runtime system that
connects the thread scheduler to a NUMA-aware memory management subsystem.
This new runtime can not only use per-bubble memory allocation information when
performing thread re-distributions, it can also perform data migration—either imme-
diately or upon next-touch—in situations when it is more appropriate. Actually, it can
even combine both. We discuss several of these situations, and give insights about the
most influential parameters that should be considered on today’s hierarchical multicore
machines.

The remainder of this paper is organized as follows. We present the background of
our work in Sect. 2. Section 3 explains our objectives and motivations and describes the
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software we consider in this work. Section 4 presents our extensions to the Forest-

GOMP runtime system that enables dynamic placement of threads and memory. In
Sect. 5, we evaluate the relevance of our proposal with several performance-oriented
experiments. Before concluding, related work is summarized in Sect. 6.

2 Background and Motivations

In this section, we briefly introduce modern memory architectures and how they affect
application performance. We detail how existing software techniques try to overcome
these issues and discuss their intrusiveness.

2.1 Modern Memory Architectures

The emergence of highly parallel architectures with many multicore processors raised
the need to rethink the hardware memory subsystem. While the number of cores
per machine quickly increases, memory performance unfortunately does not evolve
accordingly. Concurrent accesses to memory buses lead to dramatic contention, caus-
ing the overall performance to decrease. This led hardware designers to drop the cen-
tralized memory model in favor of distributed and hierarchical architectures, where
memory nodes and caches are directly attached to cores. This design has been widely
used in high-end servers based on the Itanium processor. It now becomes main-
stream since AMD HyperTransport (see Fig. 5) and the recent Intel QPI memory
interconnects dominate the server market. Indeed, these new memory architectures
assemble multiple memory nodes into a single distributed cache-coherent system.
It has the advantage of being as convenient to program as regular shared-memory
SMP processors, while providing a much higher memory bandwidth and much less
contention.

However, while being cache-coherent, these distributed architectures have non-
constant physical distance between hardware components, causing their communica-
tion time to vary. Indeed, a core accesses its local memory faster than the one attached
to other cores. A memory node, or NUMA node, then consists in a set of cores with
uniform memory access cost, and accessing memory near a node is faster than access-
ing the memory of other NUMA nodes. The corresponding ratio is often referred to as
the NUMA factor. It generally varies from 1.2 up to 3 depending on the architecture
and therefore has a strong impact on application performance [4]. Not only does the
application run slower when accessing remote data, but contention may also appear
on memory links if two processors access each others’ memory nodes. Moreover, the
presence of shared caches between cores increases the need to take data locality into
account while scheduling tasks, so as to prevent cache lines from bouncing between
different sets of cores.

To illustrate this problem, we ran some experiments on a quad-socket quad-core
Opteron machine. Second row of Table 1 shows that the Stream benchmark [18]
using only few threads on a non-loaded machine achieves best performance when
spreading its pages across all memory nodes and keeping all threads together on a
single processor. Indeed, distributing the pages aggregates the memory throughput of
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Table 1 Aggregated bandwidth on a quad-quad-core Opteron host depending on the machine load (4 or
16 threads) and the location of memory buffers, using four parallel Stream [18] instances

Data location Local Local (MB/s) +
Neighbors (MB/s)

4 threads on node 0 5151 5740

4 threads per node (16 total) 4 × 3635 4 × 2257

each NUMA node while keeping threads together lets the application benefit from
shared caches.

However, on a loaded machine, having multiple threads access all memory nodes
dramatically increases contention on memory links. The best performance in this case
requires to avoid contention by carefully placing threads and data buffers so as to
maximize the amount of local accesses (third row of Table 1). This suggests that
achieving high-performance on NUMA architecture requires more than just binding
tasks and data according to their affinities. Host load and memory contention must
also be involved.

2.2 Software Support for Memory Management

While the memory architecture complexity is increasing, the virtual memory model is
slowly being extended to help applications achieving better performance. Applications
still manipulate virtual memory regions that are mapped to physical pages that the sys-
tem allocates anywhere on the machine. Most modern operating systems actually rely
on a lazy allocation: when applications allocate virtual memory, the underlying phys-
ical pages are actually allocated upon the first access. While the primary advantage
of this strategy is to decrease resource consumption, it brings an interesting feature
usually referred to as first-touch: each page is allocated in the context of the thread
that actually uses it first. The operating system is thus able to allocate physical pages
on the memory node attached to the core that made the first access.

However, if the first thread touching a page is not the one that will eventually access
it the most intensively, the page may not be allocated “in the right place”. This sit-
uation actually often occurs since developers tend to prepare data buffers during an
initialization phase while the actual computing threads were not launched yet. For
this reason, some applications manually touch pages during the initialization phase to
ensure that they are allocated on the right NUMA node, that is close to the computing
threads that will actually access them later.

However, task/data affinities may change during execution, causing the optimal
distribution to evolve dynamically. This is typically the case with dynamic application
such as adaptive mesh refinement methods. Even if pages are carefully allocated dur-
ing the initialization phase, their location is no longer optimal during the following
steps. One solution consists in constantly migrating pages between memory nodes to
move data near the tasks that access them. However, it is very expensive and it requires
to detect at runtime when a memory region is no longer located appropriately. Another
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solution called next-touch is the generalization of the first-touch approach. It allows
applications to ask the system to allocate or migrate a page near the thread that will per-
form the next access [16,21,24]. The next-touch policy thus can be used to redistribute
data buffers to their new best locations between application steps. Unfortunately, this
policy is hard to implement efficiently. Moreover, it does not solve situations where
two threads are accessing the same memory region.

Actually, predicting performance is difficult because that memory access time is also
related to the machine load. Irregular applications will thus not only cause load-imbal-
ance between cores, they will also make the memory constraints vary dynamically,
causing heuristics to become even harder to define.

3 Towards a Dynamic Approach to Place Threads and Memory

To tackle the problem of improving the overall application execution time over NUMA
architectures, our approach is based on a flexible multi-level scheduling that contin-
uously uses information about thread and data affinities. We present in this section
our objectives and motivations and we describe our topology-aware memory manager
that helps the ForestGOMP runtime system to implement our ideas.

3.1 Objectives and Motivations

Our aim is to perform thread and memory placement dynamically according to some
scheduling hints provided by the application programmers, the compiler and even
hardware counters. The idea is to map the parallel structure of the program onto the
hardware architecture. This approach enables support for multiple strategies:

• At the machine level, the workload and memory load can be spread across NUMA
nodes in order to favor locality.

• All threads working on the same buffers may be kept together within the same
NUMA node to reduce memory contention.

• At the processor level, threads that share data intensively may also be grouped to
improve cache usage and synchronization [6].

• Finally, inside multicore/multithreaded chips, access to independent resources such
as computing units or caches may be taken into account. It offers the ability for a
memory-intensive thread to run next to a CPU-intensive one without interference.

For irregular applications, all these decisions can only be taken at runtime. It requires
an in-depth knowledge of the underlying architecture (memory nodes, multicore pro-
cessors, shared caches, etc.) since both the application structure and the hardware
characteristics are the key to high quality decisions.

Our idea consists in using distinct scheduling policies at the multiple topology lev-
els of the machine. For instance, low-level work stealing only applies to neighboring
cores so as to maintain data locality with regards to shared caches. At the memory
node level, the thread scheduler deals with larger entities (e.g. multiple threads together
with their data buffers) and may migrate them as a whole. Such a migration has to be
decided at runtime after checking the hardware and application statuses. It requires that
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the runtime system maintains, during the whole execution, information about threads
that belong to the same team and that frequently access some memory regions. Such
affinity information can be quantified by the application, and later be refined at run
time using hardware counters, for instance by looking at the evolution of cache miss
rate before deciding whether a redistribution is needed.

In our model, scheduling actions can be triggered when the following events occur:

• a resources (i.e. thread or memory region) gets allocated/deallocated;
• a processor becomes idle;
• a hardware counter suddenly varies dramatically or exceeds a threshold (cache

miss, remote access rate)

The scheduler can also be directly invoked by the application. Typically, a compiler
could insert such calls when scheduling directives are encountered in the original
source code.

To evaluate the relevance of our approach, we have developed a proof-of-concept
OpenMP extension based on instrumentation of the application. We now give a brief
overview of our implementation.

3.2 BubbleSched, a Hierarchical Bubble-Based Thread Scheduler

Scheduling threads on modern hierarchical architectures with multiple cores, shared-
caches and NUMA nodes first requires a precise knowledge of this actual hardware
hierarchy. To this end, we use the hwloc library [14] to perform this topology dis-
covery. It builds a hierarchical architecture tree composed of objects describing the
hardware (NUMA nodes, sockets, caches, cores, and more) and various attributes such
as the cache type and size, or the socket number (see Fig. 1). It provides a portable
programming interface that abstracts the machine hierarchy, offering both hardware
information gathering and process and thread binding facilities. It also tries to leverage
this knowledge through a high-level conceptual interface. hwloc was initially devel-
oped for hierarchical thread scheduling [26], but the emergence of hierarchical mul-
ticore and NUMA architectures in clusters lead us to externalize it as a standalone
library for generic task placement in high-performance computing. It is now used by
both the Marcel threading library and some MPI implementations such MPICH2 to
bind threads and processes according to hardware affinities [5].

The Marcel library implements high-performance user-level multithreading [26].
It is able to dynamically migrate threads across cores in less than 2.5 µs. On top

Fig. 1 Graphical view of hwloc topology discovery on our quad-socket quad-core Opteron machine
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Fig. 2 Hierarchy of runqueues
built by BubbleSched on top of
the same machine

4x NUMA Node Runqueues

4x 4x Core Runqueues

Machine Runqueue

of Marcel, the BubbleSched framework implements high level abstractions for
developing powerful scheduling policies. By using hwloc, BubbleSched builds a
hierarchy of Runqueues as depicted on Fig. 2. Depending on whether a thread should
be executed by any core in the machine, any core within a specific NUMA node, or a
specific core, the scheduler may dynamically place it on the corresponding runqueue.
Moreover, threads may be organized as entities called Bubbles so as to expose affin-
ities to the scheduler. For instance, threads sharing data or synchronizing often are
grouped in a bubble so that the scheduler keeps them together on the machine. In the
end, BubbleSched is responsible for scheduling a hierarchy of bubbles and threads
over a hierarchy of hardware resources [26].

The BubbleSched platform also provides a programming interface for develop-
ing new bubble schedulers. We developed the Cache bubble scheduler [6] whose
main goal is to benefit from a good cache memory usage by scheduling teammate
threads as close as possible and stealing threads from the most local cores when a
processor becomes idle. This approach may cause some performance degradation in
presence of memory intensive kernels or concurrent accesses because of cache pol-
lution and contention. However it is interesting for cache-oblivious kernels which do
not suffer from such issues while they benefit from locality. The Cache scheduler
also keeps track of where the threads were being executed when it comes to per-
form a new thread and bubble distribution so as to improve locality during the whole
execution.

3.3 MaMI, a NUMA-Aware Memory Manager

While BubbleSched manages threads over hierarchical architectures, it does not
take care of data buffers. Managing memory buffers with NUMA awareness requires
to know how many NUMA nodes the memory is physically split into, which pro-
cessors are close to them, and their size. Again, thanks to hwloc discovering the
hardware characteristics, our MaMI library (Marcel Memory Interface [17]) gathers
a deep knowledge of the memory architecture. Aside from usual memory allocation
policies such as binding or interleaving, MaMI also offers two memory migration
strategies. The first method is synchronous and allows to move data on a given node
on application’s demand. The second method is based on a next-touch policy whose
implementation is described in Sect. 3.4.

MaMI also provides the application with hints about the actual cost of reading, writ-
ing, or migrating distant memory buffers. Moreover, MaMI gathers statistics about
how much free memory is available on each node. It also remembers how much mem-
ory was allocated per thread. This information is potentially helpful when deciding
whether or not to migrate a memory area or a thread so as to maintain both memory
access locality and load balancing. Table 2 shows the main functionalities provided
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Table 2 Application programming interface of MaMI

– void *mami_malloc(memory_manager, size);
Allocate memory with the default policy.

– int mami_register(memory_manager, buffer, size);

Register a memory area which has not been allocated by MaMI.

– int mami_attach(memory_manager, buffer, size, owner);

Attach the memory to the specified thread.

– int mami_migrate_on_next_touch(memory_manager, buffer);

Mark the area to be migrated when next touched.

– int mami_migrate_on_node(memory_manager, buffer, node);

Move the area to the specified node.

Table 3 The ForestGOMP interface for managing memory

– void fgomp_malloc(length);
Allocate a buffer and attach it to the current thread.

– int fgomp_set_current_thread_affinity(buffer, length, shake_mode);

Attach the given buffer to the current thread, and tell the scheduler whether the thread distribution should
be recomputed accordingly.
– int fgomp_set_next_team_affinity(buffer, chunk_length, shake_mode);

Attach one chunk of the given size of the buffer to each thread of the next parallel section.

– int fgomp_attach_on_next_touch(buffer, length);

Attach the given memory buffer to the next thread accessing it.

– int fgomp_migrate_on_next_touch(buffer, length);

Migrate the given memory buffer near the next thread accessing it.

by MaMI. We will detail in Sect. 4 how ForestGOMP relies on these features to
implement its memory affinity directives.

3.4 Advanced Support for Memory Migration

Although Linux earned NUMA-awareness in the last decades, its ability to man-
age NUMA memory is still limited to controlled allocation and static migration. As
explained earlier, the need to migrate memory buffers dynamically raises the need for
a next-touch policy.

One way to implement the next-touch policy in user-space consists in having the
operating system generate a Segmentation Fault event on next-touch and letting a user-
space library catching the corresponding signal in user-space. We implemented this
model thanks to the mprotect primitive enabling fake segmentation faults on valid
areas. If the fault occurs in a registered memory area, the signal handler retrieves the
current location of the thread and target buffers from Marcel and MaMI, migrates
the corresponding pages near the thread, and restores the initial protection.
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touch retry

change PTE protection

page−fault

Application Operating System Processor

madvise()

restore PTE protection

set next−touch flag

page−fault handler
check next−touch flag
migrate page
remove next−touch flag

mark next−touch

touch

Fig. 3 Implementation of the next-touch policy in the Linux kernel using madvise and a dedicated flag
in the page-table entry (PTE)

However, previous studies of this idea [24] revealed poor performance. Even if
Marcel and MaMI bring interesting knowledge of the current thread and data loca-
tions at runtime, large overheads are implied by the additional return to user-space
(to run the signal handler before re-entering the kernel again for migration) and by
the TLB flush on every processor during each mprotect (while another flush is
already involved during page migration). On the other hand, Solaris has been offer-
ing an optimized kernel based next-touch implementation for a while and it is known
to help applications significantly [16,21,24]. However, Linux does not offer such a
feature although it has spread to most high-performance computing sites nowadays.
We thus propose a Linux kernel-based next-touch strategy that migrates pages within
the page-fault handler as described in Fig. 3.

Our implementation is inspired by the Copy-on-write implementation in Linux.
The application marks pages as Migrate-on-next-touch using a new madvise param-
eter. The Linux kernel removes read/write flags from the page-table entries (PTEs) so
that the next access causes a fault. When the fault occurs, the page-fault handler checks
whether the page has been marked as Migrate-on-next-touch. If so, it allocates a new
page, copies the data and frees the old one. This implementation enables next-touch
migration as the new page is allocated on the NUMA node near the current thread by
default.

Both user-space and kernel implementations of next-touch actually have differ-
ent semantics. The kernel one is page-based: even if the application touches many
pages successively, each of them is migrated individually. The user-space implemen-
tation manipulates larger or more complex areas: the library offering the method can
obtain from the application the description of the whole memory area (for instance
a matrix column) and migrate it entirely as soon as a single page is touched. These
different semantics are expected to make the kernel implementation usable for small
granularities while the user-space high overhead makes it more suitable for very large
granularities. Moreover, as the user-space migration library knows the location of each
page after the next-touch has occurred, it does not have to query the kernel again for
page location. This additional knowledge could enable some optimization for complex
migration patterns where multiple migrations are involved.

Our current experimentation platforms reveal that the kernel next-touch implemen-
tation is always faster than the user-space one [13]. However, since the former is
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only available in modified Linux kernel, MaMI relies on both strategies to provide
ForestGOMP with efficient next-touch migration of data buffers in any case.

4 FORESTGOMP, a MAMI-Aware OpenMP Runtime

ForestGOMP is an extension to the GNU OpenMP runtime system relying on the
Marcel/BubbleSched user-level thread library. It benefits from advanced multith-
reading abilities so as to offer control on the way OpenMP threads are scheduled.
ForestGOMP automatically generates groups of threads (i.e. MarcelBubbles) out
of OpenMP parallel regions to keep track of teammate threads relations in a nat-
urally continuous way [6]. The ForestGOMP platform has been enhanced to deal
with memory affinities on NUMA architectures. We now detail how ForestGOMP

decides how to place these bubbles and their associated data thanks to BubbleSched

and MaMI.

4.1 A Scheduling Policy Guided by Memory Hints

We initially designed the Cache bubble scheduler to tackle dynamic cache-oblivious
applications [6]. While bringing interesting results in this class of applications, the
Cache scheduler does not take into account memory affinities, suffering from the lack
of information about the data accessed by threads. Indeed, whereas keeping track of
the bubble scheduler last distribution to move threads on the same core is not an issue,
the BubbleSched library needs feedback from the memory allocation library to be
able to draw threads and bubbles to their “preferred” NUMA node. This is why we
designed the Memory bubble scheduler that relies on the MaMI memory library to dis-
tribute threads and bubbles over the NUMA nodes regarding their memory affinities.
This scheduler contains two main algorithms: the distribution algorithm that performs
an initial threads and data distribution and the work-stealing algorithm which steals
threads and migrates the corresponding data when one or several cores become idle.

4.1.1 Distributing Threads and Data Accordingly

The distribution algorithm that comes with the Memory scheduler is called anytime
the OpenMP application goes parallel. It operates recursively from the machine level
to the NUMA node levels of the topology. The idea here is to have MaMI attaching
“memory hints” to the threads thanks to BubbleSched statistics interface. These
hints describe which data regions will be accessed by existing threads and how mem-
ory intensive these accesses will be. The MaMI library then dynamically infers the
location of the attached data, and summarizes this information on bubbles. This way,
ForestGOMP has all the information it needs to perform a sound distribution of
threads and data. The ultimate goal of Memory is to make every thread access local
memory. It relies on the information given by MaMI to guide the thread distribution
onto the correct NUMA nodes and migrate the attached data when necessary. Even if
the distribution algorithm just draws the threads to the location of their data most of
the time, a prior data distribution is sometimes needed to avoid memory contention or
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D0 D1

Machine level

Node level
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D0 D1

D0 D1

steal
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steal

migrate

(a) (b)
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Fig. 4 Threads and data scheduling computed by the combination of the Memory and Cache bubble sched-
ulers on an OpenMP application generating 2 teams of 4 threads on a computer made of 2 nodes of 2 cores
each

to prevent a NUMA node from being full. Once the Memory scheduler has distributed
the threads and the attached data over the NUMA nodes of the machine, the Cache
bubble scheduler is called inside each node to perform a cache-aware distribution over
the cores.
We illustrate the Memory distribution algorithm by running an OpenMP application
involving two teams of four threads on a computer made of two NUMA nodes of two
cores each. The initial data distribution is shown on Fig. 4a. D0 and D1 represent the
data respectively accessed by team 0 and team 1, and each array is allocated on a dif-
ferent NUMA node as usual for memory throughput reasons. The Memory scheduler
first draws each team to the node that holds the array they access. Then, the Cache
scheduler is called to distribute the threads inside each node. Figure 4b illustrates the
resulting distribution.

4.1.2 Reacting Upon Core Idleness

Each bubble scheduler can provide its own work-stealing algorithm called when a core
becomes idle. The algorithm used by the Cache scheduler tries to steal threads from the
most local cores. Its research scope is limited to the NUMA node of the idle core. The
Memory scheduler work-stealing algorithm is called when the Cache scheduler does
not manage to steal any thread inside the current NUMA node. Its main goal is to steal
threads from remote nodes and, when appropriate, to migrate the associated memory.
The selection of threads to steal is done by browsing the architecture topology from the
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most local nodes onwards. As migrating memory is an expensive mechanism, Memory
tries to migrate as less data as possible. To do so, teams of threads with the fewest
amount of attached data are chosen first. Threads with untouched memory are the best
candidates in this context, as stealing them will not trigger any memory migration. The
algorithm also takes the teams workload into account, to avoid stealing threads that
will terminate soon. This workload information can be updated from the application
using the BubbleSched programming interface.
Figure 4c shows how ForestGOMP reacts the idleness of core #3. The Cache sched-
uler work-stealing algorithm is called first to steal threads inside the current NUMA
node. This algorithm picks a thread from core #2 to occupy core #3. This way, the
runtime system does not need to migrate memory, as the stolen thread still accesses
local data. When dealing with greater imbalance, Cache sometimes cannot find any-
thing to steal from the current node. The Memory work-stealing algorithm is so called
to steal threads from a different node. Figure 4d illustrates this behavior. Both cores
#2 and #3 were idle, so the Memory scheduler had to pick two threads from node 0 to
occupy the idle cores. As we steal threads from remote nodes, Memory also migrate
the data accessed by the stolen threads on next touch. DOi represents the chunk of D0
the i-th thread accesses.

4.2 Extending ForestGOMP to Manage Memory

The ForestGOMP platform has also been extended to offer application programmers
a new set of functions to help convey memory-related information to the underlying
OpenMP runtime. There are two main ways to update this information. Applica-
tion programmers can express memory affinities by the time a new parallel region
is encountered. This allows the ForestGOMP runtime to perform early optimiza-
tions, like creating the corresponding threads at the right location. Updating memory
hints inside a parallel region is also possible. Based on these new hints, the bubble
scheduler may decide to redistribute threads. Applications can specify if this has to
be done each time the updating function is called, or if the runtime has to wait until
all the threads of the current team have reached the updating call. The ForestGOMP

runtime only moves threads if the new per-thread memory information negates the
current distribution.

5 Performance Evaluation

We first describe in this section our experimentation platform and we detail the per-
formance improvements brought by ForestGOMP on increasingly complex applica-
tions.

5.1 Experimentation Platform

The experimentation platform is a quad-socket quad-core 1.9 GHz Opteron 8347HE
processor host depicted on Fig. 5. Each processor contains a 2 MB shared L3 cache and
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NUMA Node #2

2MB L3 Cache

Quad−Core Opteron

4 CoresCPU8GB

#2

#0

CPU8GB

I/O

#3

CPU 8GB#1

8GBCPU

I/O

HyperTransport
Interconnect

Fig. 5 The experimentation host is composed of 4 quad-core Opteron (4 NUMA nodes)

Table 4 Memory access latency (uncached) depending on the data being local or remote

Access type Local access Neighbor-node access Opposite-node access

Read 83 ns 98 ns (× 1.18) 117 ns (× 1.41)

Write 142 ns 177 ns (× 1.25) 208 ns (× 1.46)

has 8 GB memory attached. The corresponding hwloc discovery and BubbleSched

runqueue hierarchy are depicted by Figs. 1 and 2 respectively.
Table 4 presents the NUMA latencies on this host. Low-level remote memory

accesses are indeed much slower when the distance increases. The base latency and
the NUMA factor are higher for write accesses due to more hardware traffic being
involved. The observed NUMA factor may then decrease if the application accesses
the same cache line again as the remote memory node is not involved synchronously
anymore. For a write access, the hardware may update the remote memory bank in
the background (Write-Back Caching). Therefore, the NUMA factor depends on the
application access patterns (for instance their spatial and temporal locality), and the
way it lets the cache perform background updates.

5.2 Stream

Stream [18] is a synthetic benchmark developed in C, parallelized using OpenMP, that
measures sustainable memory bandwidth and the corresponding computation rate for
simple vectors. The input vectors are wide enough to limit the cache memory benefits
(20 millions double precision floats), and are initialized in parallel using a first-touch
allocation policy to get the corresponding memory pages close to the thread that will
access them.

Table 5 shows the results obtained by both GCC 4.2 libgomp and ForestGOMP

runtimes running the Stream benchmark. The libgomp library exhibits varying per-
formance (up to 20%), which can be explained by the fact the underlying kernel thread
library does not bind the working threads on the computer cores. Two threads can be
preempted at the same time, and switch their locations, inverting the original memory
distribution. The ForestGOMP runtime achieves a very stable rate. Indeed, without
any memory information, the Cache bubble scheduler deals with the thread distri-
bution, binding them to the cores. This way, the first-touch allocation policy is valid
during the whole application run.
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Table 5 Stream benchmark results, in MB/s

libgomp ForestGOMP

Operation Worst–Best Average Worst–Best Average

Copy 8 504–12 056 10 646 14 200–14 368 14 299

Scale 8 469–11 953 10 619 14 239–14 391 14 326

Add 9 203–12 431 11 057 14 588–14 757 14 677

Triad 9 248–12 459 11 071 14 591–14 753 14 681

Table 6 Nested-Stream benchmark results in MB/s, per 4-thread team

libgomp ForestGOMP

Operation Worst–Best Average Worst–Best Average

Copy 1 555–1 983 1 788 3 606–3 626 3 615

Scale 1 614–2 024 1 814 3 599–3 621 3 613

Add 1 672–2 137 1 937 3 708–3 730 3 722

Triad 1 509–2 169 1 886 3 710–3 732 3 723

5.3 Nested-Stream

To study further the impact of thread and data placement on the overall application
performance, we modified the Stream benchmark program to use nested OpenMP
parallel regions. The application now creates one team per NUMA node of the com-
puter. Each team works on its own set of Stream vectors, that are initialized in
parallel, as in the original version of Stream. To fit our target computer architecture,
the application creates four teams of four threads. Table 6 shows the results obtained
by both the libgomp and the ForestGOMP library.

The libgomp runtime system maintains a pool of threads for non-nested parallel
regions. New threads are created each time the application reaches a nested paral-
lel region, and destroyed upon work completion. These threads can be executed by
any core of the computer, and not necessarily where the master thread of the team is
located. This explains why the results show a large deviation.

The ForestGOMP runtime behaves better on this kind of application. The under-
lying bubble scheduler distributes the threads by the time the outer parallel region
is reached. Each thread is permanently placed on one NUMA node of the computer.
Furthermore, the ForestGOMP library creates the teammates threads where the mas-
ter thread of the team is currently located (see Fig. 6). As the vectors accessed by
the teammates have been touched by the master thread, this guarantees the threads
and the memory are located on the same NUMA node, and thus explains the good
performance we obtain.
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Fig. 6 Nested-Stream

OpenMP threads distribution by
the ForestGOMP runtime.
Plain line threads were created
by the outer parallel region and
dashed line threads by the inner
ones

Node 0 Node 1 Node 2 Node 3

Outer parallelism

Inner parallelism

Table 7 Average rates (per 4-thread team) observed with the Twisted-Stream benchmark using a first-
touch allocation policy. During phase 2, threads access data on a different NUMA node

libgomp (MB/s) ForestGOMP (MB/s)

Triad Phase 1 8 144 9 108

Triad Phase 2 3 560 6 008

5.4 Twisted-Stream

To complicate the Stream memory access pattern, we designed the Twisted-Stream

benchmark application, which contains two distinct phases. The first one behaves
exactly as Nested-Stream, except we only run the Triad kernel here, as it is the only
one to involve the three vectors. During the second phase, each team works on a dif-
ferent data set than the one it was given in the first phase. The first-touch allocation
policy only gives good results for the first phase as shown in Table 7.

A typical solution to this lack of performance seems to rely on a next-touch page
migration between the two phases of the application. However this functionality is not
always available. And we show in the remaining of this section that the next-touch
policy is not always the best answer to the memory locality problem.

The Stream benchmark program works on three 160MB-vectors. We experimented
with two different data bindings for the second phase of Twisted-Stream. In the first
one, all three vectors are accessed remotely, while in the second one, only two of
them are located on a remote node. We instrumented both versions with calls to the
ForestGOMP API to express which data are used in the second phase of the compu-
tation.

5.4.1 Remote Data

The underlying runtime system has two main options to deal with remote accesses. It
can first decide to migrate the three vectors to the NUMA node hosting the accessing
threads. It can also decide to move the threads to the location of the remote vectors.
Fig. 7 shows the results obtained for both cases.

Moving the threads is definitely the best solution here. Migrating 16 threads is
faster than migrating the corresponding vectors, and guarantees that every team only
accesses local memory. On the other hand, if the thread workload becomes big enough,
the cost for migrating memory may become lower than the cost for accessing remote
data.
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Fig. 7 Execution times of
different thread and memory
policies on the Twisted-Stream

benchmark, where the whole set
of vectors is remotely located
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Fig. 8 Execution times of different thread and memory policies on the Twisted-Stream benchmark, where
only two of the three vectors are remotely located

5.4.2 Mixed Local and Remote Data

For this case, only two of the three Stream vectors are located on a remote NUMA
node. One of them is read, while the other one is written. We first study the impact of
the NUMA factor by only migrating one of the two remote vectors. Figure 8a shows
the obtained performance. As mentioned in Table 4, remote read accesses are cheaper
than remote write accesses on the target computer. Thus, migrating the read vector is
less critical, which explains our better results when migrating the written vector. The
actual performance difference between migrating read and written vectors is due to
twice as many low-level memory accesses being required in the latter case.

To obtain a better thread and memory distribution, the underlying runtime can still
migrate both remote vectors. Moving only the threads would not discard the remote
accesses as all three vectors are not on the same node. That is why we propose a mixed
approach in which the ForestGOMP runtime system migrates both thread and local
vector near to the other vector. This way, since migrating threads is cheap, we achieve
a distribution where all the teams access their data locally while migrating as few
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Table 8 Per-team execution
times of the
Imbalanced-Stream benchmark
run with ForestGOMP without
activating the work-stealing
algorithm

Execution time (s) Average Min Max

Team 0 1.6595 1.6578 1.6613

Team 1 1.4879 1.4876 1.4881

Team 2 2.7150 2.7113 2.7170

Team 3 0.1336 0.1335 0.1338

Overall time 2.7151 2.7114 2.7171

data as possible. Figure 8a shows the overhead of this approach is smaller than the
next-touch policy, for which twice as much data is migrated, while behaving the best
when the thread workloads increase, as we can see on Fig. 8b.

We also tested these three Stream benchmark versions on the Intel compiler
11.0, which behaves better than ForestGOMP on the original Stream application
(10 500 MB/s) due to compiler optimizations. Nevertheless, performance drops sig-
nificantly on both Nested-Stream, with an average rate of 7 764 MB/s, and Twisted-
Stream with a second step average rate of 5 488 MB/s, while the ForestGOMP

runtime obtains the best performance.

5.5 Imbalanced-Stream

Even if the results obtained by ForestGOMP on the Nested-Stream and
Twisted-Stream benchmarks are promising, they only demonstrate how efficient
the ForestGOMP threads and data distribution can be with applications exposing
balanced parallelism. When it comes to irregular applications, the runtime system
must dynamically react when a processor idles. The Imbalanced-Stream benchmark,
a modified version of the Nested-Stream benchmark, will help us to illustrate this
problem.

The Imbalanced-Stream benchmark also generates one team of threads per NUMA
node of the target computer but we assign twice as many threads per team than in the
Nested-Stream version. Indeed, each core ends up with scheduling two threads in
this version, allowing idle cores to steal work from the most loaded ones. We also
assign different workloads to these teams, corresponding to the number of Stream

iterations a thread will have to compute. As an example, assigning a workload of 10
to a team means that every thread of the team will compute 10 times what a single
thread would have computed in the original Stream benchmark. To study the impact
of work imbalance, we assigned a workload of 15 to the first two teams, a workload
of 30 to the third one, and a workload of 1 to the last one. This way, the last team
will terminate earlier than the other ones, giving the runtime system the opportunity to
perform work-stealing. As before, each team works on its own set of Stream vectors
initialized using the first-touch allocation policy. Table 8 shows the execution time of
this benchmark without activating ForestGOMP’s work-stealing algorithm. The four
teams are run in parallel, and the threads from team i are distributed over the cores
contained inside node i. We can see that Team 3 ends its execution far earlier than the
others, and so making a whole set of cores idle.
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Table 9 Per-team average
execution times of the
Imbalanced-Stream benchmark
run with ForestGOMP stealing
threads from one of the
remaining teams

Execution time (s) Steal from
Team 0

Steal from
Team 1

Steal from
Team 2

Team 0 1.9755 1.5228 1.5252

Team 1 1.5226 1.9755 1.5306

Team 2 2.9716 2.9692 3.4574

Team 3 0.1334 0.1333 0.1329

Overall time 2.9696 2.9693 3.4575

When some cores are idle, the underlying runtime system can try to dynami-
cally adapt the current thread distribution so as to occupy every core. As detailed
in Sect. 4.1.2, each bubble scheduler that comes with ForestGOMP provides its
own work-stealing algorithm. We first experimented with a modified version of the
Cache scheduler work-stealing algorithm, which tries to steal threads from the most
local cores to maximize cache memory reuse, and do not limit its research scope to the
cores composing the current NUMA node. In the Imbalanced-Stream benchmark, the
completion of Team 3 turns the four cores inside Node 3 idle. The Cache work-stealing
algorithm picks up the eight threads belonging to Team 2, and currently running on
Node 2, to distribute them over Nodes 2 and 3. This way, every core inside Nodes 2
and 3 gets one thread to execute, and the load balance problem is solved. We also tried
to steal threads running on Nodes 0 and 1. The results we obtained are summarized in
Table 9.

Even if stealing threads from Team 0 or from Team 1 appears to be the best solu-
tion here, we need to compare these results with the ones presented in Table 8. In fact,
the Cache work-stealing algorithm obtains poor performance compared to leaving
the cores in an idle state. Indeed, distributing the threads of a team over two differ-
ent NUMA nodes results in generating more traffic on the memory bus. The stolen
threads keep accessing data from their former location and the induced remote mem-
ory accesses will increase the contention on the memory bus. As an example, stealing
threads from Team 0 actually slows down Team 2, even if the threads from Team 2
keep executing on the same set of cores during the whole application run. This shows
memory affinities need to be taken into account when performing work-stealing.

This is why we experimented the Imbalanced-Stream benchmark with the Memory
bubble scheduler NUMA-aware work-stealing algorithm. This algorithm was designed
to even the memory load on the computer by migrating the accessed data when stealing
some threads. The Memory scheduler steals half of a team, just like the Cache sched-
uler, but also migrates the data accessed by the stolen threads. This mechanism can
be compared to migrating the data on next touch. However in this specific case, appli-
cation programmers would not be able to decide when marking data to be migrated.
Indeed, due to the irregular nature of this benchmark, it is very unlikely to predict
which threads would terminate first, and which data would have to be migrated. How-
ever, by expressing memory affinities, application programmers give ForestGOMP

the ability to migrate the accessed data while stealing threads to occupy idle cores. The
results we obtain using this technique are presented in Table 10. We can see that steal-
ing threads from Team 2 is the best solution here to minimize the benchmark overall
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Table 10 Per-team average
execution times of the
Imbalanced-Stream benchmark
run with ForestGOMP stealing
threads from one of the
remaining teams and migrating
the corresponding data

Execution time (s) Steal from
Team 0

Steal from
Team 1

Steal from
Team 2

Team 0 1.4401 1.7564 1.7374

Team 1 1.7453 1.4285 1.7720

Team 2 2.7178 2.7155 2.2843

Team 3 0.1632 0.1627 0.1629

Overall time 2.7179 2.7156 2.2844

execution time. Indeed, by looking at Table 8, we can see that the threads belonging
to Team 2 are the last to finish. Stealing them gives them access to more computing
power thus shortening their execution time. The obtained results show that a work-
stealing algorithm involving threads and data migration can improve the performance
of irregular applications.

These results also exhibits that stealing the team with the highest workload helps
with improving the overall performance. We also tried to trigger the work-stealing
algorithm anytime a core idles, but the best solution remain the ones which start by
stealing from Team 2. Indeed, this algorithm gives better results by taking the load
information into account, and thus considering how much work the remaining threads
still have to compute, before deciding to migrate them or not. Application program-
mers are sometimes able to provide load information about parallel regions. In case of
regular applications, the runtime system could also establish a load factor by analyzing
statistics about the performance the OpenMP teams obtained during the previous loop
iterations.

6 Related Work

The quality of thread scheduling has a strong impact on the overall application per-
formance because of thread and data affinities. While thread schedulers are already
able to place threads according to their memory affinities [23], load-balancing also
requires to spread threads across all cores, and thus to redistribute data dynamically
to match their needs. Indeed, achieving optimal performance has been long known to
require careful placement of threads as close as possible to the data they access [4,1].

Many research projects have been carried out to improve data distribution and
execution of OpenMP programs on NUMA architectures. This has been done either
through HPF directives [3] or by enriching OpenMP with data distribution directives
[8] directly inspired by HPF and the SGI Fortran compiler. Such directives are use-
ful to organize data the right way to maximize page locality, and, in our research
context, a way to transmit affinity information to our runtime system without heavy
modifications of the user application.

Nikolopoulos et al. [19] designed a mechanism to migrate memory pages automat-
ically that relies on user-level code instrumentation performing a sampling analysis
of the first loop iterations of OpenMP applications to determine thread and memory
affinity relations. They have shown their approach can even be more efficient when
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the page migration engine and the operating system scheduler [20] are able to commu-
nicate. This pioneering research only suits OpenMP applications that have a regular
memory access pattern while our approach favors many more applications. Hardware
counters may also be used to gather affinity information so as to offer placement hints
for the next run [22]. ForestGOMP only gathers affinity knowledge from bubbles that
it creates from OpenMP parallel sections, but it is able to dynamically adapt thread
and data placement at runtime without relying on a post-mortem analysis. Moreover
ForestGOMP is able to retrieve hardware counters at runtime and compare them to
thresholds and look at their evolution so as to for instance decide when to redistribute
in case of sudden memory bus contention or cache misses.

Most operating systems acquired some limited NUMA-aware capabilities within
their memory management and thread schedulers. To tackle irregular algorithms, [16,
21,24] have studied the promising next-touch policy. Their approach however suffers
from the lack of cooperation between the allocation library and the thread scheduler,
and from not mastering the underlying memory architecture constraints. Our runtime
consists in a tight integration of the BubbleSched and MaMI knowledge of the appli-
cation state and of the hardware, which lets ForestGOMP benefit from our next-touch
implementation in the Linux kernel.

In order to favor affinities in a portable manner the NANOS compiler [2] allows
to associate groups of threads with parallel regions in a static way in order to always
execute the same thread on the same core. The OpenUH Compiler [9] proposes a mech-
anism to accurately select the threads of a sub-team to define the thread-core mapping
for better data locality, although this proposition does not involve nested parallelism.
These look very much like single level bubbles, but no possibility of nested sets is
provided, which limits the affinity expressivity. Moreover, none of them provides the
degree of control that we provide: with BubbleSched, the application has hooks at
the very heart of the scheduler to react to events like thread wake up or processor
idleness.

7 Conclusion and Future Work

Exploiting the full computational power of current more and more hierarchical multi-
processor machines requires a very careful distribution of threads and data among the
underlying non-uniform architecture. Directive-based programming languages pro-
vide programmers with a portable way to specify the parallel structure of their appli-
cation. Using such information, the scheduler can take appropriate load balancing
decisions and either choose to migrate memory, or to move threads across the archi-
tecture. Indeed, thread/memory affinity does matter mainly because of congestion
issues in modern NUMA architectures.

Therefore, we introduce a multi-level thread scheduler combined with a NUMA-
aware memory manager. It enables dynamic load distribution in a coherent way based
on application requirements and hardware constraints, thus helping to reach perfor-
mance portability. It also provides NUMA-aware work-stealing algorithms to tackle
irregular applications. Our experiments show that mixed solutions (migrating threads
and data) improve overall performance. Moreover, traditional next-touch-based data
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distribution approaches are not always optimal since they are not aware of the memory
load of the target node. Migrating threads is more efficient in such situations.

There are several research directions we intend to address in the near future. We
plan to provide the application programmer with tools to mark memory areas that
should be attached to a thread upon the next read or write touch. This mechanism
will help the runtime system to better infer the memory affinities, especially when
the memory access patterns become too complex to be defined a priori by the pro-
grammer. Hardware counter feedback should also be involved in this process, as they
should warn the runtime system about memory contention and high rates of remote
accesses.

Our proposal is in line with the recent efforts of the OpenMP Architecture Review
Board which is currently working on the next evolution of the standard towards a sat-
isfying support of hierarchical, multicore architectures. In particular, the next release
will feature new directives for specifying affinity between threads and data. Our pro-
posal of a runtime system able to handle this information is complementary and could
also widen the OpenMP spectrum to hybrid programming [10,11].

In the longer run, we plan to explore ways to compose our scheduling strategies
with other schedulers and paradigms. For instance, parallel languages such as Cilk
or TBB rely on runtime systems able to efficiently schedule fine-grain parallelism on
SMP architectures. The idea is to let such fine-grain task schedulers run inside NUMA
nodes, while using our Memory scheduler to limit inter-node remote memory accesses,
thus widening the spectrum of flat parallelism approaches to NUMA computers in a
portable way.
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