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Abstract We present two designs (I and II) for IEEE 754 double precision float-
ing point matrix multiplication, optimized for implementation on high-end FPGAs. It
forms the kernel in many important tile-based BLAS algorithms, making an excellent
candidate for acceleration. The designs, both based on the rank-1 update scheme, can
handle arbitrary matrix sizes, and are able to sustain their peak performance except
during an initial latency period. Through these designs, the trade-offs involved in terms
of local-memory and bandwidth for an FPGA implementation are demonstrated and
an analysis is presented for the optimal choice of design parameters. The designs,
implemented on a Virtex-5 SX240T FPGA, scale gracefully from 1 to 40 processing
elements(PEs) with a less than 1% degradation in the design frequency of 373 MHz.
With 40 PEs and a design speed of 373 MHz, a sustained performance of 29.8 GFLOPS
is possible with a bandwidth requirement of 750 MB/s for design-II and 5.9 GB/s for
design-I. This compares favourably with both related art and general purpose CPU
implementations.
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1 Introduction

Field Programmable Gate Arrays (FPGAs) are a form of programmable logic based
on configurable routing between logic resources, unlike Application Specific Inte-
grated Cicuits(ASICs) like general purpose processors. Designs on FPGAs consist
of mapping functions onto logic slices and routing them appropriately. They are
increasingly being seen as a promising avenue for High Performance Computing
(HPC), especially with the introduction of high-end FPGAs like Xilinx Virtex-4/5/6
and the Altera Stratix series. These FPGAs are a very attractive choice due to their
abundant local memory, high-speed embedded resources like DSP blocks, PCI-e end-
points etc., apart from the more obvious reasons such as reconfigurability and lower
power consumption compared to general purpose hardware. A line of special pur-
pose development boards based on such FPGAs are also available(e.g. Nallatech and
Alpha data) which are particularly suitable for HPC; some of these come with tools
which help faster algorithm-to-hardware realization with high-level C-like constructs;
Maxwell [1,2], a FPGA parallel computer, is a good example of a system built around
such hardware/software ecosystem.

Efficient implementation of matrix-multiplication is an important goal for scientific
computing. MEMOCODE [2007] chose acceleration of (complex integer) matrix-mul-
tiply as its first HW/SW codesign challenge . Underwood [3] chose matrix multipli-
cation as one of the three main routines for FPGA acceleration in order for HPC.
An inspection of Level-3 BLAS routines shows that matrix multiplication (dgemm)
and triangular equation solution (dtrsm) form the building blocks for many important
linear algebra algorithms, in fact, the dtrsm itself can be expressed in terms of dgemm.
Matrix-Multiplication, therefore, presents as an important and useful candidate for
hardware acceleration. The following resources can serve to provide more perspective
in this context: [4,5].

In this paper, we present designs for double precision floating point matrix multi-
plication [6], based on the rank-1 update algorithm, targeted at the Virtex-5 SX240T,
a high-end Xilinx FPGA. As compared to others this algorithm enables better re-use
of data from the input matrices. The processing elements (PEs) use off-the-shelf float-
ing point operators from Xilinx Coregen, resulting in advantages such as the choice
of custom-precision, short-design time, portability across Xilinx device generations,
better IEEE 754 compliance, etc. The PEs are designed so as to scale linearly in terms
of resources with negligible (<1%) degradation in speed. Some of the recent work
[7] reports 35% speed reduction associated with scaling, which is typically due to
increased routing complexity. The proposed design (II) works well with burst-like
input and thus with a high-bandwidth I/O bus like PCI-e—allowing it to scale seam-
lessly across multiple FPGAs.

The underutilisation of device primitives and the over-dependence on the distrib-
uted memory available in FPGAs results in lower performance with respect to scaling,
as with some of the discussed related work. The designs presented in this work have
evolved by careful use of the high-performing resources on modern FPGAs. Care has
been taken to address issues related to scaling for large FPGAs, setting this work apart
from related art. The main thrust of our effort has been in reporting the design and
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implementation, of this processing element, targeted at FPGAs and the results on the
Virtex-5 SX240T.

The following sections are organised as follows—Sect. 2 discusses related work
with a quick background on FPGAs, Sect. 3 discusses the underlying algorithm,
Sect. 4 elaborately discusses both the designs, Sect. 5 presents an evaluation of the
design, Sect. 6 presents an analysis on design parameters, Sect. 7 critically compares
our design with the best among the related work, and finally Sect. 9 concludes the
paper.

2 Background

The rank-1 update algorithm used in this paper is an elementary idea, variations of
which have also been applied to cache-aware computing on general purpose proces-
sors [8], though not as aptly. This was chosen to be implemented on an FPGA since
it is particularly suitable for the task as verified by both Dou and Prasanna.

Much of the related work are designs targeted and optimised for Virtex II Pro,
which is an entry level device for HPC that made floating point computation feasible
for the first time on FPGAs.

2.1 Related Work

The two most recent significant designs are those by Dou [9] and Prasanna [7].
They propose linear array based processing elements which are able to sustain their
performance by overlapping IO and computation using a technique called memory
switching.

Dou has proposed the design of a matrix multiplier highly optimised for the Virtex
II Pro series of FPGAs. The design included an optimized custom 12-stage pipelined
floating point multiply-accumulator (MAC), but with a few limitations like no support
for zero and other denormal numbers. Correcting this requires additional resources and
results in a decrease in the design frequency. This design also required the subblock
dimensions to be powers of two. The bandwidth requirement was low at 400 MBps
with 12.5 Mb of local memory utilization and they report a PE design with a syn-
thesis frequency of 200 MHz accommodating 39 PEs on a Virtex II pro XC2V125,
a large hypothetical device, and therefore estimated a 15.6 GFLOPS performance.
These being only synthesis results, the real frequency after placing and routing 39 PEs
could be less.

Zhou and Prasanna have reported an improved version [7] of their design reported in
[10]. The later one reports 2.1 GFLOPS for 8 PEs running at 130 MHz on a cray XD1
with XC2VP50 FPGAs. About 35% speed degradation was observed when scaled
from 2 to 20 PEs. In the earlier paper they presented a design with a peak performance
of 8.3 GFLOPS for the Virtex II Pro XC2V125, where the clock degradation was
15% when the number of PEs increases from 2 to 24. A recent [4] report, which also
discussing other linear algebra operations, shows a similar behaviour with respective
to scaling for matrix multiplication.
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2.2 FPGAs

For accelerator designs to be more than just an academic exercise the following are
important considerations. The design time should be low and allow for extensive test-
ing. The design should be modular in nature and scale with available resources. For
integration within an existing system form-factor limitations should be considered as
should power and memory. Most HPC systems are based on Infiniband like intercon-
nects between nodes, with nodes having PCI-e for communication with peripherals.
The PCI-e connects via the southbridge to the host memory, sharing bandwidth with
the host processor. DMA is used in order to transfer data efficiently, and thus acceler-
ators should be compatible with DMA and burst transfer. The overall system should
also be oblivious to the presence of the accelerator, requiring minimal modifications
to be done to accomodate it. These aspects make FPGA based designs very attractive.
Their form factors allow multiple FPGA to fit on existing boards, that can communi-
cate via PCI-e. The cost of being reconfigurable doesn’t allow FPGAs to run at clocks
as high as modern general purpose processors. However, it does let designs exploit
the very low power consumption and their high parallelisability.

FPGAs have a reconfigurable fabric consisting of flip-flops and look-up tables
(LUTs) grouped into Configurable Logic Blocks (CLB). The difference between
FPGAs results from different arrangements within the CLB and the interconnects
between them. The fixed function logic blocks, such as multipliers, and embedded
block RAM are ‘systematically’ interspersed between these. Care should be taken that
designs should not be complex from the view of routing between elements. FP-
GAs have limited resources that facilitate long routing, and can adversely affect the
maximum achievable clock frequency if not utilized well. In this work, care has
been paid to minimise communication between PEs, keeping the routing complex-
ity low.

The targeted device is from the Xilinx Virtex-5 family [11], based on a 65 nm
process, it provides four 6-input LUTs, four flip-flops, multiplexers and carry chains,
within a slice, with two slices making a CLB. For our context, we briefly introduce
the key FPGA primitives used in this design: the Block RAM (BRAM), the FIFO and
the DSP48 slice based Multipliers and Adders. These hard primitives embedded in the
Virtex-5 fabric are individually able to clock at speeds greater than 500 MHz while
operating at relatively low power.

Block RAM
The BRAMs are 36 bit wide 1 K deep true dual-port SRAMs, true dual-port mean-
ing being able to independently read/write from both ports. They can be used in
a variety of width-depth configurations and cascaded if requried. Two adjacent
BRAMs can be treated as 64 bit wide memories with no additional user logic.
They can also be configured as FIFOs with relevant flags available for use.

DSP48 Slices
DSP48E blocks consists of cascadeable, 25 × 18 bit multipliers and 48-bit
adder/subtractr/accumulator. They also allow for functions like shifting, com-
parisons and others to be implemented. Their ability to be cascaded allows for
floating point implementations.
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Since designs consist of memory elements feeding computational blocks, the rela-
tive placement between the BRAMs and the DSP48 slices is important. The targeted
FPGA have these blocks arranged close to each other in special lanes within the fabric.
The DSP block and BRAM proximity also true for Altera Stratix series FPGAs.

3 Algorithm

The rank-1 update scheme for matrix multiplication, illustrated in the Fig. 1, has
been described here for the convenience of the reader. A rank-1 update is of the form
C ← αuT v + C , where α = 1 in this case. The paper partly follows the notation
introduced by Dou [9] as both are variations of the same algorithm. Consider A, B and
C of dimensions M×N, N×R and M×R, respectively. The objective is to compute
C = AB. When a Si ×N panel of A (say, PA) and a N× S j panel of B (say PB) are
multiplied, the result is a subblock of the matrix C with dimensions Si × S j . The outer
product of a kth column vector (uk) from PA and the kth row vector(vk) from PB is
an intermediate result, the matrix Ck;(Si×S j ) and accumulation of such results with k
ranging over the panel length (from 1 to N) is the required subblock of C.

For an outer product, each element of vector uk multiplies all elements of vector
vk . Thus, n(vk) or S j elements are re-used n(uk) or Si times with S j multiplications
each time. That means, if one element of uk and all the elements of vk are available to
the system then each of the products can be carried out independently. This results in
the design proposed, where, broadly, an element from uk is broadcast to all PEs, and
each PE is assigned one element from vk .

Algorithm 1 Illustration of one P A × P B computation
1: // For simplicity, Let number of PEs be the same as S j , let multiplier and adder latency be 1
2: for q := 1 to S j do
3: push v1(q)⇒ IBUF
4: end for
5: for p := 1 to N do
6: load WBUF⇐ IBUF
7: broadcast u p(r)⇒ PEq , q : 1→ S j
8: for r := 1 to Si do
9: for q := 1 to S j do
10: push vp+1%N (q)⇒ IBUF
11: // on overflow, cont. pushing next PB block’s v(.)

12: @ProcessingElement(q)
13: C p(r, q)⇐ u p(r)× vp(q)

14: if p = 1 then
15: C(r, q)⇐ 0+ C p(r, q)

16: push C(r, q)⇒ C_OU T // the previous P A × P B result
17: else
18: C(r, q)⇐ C(r, q)+ C p(r, q)

19: end if
20: end @ProcessingElement(q)
21: end for
22: end for
23: end for
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Fig. 1 The rank-1 update scheme

Given this scheme, for any candidate hardware design implementing this elemen-
tary idea, the focus now shifts to good PE design, data flow, and effective utilization
of FPGA resources. In this case, the data-flow scheme and resource-aware data-path
is what essentially sets our results and design apart from related work [7,9].

4 Implementation

This section describes two designs, I and II. The goals for the first design were maxi-
mising the parallelism possible, full utilisation of PEs and overlapping I/O and compu-
tation and thereby sustaining peak performance. The basic idea of re-using one element
for several computations in parallel naturally leads to the broadcasting scheme in the
design. The goals of design-I were met at the cost of a high I/O bandwidth and sub-
optimal use of available resources. The second design addresses these limitations of
the first design by a better utilization of the already existing elements. The section
on design II describes its evolution in terms of more effective use of the previous
data-path and resources by re-using data more efficiently.

Broadly, broadcasting elements of PA to all PEs and the streaming in of elements of
PB to the prefetch registers is central to both the schemes and the relative rate at which
they are streamed in, and the manner of their re-use is what essentially differentiates
the two. The trade-off between the bandwidth and the local storage enables the use of
this scheme in multi-FPGA accelerators.

4.1 Design-1

This design assumes P = S j and Si = S j , where P is the number of PEs. The Si > S j

case is also acceptable. Figure 2 gives an overview of this design. The following enu-
merated list will describe all the major labeled components, shown in Fig. 3, of the
PE. It will be clear shortly that this design requires 2 words per design clock.
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Fig. 2 Overview of Design-I

Component Description

1) B Prefetch Unit: This unit is used to prefetch S j elements of the next row of PB
while the current row is used. The input to the first of such units is a stream of
elements from the matrix B, in a row major fashion. Each unit has one data input
and two data outputs: a serial-shift-forward, which happens every clock cycle and
a parallel-load-down which happens every P shifts (or Si clocks if Si > S j ). These
P words are available at the output for at most Si clocks, which exactly how long
we need them for all the Si multiplications.

2) FIFO1: When the B Prefetch units were connected directly to the multipliers, a
severe and unexpected drop in the design frequency was observed. This drop was
inferred to be due to the routing overhead in bringing the data lines from a 64 bit
register to the 13 DSP48 blocks which make up a double precision multiplier. A
FIFO built out of BRAM was placed in the path in order to reduce the length of
the routing path thus ensuring the expected design frequency. Due to the physical
proximity of the BRAMs to the DSP blocks on Xilinx FPGAs, complicated rout-
ing is avoided and also, now, the 64 bits have to route to one BRAM instead of
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Fig. 3 PE: Design-I

13 DSP48s. This does also increase the latency, but we will address this issue in
design-II.

3) Multiplier: A standard double precision floating point multiplier IP(version v3.0)
from Xilinx is used for this block. A latency of 19 cycles gives it a maximum clock
speed of about 431 MHz using 13 DSP48 units. One input to the multiplier comes
from the prefetch unit via the FIFO1 and the other input is the element from matrix
A which is broadcast to all multipliers. The output of this multiplier is one of the
inputs to the adder. The recent floating-point v4.0 is superior in terms of area
resource(DSP48) usage and latency, especially for Virtex-5 series, but reduces
the speed, hence is not used in the design.

4) Dual-Port BRAM: This dual port blockram is used as the storage space for the
accumulation step of the algorithm. The adder writes back to the RAM using port
A and reads from the RAM using Port B. The output of port B is duplicated as
the input to Mux2 as well.

5) Mux1: When a new panel-panel multiplication starts we not only need to backup
the previous panel-panel multiplication result (C) but also ‘reset’ C for the fresh
C ← uT

0 v0+C operation. This mux ensures ’0’ is added to the incoming product
stream for Si cycles, for that fresh update of C , while the previous result C in the
BRAM is copied into FIFO2’s, which also needs precisely Si clock cycles.
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6) Adder: A double precision floating point adder IP (version v3.0) from Xilinx is
used for this block. It receives two inputs, one from the multiplier and one from
the Mux1. It writes back to blockram at the appropriate location considering its
own latency.

7) Mux2: The mux is used to switch connections between the BlockRAM (Result-
backup mode), and the other instances of FIFO2 (Serial-dataout mode).

8) FIFO2: In order to ensure that there is no stalling in the pipeline the result needs
to be backed up. Since both the ports of the result BRAM are busy, a separate
memory unit is used for the back-up, in the form of FIFO2. The final updated data
of the result sub-matrix ’C’ (one column of ‘C’ when we talk about 1 PE) will be
loaded into the corresponding FIFO2s (Result-backup mode) of the PEs. When
the result has been copied into the FIFO2, input of the FIFO2 gets connected to
the output of FIFO2 of the previous PE, thus allowing us to take the output in a
streaming fashion (Serial-dataout mode).

Data Flow-Design 1: The inputs, elements from PA and PB are streamed in column
major and row major order respectively. First, one of the rows from PB (vk) shifts into
the B prefetch unit. Once a complete row is shifted-in (S j = P), the ’prefetch-line’
registers are full and this data is loaded down to the ‘working-line’ registers. In the
meanwhile the prefetch-line continues to shift-in the next row from PB (vk+1). At
this point, when working-line is available and connected to one of the inputs of the
multiplier, elements from the corresponding column (uk) from A are broadcast to the
second input of all the multipliers. After a latency period of the multiplier (say, Lm)
the first result of multiplication is available at the output along with the appropriate
handshaking signals which are used to trigger accumulation of the outer products at
the storage area.

Once the pipeline of the multiplier has been filled it shall not be stalled since no data
dependencies exist between subsequent multiplications. This allows continuous feed
of the data at the maximum design frequency. The result of the addition, available after
a latency period (say, La), is stored in the BRAM. We will see later that the pipeline
may stall in one case. Zero is accumulated with the product stream during the first
outer product of each new PA × PB, after which the accumulation happens with the
appropriate location in the BRAMs. The FIFOs responsible for the output are loaded
with the values parallely from the BRAMs once the final value of the result subblock
CSi×S j is ready. After the loading/backup is completed, these FIFOs switch modes
allowing us to stream the data out in a serial fashion.

Merits and Summary: The design described above requires that Si ≥ S j = P ,
implicitly assuming a bandwidth of 2-words per design clock cycle. PCI-e is capable
of such high bandwidths, and is the norm for today’s large FPGAs. The merits and
demerits of this design have been summarised in the following list, details about the
performance and analysis are presented in a later section.

1) Overlaps I/O and computation completely. Therefore, except for the initial latency
period, all the processing elements (both the floating point operators) are in use
all the time, thus sustaining peak performance.

2) The design scales seamlessly (<1% reduction in speed) as seen from Table 1.
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Table 1 Timing information
(post PAR)

No. PEs SX240T(-2) [MHz] SX95T(-3) [MHz]

1 PE 374 377

4 PEs 373 374

8 PEs 344 373

16 PE − 373

19 PEs − 373

20 PEs 372.8 201

40 PEs 371.7 −

3) Uses off-the-shelf Coregen floating point adders and multipliers, allowing for
portability across technologies and generations, custom-precision option, better
IEEE compliance etc.

Drawbacks:

1) The design requires a sustained bandwidth of 2-words per cycle corresponding
to the design frequency. For a design speed of, say, 350 MHz this translates to a
5.6 GBps bandwidth requirement, which can well be provided by today’s stan-
dards, but is high nonetheless.

2) Little to almost no flexibility in the choice of Si and S j which might affect the
overall runtime even with the sustained peak performance.

3) Si cannot be less than the latency of the floating point adder as that would result
in a data dependency. This may prove to be a problem for a small number of PEs,
practically though this is not a problem due to the large sizes of matrices under
question.

4.2 Design-II

Design-I assumed Si ≥ S j = P and so S j = P elements of B were being re-used Si

times. The design-II ensures more re-use by allowing Si and S j to be greater than P ,
(i.e., Si , S j ≥ P), however S j needs to be a multiple of P .

As shown in the Fig. 4 the data-path is similar to that of design-I. The design actually
evolved from design-I in an attempt to find a better use of the existing components,
especially the dummy FIFO1 used earlier. The following enumerated list describes
the major modifications as

1) B Prefetch Unit: This is the same as described earlier in design-I, however two
sets of registers are not necessary. ‘BRAM Cache’ is made part of the working-line
by using it for storage.

2) B Cache: The design-I employed a dummy FIFO1 (BRAM based) to prevent the
design frequency from falling drastically. This component now assumes a central
role in design-II. Each BRAM now stores S j/P consecutive elements of a row
from the chosen panel of the matrix B, hence renamed B Cache. Configured in
dual port mode, this BRAM can easily implement the working-line required for
the design.
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Fig. 4 PE: Design-II

3) Simple Dual-Port RAM: To accommodate the larger sizes of Si and S j , the stor-
age area has been increased in size and logically segmented into S j/n(PEs) zones
each storing results corresponding to one S j . Overall, the storage area accounts
for the storage of Si × S j elements of the result block. Writing to the appropriate
segments is handled by address generation and control.

Design Merits:

1) Inherits all the merits from design I—as enumerated earlier.
2) Addresses all the identified drawbacks of design I, viz drastically reduces the

bandwidth requirement, more flexibility in the choice of Si and S j and relaxes
the constraint on Si w.r.t the latency—the details of which are described in the
following sections.

Data Flow: Data stream from a row of PB is fed to the prefetch unit as before, but
the sequence of data is such that the i th consecutive

S j
P elements from a row with S j

elements, are loaded into the B-Cache storage corresponding to the i th PE. Thus the
following sequence is observed, assuming b1, b2, b3 . . . are the contents of PB in row
major fashion:

b1, b S j
P +1

, b 2S j
P +1

, . . . b2, b S j
P +2

, . . .

One element from A is used for
S j
P cycles, where it multiplies all S j elements of a

row. During the first outer product computation, the multiplier result is accumulated
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with 0 and stored in the BRAM. Thus, one outer product computation takes
Si×S j

P
cycles to complete, after which the elements from the next column of A are required.
As a result of this, the restriction of Si ≥ La is relaxed to

Si×S j
P ≥ La . But the most

important consequence of the new design is that the bandwidth requirement is con-
siderably reduced as a result of a trade-off with local memory usage/data re-use.

Illustrative Example: Consider the product of two square matrices A and B each
with dimensions 800×800. With a design speed of 350 MHz, we consider the following
two cases.

Case I: Si = S j = P; P = 50
In this case, the bandwidth required is 2 words per cycle which with 350 MHz
means 5.6 GB/s (= 2 × 8 × 350). One outer product computation in this case
takes Si cycles and therefore one Si × S j subblock computation of the result takes
Si × 800 cycles. For the entire matrix multiplication of A× B, there are 16× 16
such subblocks. Therefore, the total number of cycles for A × B computation is
S j + Si × 800× 16× 16 = 10240050.

Case II: Si = S j = 400; P = 50

As
S j
P = 8, we see that one word of A is required every 8 clock cycles. So, a

bandwidth which gives us 2 words for every 8 cycles, or 0.25 words per cycle
or 700 MB/s(= .25 × 8 × 350) will be sufficient. As for the total computation
time, one can see that an Si × S j result subblock computation requires

Si×S j
P and

there are 4 such blocks here. Therefore, the total number of cycles for A × B

computation is S j + Si×S j
P × 800× 4 = 10240400.

Thus, design II solves the problem using significantly lower bandwidth than the first
design. The increase in the cycles required for computations is because of the increased
setup time.

5 Design Evaluation

Xilinx ISE 10.1sp1 and ModelSim 6.2e was used for implementation and simulation of
the design, respectively. The floating point cores used were the 3.0 versions generated
directly from coregen.

The most significant aspect of the design, from the Table 1, appears to be the neg-
ligible variation of the speed despite scaling up to 40 PEs, an explanation for which
is offered in the comparison section. The design utilises a large number of registers in
order to deeply pipeline the architecture, at 20 PEs on an SX95T there is significant
decrease in the number of available registers. The drastic reduction in speed, from 373
to 201 MHz, on SX95T is attributed to the expected poor routing when the resource
utilization reached >95% and makes this a corner case.

As shown in Table 2, due to abundance of resources their liberal use is justified.
Appropriate pipeling, not shown in the figures, has been done in order to break the
critical paths. It can also be seen from the resource usage at 40 PEs that a few more
PEs can be accommodated in the SX240T.
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Table 2 Resource utilization for SX95T and SX240T devices (post PAR)

No. PEs DSP48E FIFO BRAM Slice Reg Slice LUT

1 PE 16 1 2 2511 1374

4 PE 64 4 8 10377 5451

8 PE 128 8 16 20865 10886

16 PE 256 16 32 41841 21750

20 PE 320 20 40 52329 27176

40 PE(sx240) 640 40 80 69% 36%

Resources per device

Device

SX240T 1056 516 516 149760 149760

SX95T 640 244 244 58880 58880

Table 3 Resource utilization for Virtex II Pro XC2VP100 (post PAR)

Totxc2vp100 U15PE U20PE

MULT18× 18s 444 240 304

RAMB16s 444 90 114

Slices 44096 30218 (68%) 37023 (83%)

Speed 133.94 MHz 133.79 MHz

The design was ported to the Virtex 2 Pro XC2VP100 for the sake of comparison
and as shown in Table 3, about 20 PEs can be fit with a frequency of about 134 MHz
as opposed to 31 PEs and 200 MHz(synthesis), respectively by [9] (In a later usage
of the same PE by one of the co-authors of [9], the actual implementation frequency
was about 100 MHz [12]).

6 Performance Analysis

We present an analysis of the design parameters listed in Table 4 studying their effect
on performance and the constraints they impose. All the analysis is with respect to
design-II.

Table 4 List of parameters
Parameters Meaning

β Bandwidth in terms of the no. of words per design clock

xa , xb Such that xa + xb ≤ β

m Total amount of local memory

n Num. of columns of a (or rows of b)
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Each element of A is used
S j
P times, in an outer product and therefore the entire

computation of the outer product takes
Si×S j

P cycles. In order to overlap I/O and com-
putation, the algorithm requires that we prefetch S j elements of B for the next outer
product. We have therefore

Si + S j ≤ Si × S j

P
× β (1)

We also see that the Si× S j needs to be maximized here. The constraint on memory
gives us Eq. 2 which on approximation gives Eq. 3

2Si × S j + 2S j = 2(Si + 1)× S j ≤ m (2)

2(Si )× S j ≤ m (3)

To maximize f (Si , S j ) = Si × S j , under the constraints Eqs. 1 and 3 we use the
Lagrangian constrained optimization method

L(Si , S j , λ, μ) = Si × S j + λ

(
β

Si × S j

P
− (Si + S j )

)
+ μ

(
m/2− Si × S j

)
∂L

∂Si
= S j − λ+ λβ

S j

p
− μS j = 0 (4)

∂L

∂S j
= Si − λ+ λβ

Si

p
− μSi = 0 (5)

Equations 4 and 5 suggest Si = S j . If we substitute Si = S j = S, we get

Maximize S (6)

S ≥ 2P

β
(7)

S ≤
√

m

2
(8)

The following analysis for the minimum required bandwidth demonstrates the burst-
friendly nature of the design. We know that Si words of A are required for S j words of

B within
S j×Si

p cycles. Thus we get the values for min (xa) and max (xb) for a constant
bandwidth of β. Thus we get the values for min (xa) and max (xb) for a constant
bandwidth of β.

min(xa) = P

Sj
(9)

max(xb) = β − P

Sj
(10)

For the case where Si = S j equal distribution of bandwidth is the best approach, for
other cases a similar analysis results in the appropriate distribution. The availability
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of more than the minimum amount of bandwidth means that the excess bandwidth
can be used to transfer as much A as required in one go—further trading bandwidth
with local storage. This caching also creates time during which the bandwidth can be
used for other I/O, allowing for sharing the same bandwidth across multiple FPGA
boards.

The design presented here is also analysed with the parameters presented in by
prasanna [10]. The local storage utilised is of the order of O(n) where n is the number
of PE, thus achieving the optimal latency. The other important parameter mentioned
is the IO-bandwidth, which by overlapping IO and compution is optimally used in
this design. Due to the use of FPGA primitives we are unable to provide an accurate
estimate of the throughput per area parameter.

7 Comparison

The following compares a few aspects of ours designs with the recent related work.
In particular we compare with Dou [9] and Prasanna [7,10], the former of which was
identified superior to other related work by Craven-2007 [5].

• Scaling: As reported previously [7,10] frequency falls by about 35 and 15%,
respectively by scaling to 20 PEs. Our designs show negligible(<1%) degradation
in frequency up to 40 PEs. Further, the low-bandwidth requirements and burst-
friendly behaviour allows design-II to scale well across multiple FPGAs due to
low bandwidth requirement per FPGA.

• Flexibility: Dou’s design [9] requires matrix subblock dimensions to be powers
of 2. Prasanna supports square matrices of limited size in [10] and arbitrary size
in [7]. Our designs support arbitrary matrix sizes without placing extra constraints
on Si , S j .

• PE/MAC: Dou’s custom MAC [9] is highly optimized for Virtex-2 Pro and may
not scale across families of FPGAs. The MAC doesn’t support zero and denor-
mal numbers. Our design uses floating-point units from core-generator making
the design more flexible(portable, scalable, customizable) along with better IEEE
compliance. It is to be noted that these are optimized for Xilinx FPGAs, and
specifically the Virtex-5.
We were able to place and route only 20 PEs on Virtex-2 Pro XC2VP100 as
opposed to 31 PEs (synthesis-only) by [9] which was possible because of the cus-
tom designed MAC which use only 9 18x18 multipliers as opposed to 16 by core
generator. But such custom MAC may not be appropriate in the context of, say,
Virtex-5 SX240T where there are about 1200 DSP48s and the coregen floating
point units are highly optimized to use them effectively.

• I/O-Computation Overlap: The designs use a variant of ‘pipelining’ or buffer-
ing for the purpose of overlapping I/O and computations as opposed to memory
switching used in related works. This may be a factor in the better scaling of our
designs as explained below. Memory switching requires two memory-banks to
alternately feed the processing elements. This places constraints on the placement
of the memory banks with respect to the processing units. In this implementa-
tion, one memory unit feeds another, except for those connected directly to the
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processing units. This takes advantage of their physical proximity on the device
and the better routing between BRAMs and DSP48 blocks.

8 Extending this Work

8.1 Triangular Matrix Operations

As discussed by Goto [8] the triangular matrix multiplication algorithms as well as
the triangular solvers can both be implemented via what they refer to as the Gen-
eral purpose Block times Panel multiply (GEBP). The Triangular Matrix Multiply is
cast in terms of panel-panel multiplications, the solver is cast in terms of panel-panel
multiplications and a smaller triangular solver. Our implementation of gemm is based
on panel-panel multiplication and thus can easily replace the GEBP kernel. The host
system can offload all such multiplication tasks to the FPGA, leaving it free for other
tasks. In the case of TRSM, the host can implement the smaller triangular solver along
with required scaling, offloading the panel-multiplication task to the FPGA. Since
the FPGA does not face the same limitations of the CPU cache, we do not mind the
overhead of expressing TRSM in terms of the GEBP kernel.

8.2 Multi FPGA System

Practical accelerators require that the performance scales with the addition of more
FPGAs and across nodes. The bandwidth available to each node however would does
not scale accordingly. Here we describe possible architectures of multi-FGPA systems.
The simplest system would consist of each FPGA operating independently, receiving
the required bandwidth, this however will not scale to more than a few FPGAs. For
further scaling, bandwidth between FPGAs can be shared for either elements from
A or elements from B, one operand being broadcast to all FGPA, and one remaining
independent. The FPGA can also be linked up as a linear array of PE, with the input
linear shift registers, feeding the shift registers of neighbouring FPGA. This approach
is limited by the increase in the latency associated with filling up the pipeline, and
the asynchronous delay of the broadcast. It is estimated that this approach can scale
to 2–3 FPGAs sharing the same bandwidth. A combination of the different methods
described above can be used for larger systems.

8.3 Viretx-6 FPGAs

This section provides estimates/projections based on the product specifications of the
Virtex-6 FPGAs. The two largest FPGA in the SX series are the SX315T and the
SX475T. The SX315T can accommodate approximately 50 PEs while the SX475T
can easily accommodate more than 65. Assuming a 5% degradation of clock speed, and
the same frequency as the Virtex-5 designs, a performance of 35.4 and 46.0 GFLOPS
can be expected, respectively.
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9 Conclusion

In this paper two designs for matrix multiplication are presented which vividly dem-
onstrate the trade-off between memory and bandwidth. The simplicity of the designs
and the use of off-the-shelf floating point units from Xilinx Coregen offer easy repro-
duction of the design, portability across FPGA families and maintainability along with
better IEEE compliance and options such as custom precision. The designs are able
to sustain the peak performance, like a few other related work, achieved by use of
a technique alternative to memory switching, which also has a favourable impact on
routing. Our designs scale well with <1% degradation in speed and design-II further
enables scaling across multiple FPGAs. For about 40 PEs, with a design frequency
of 373 MHz on Virtex-5 SX240T FPGA, a sustained performance of 29.8 GFLOPS
is possible with a bandwidth requirement of 750 MB/s for design-II and 5.9 GB/s for
design-I.

The design can be made available upon request. Future work includes it for use
with the CRL-India’s supercomputer EKA.
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