
Int J Parallel Prog (2009) 37:593–611
DOI 10.1007/s10766-009-0113-x

Parallel Lattice Boltzmann Method with Blocked
Partitioning

Claudio Schepke · Nicolas Maillard ·
Philippe O. A. Navaux

Received: 15 April 2008 / Accepted: 9 June 2009 / Published online: 25 June 2009
© Springer Science+Business Media, LLC 2009

Abstract This paper presents and discusses a blocked parallel implementation of
bi- and three-dimensional versions of the Lattice Boltzmann Method. This method
is used to represent and simulate fluid flows following a mesoscopic approach. Most
traditional parallel implementations use simple data distribution strategies to paralle-
lize the operations on the regular fluid data set. However, it is well known that block
partitioning is usually better. Such a parallel implementation is discussed and its com-
munication cost is established. Fluid flows simulations crossing a cavity have also
been used as a real-world case study to evaluate our implementation. The presented
results with our blocked implementation achieve a performance up to 31% better than
non-blocked versions, for some data distributions. Thus, this work shows that blocked,
parallel implementations can be efficiently used to reduce the parallel execution time
of the method.

Keywords Cluster computing · Lattice Boltzmann method · High performance
computing

This article was supported by CNPq.

C. Schepke · N. Maillard (B) · P. O. A. Navaux
Grupo de Processamento Paralelo e Distribuído, Instituto de Informática, Universidade Federal do Rio
Grande do Sul, Caixa Postal 15.064, Porto Alegre, RS 91.501-970, Brazil
e-mail: nicolas@inf.ufrgs.br

C. Schepke
e-mail: cschepke@inf.ufrgs.br

P. O. A. Navaux
e-mail: navaux@inf.ufrgs.br

123

594 Int J Parallel Prog (2009) 37:593–611

1 Introduction

Fluid Dynamics is an important technological research area. Through the study of the
properties of liquids and gases it is possible to determine different kinds of physical
phenomena [3]. Such phenomena are related with relevant and current problems like
tsunami effects, hurricane simulations, droughts or flooding forecasts and the distribu-
tion of polluting particles in the atmosphere and in reservoirs of water. The evolution
of computational systems made it possible to solve these problems in an efficient
way through new simulation techniques. This area known as Computational Fluid
Dynamics (CFD) is one of the most prominent areas in Scientific Computing [1,12].

Fluid simulations are frequently described through Navier-Stokes Equations [7].
Such equations relate different physical properties and forces that govern macro-
scopic fluid flows. In CFD these equations are discretized and solved through numeri-
cal methods. Although macroscopic simulations are viable in this way, only restricted
cases generate accurate results [4]. Macroscopic approaches are generally insensible to
microscopic dynamics. Therefore, some physical quantities that dynamically change
in the real fluid flow will remain constant during all the simulation. A way to get over
this limitation is to adopt mesoscopic approaches.

Instead of considering each particle individually, as in microscopic dynamics, mes-
oscopic approaches describe a physical system by a distribution function of the par-
ticles. An important mesoscopic simulation technique currently in use is the Lattice
Boltzmann Method (LBM) [6,16,26,28]. The LBM is an iterative numerical method
to model and to simulate fluid dynamics properties, where space, time and velocity
are discrete [6]. The method enables the computational modeling of a large variety of
problems, including fluid with multi-components, in one or more phases, with irregular
boundary conditions and in complex geometries.

Depending on the dimension of the problems treated with the LBM, the amount
of both memory and processing power that are required can become high. Hence,
parallel strategies must be considered. Since the operations of the method involve
only interactions with neighboring points of each lattice element, it is possible to use
Data Parallelism [14]. Different solutions have been proposed with this view [8,10,19].
Most of them focus on the numerical results themselves or on the evaluation of the
parallel performance of the computational systems. Much work on data parallelism
has emphasized the performance obtained with blocked partitioning [9]. However, to
the best of our knowledge, no blocked implementation of the LBM has been pro-
vided with a detailed analysis of its performance. Such an evaluation is very important
because it can help determining the best regular data distributions for a LBM parallel
implementation.

In this paper, we present two efficient, blocked partitioned, parallel implementations
of one bi-dimensional and one three-dimensional version of the LBM. The communi-
cation cost is evaluated, which points at better efficiency than with mono-dimensional
data distributions. We then proceed to an experimental evaluation of the parallel mod-
els. Our experiments show that blocked solutions provide better performance and
scalability than non-blocked implementations.

The remainder of this article is divided in six sections. Section 2 presents some
works related to the LBM and its parallelization, and the blocked partitioning concepts.

123

Int J Parallel Prog (2009) 37:593–611 595

Section 3 develops the LBM, describing the equations, the boundary conditions and
the algorithm. The blocked parallel implementation is detailed in Sect. 4, and its com-
plexity in terms of communication is discussed in Sect. 5. In Sect. 6, the collected
experimental results are presented for the simulation of a fluid flow. Finally, Sect. 7
provides a summary of the contributions and concludes.

2 Related Work

A frequent characteristic cited in the LBM literature is the possibility to parallelize
it [26]: many authors consider parallelism as the best form to obtain fully performing
implementations [20]. This section presents some of these parallel implementations,
as well as some techniques that are used in Data Parallelism, that have been used in
our approach.

2.1 Parallel Implementations of the LBM

There are many parallel implementations of the LBM [2,8,10,23]. Most of these works
provide a parallel code to solve specific problems. Usually, these results are gener-
ally more concerned on the physical solution and its applications than on the parallel
techniques. Exceptions are found in specific performance analysis of the method in
computational systems, such as [5,24].

Carter and Oliker [5] presents some comparisons between implementations for
vectorial and multi-computers architectures. The case studies are 2D and 3D imple-
mentations of the LBM for a turbulence problem. The results show that vectorial
architectures are more scalable that multi-computers for the implementations tested.

A similar performance evaluation has been made in [24]. Three different applica-
tions involving nanotechnology and turbulence are tested on different high perfor-
mance architectures (Hitachi SR8000-F1, SGI Altix, and NEC SX6), giving better
results for the first. However, the cost-benefit of processing was better for the super-
scalar architecture.

In both previous cases, the applications are only used to compare the processing
capacity of the method on different architectures, without evaluating the parallelization
itself.

In terms of data partitioning, different solutions have been adopted for the LBM.
The Orthogonal Recursive Bisection (ORB) method has been proposed for better
load balance in massively parallel systems [19]. This approach has been tested, and
yielded good performance [23]. However, such solutions are more indicated for irreg-
ular geometries. Another suggested technique is the Regular Domain Decomposi-
tion [8], but evaluations have only been made for cubic lattices. Moreover, the use of
multi-dimensional partitioning has not been discussed in this work.

2.2 Blocked Parallel Algorithms

In many parallel applications using Data Parallelism, such as [8], the data distribution
is performed in a simple way among all processors, generally by dividing equally the

123

596 Int J Parallel Prog (2009) 37:593–611

data set in slices, each slice being allocated to one processor. However, this strategy
does not explore well the data locality existing in the data set. The same situation
occurs when the data set is divided cyclically among the processors. The use of graph
decomposition is not a indicated decomposition technique for LBM because it work
directly with discrete data. Particulary, we have interest in evaluate regular structures.

A more efficient way to distribute data among parallel processors is to use blocked
partitioning, that is to divide in more than one dimension the data structures [9,21].
Blocked solutions are frequently adopted in numerical operations because this strategy
enables a better memory access and cache use for the applications. It is also possi-
ble to reduce the communication costs and data dependencies in Distributed Memory
Systems. For these reasons, they are often used in linear systems solvers [11,18].

Due to the importance of blocked partitioning in High Performance Computing,
an efficient parallel implementation of the LBM should benefit from this technique.
The next sections detail such a version of the LBM, but first its physical background
is presented.

3 The Lattice Boltzmann Method (LBM)

The LBM is a mesoscopic method to describe the mechanics of a system of particles.
The method is frequently adopted as an alternative technique for computational simu-
lations of Fluid Dynamics, instead of using discrete Navier-Stokes equations solvers.
In the LBM, space, time and velocity are considered discrete. Particles are represented
as a regular mathematical structure called lattice. A lattice is formed by discrete points,
each one with a fixed number of discrete displacement directions. At each iteration
(of the discrete time), particles realize a space displacement among the lattice points.
Through this structure it is possible to simulate the physical properties of fluid flows
in a simple way.

Historically, the LBM is considered to be an evolution of the Lattice Gas Automata
(LGA) [22] because it does not consider the individual motion of the particles and
because it uses real values instead of logical values to simulate the particle displace-
ment through the lattice. However, the LBM can also be derived from the Boltzmann
Equation (BE) for diluted gases. Therefore, the method is considered as a discrete
simulation technique for this equation too [17]. In both approaches, it is possible to
determine the same Lattice Boltzmann Equation (LBE).

3.1 The Lattice Boltzmann Equation

The LBE can be developed from a kinetic equation of the distribution function of the
particles, in terms of relaxation and propagation functions, as presented below.

• Relaxation:

f new
i (x, t) − fi (x, t) = �(fi (x, t)), (i = 1, . . . , d) (1)

123

Int J Parallel Prog (2009) 37:593–611 597

• Propagation:

fi (x + e, t + 1) = f new
i (x, t), (i = 1, . . . , d) (2)

where fi is the distribution function of the particle velocity in each one of the d lattice
directions i = 1, . . . , d, e is the space variation of x when the discrete time t changes
to t +1 and � is a relaxation operator defined in (4). Joining Eq. 1 with Eq. 2 one gets:

fi (x + e, t + 1) = fi (x, t) + �(fi (x, t)) (3)

In the LBM, instead of considering all the collisions among the particles, a relaxa-
tion operator model called Lattice Bhatnagar-Gross-Krook (BGK) is used [13]. This
relaxation operator is defined according to the mass and momentum conservation laws
and is given by:

�(fi (x, t)) = − 1

τ
(fi (x, t) − f eq

q (ρ, u)) (4)

In this equation, τ represents a relaxation time scale, that controls the rate of equi-
librium approximation, f eq

q (ρ, u) is the equilibrium distribution function and ρ and
u are macroscopic values for density and velocity. The Eq. 5 defines the equilibrium
distribution function f eq

q (ρ, u), where the value of wi depends on the lattice geometry,
ei is the discrete velocity for each lattice direction and c = �x/�t .

f eq
q (ρ, u) = ρwi

[
1 + 3ei u

c2 + 9(ei u)2

2c4 − 3u2

2c2

]
(5)

The macroscopic values of density ρ and momentum ρu can be calculated from f ,
respectively as:

ρ =
d∑

i=1

fi (x, t) =
d∑

i=1

f eq
i (x, t), (6)

ρu =
d∑

i=1

ei fi (x, t) =
d∑

i=1

eeq
i fi (x, t), (7)

3.2 Lattice Structures

This paper considers a bi-dimensional lattice structure, with 8 propagation direc-
tions (D2Q9) and a three-dimensional lattice structure, with 18 propagation directions
(D3Q19), as shown in Fig. 1. To both cases the propagation can be null. Because this,
is necessary to add one more propagation direction for both cases.

123

598 Int J Parallel Prog (2009) 37:593–611

Fig. 1 D2Q9 e D3Q19 lattice
geometry

Fig. 2 Bounce-back mechanism

1+tt

So, the nine possible directions of propagation of the D2Q9 model are:

• A static point (0, 0), where a particle has zero velocity. The value of wi is 4/9.
• Four nearest directions (+1, 0), (−1, 0), (0,−1) e (0,+1), with unity velocity

and wi = 1/9.
• Four diagonal line neighbors (1, 1), (−1, 1), (1,−1) e (−1,−1), with velocity√

2 and wi = 1/36.

And the possible directions of the D3Q19 model are defined by:

• A static point at coordinate (0, 0, 0), where the particle has zero velocity. The
value of wi in this case is 1/3.

• Six nearest directions (−1, 0, 0), (+1, 0, 0), (0,−1, 0), (0,+1, 0), (0, 0,−1) and
(0, 0,+1), with unity velocity and wi = 1/18.

• Twelve diagonal line neighbors (1, 1, 0), (−1, 1, 0), (1,−1, 0), (−1,−1, 0),
(1, 0, 1), (−1, 0, 1), (1, 0,−1), (−1, 0,−1), (0, 1, 1), (0,−1, 1), (0, 1,−1) and
(0,−1,−1), with velocity

√
2 and wi = 1/36.

3.3 Boundary Conditions

One of the most simple approaches to represent boundary conditions is to use a mech-
anism called Bounce-back. The idea of this mechanism consists in inverting the speed
vectors directions when collisions occur against static points of the boundary:

f out
i (x, t) = f in

i (x, t) (8)

Thus, all forces that are going out return back to the fluid. Figure 2 show the Bounce-
back mechanism applied to a particle in two discrete consecutive time steps.

3.4 The Algorithm

The structure of the LBM algorithm is composed by the following operations:

123

Int J Parallel Prog (2009) 37:593–611 599

1. Determine the initial conditions for all points of the lattice, to choose adequately
the density ρ and speed e of the external cells (fluid boundary) and to define the
relaxation time scale τ ;

2. Calculate the macroscopic density ρ and speed u from the values of the variables
of each lattice point, using the Eqs. 6 and 7;

3. Calculate the equilibrium function values using Eq. 5 and, then, get the result for
each point of the relaxation function through the Eq. 4;

4. Use the equilibrium value to apply in the distribution function for each lattice
point, as shown by Eq. 3;

5. Propagate the particles distribution to all neighboring cells;
6. Modify the local lattice points distribution to satisfy the boundary conditions

using Eq. 8;
7. Return to step 2 while the execution time or the iterations number is less than the

maximum number of steps determined.

4 Blocked Parallel Lattice Boltzmann Method

In this work, a 2D and a 3D LBM have been parallelized, based on two different
given lattices (see Fig. 1). The objective of these implementations was to obtain some
macroscopic values, like velocity and pressure, for a fluid flowing through pipes with
obstacles. The LBM code was written in C for a Distributed Memory System, using a
Single Program Multiple Data (SPMD) parallel programming model [27]. In a SPMD
approach, a unique program is executed in each process, operating over distinct data
regions.

4.1 Implementation Issues

In the parallel version of the algorithm presented in 3.4, each process runs its opera-
tions on a predetermined region of the lattice. The data are divided according to the
number of partitions defined for each axis direction (x, y and z) and equally distributed
among the processes.

The main data-structure of the program defines the lattice and the velocity e of each
one of its points, as follows:

//lattice structure
typedef struct {
long int lx_total, ly_total, lz_total;
long int lx_first, ly_first, lz_first;
long int lx_last, ly_last, lz_last;
bool ***obst; //obstacle 3D array
double ****speed; //velocity

} s_lattice;

This data-structure is used to define the sub-lattice local to each one of the SPMD
processes considering the D3Q19 lattice model. (For the D2Q9 model the data-struc-
ture is similar, but more simple). The three first fields lx_total, ly_total and

123

600 Int J Parallel Prog (2009) 37:593–611

lz_total define the size of the global lattice (N = lx_total × ly_total ×
lz_total). Each process owns and stores only the local sub-lattice ranging from
(lx_first to lx_last-1) × (ly_first to ly_last-1) × (lz_first to
lz_last-1). Thus, the global lattice is blocked distributed between all the p SPMD
processes. Finally, the data-structure informs the localization of the obstacles points
(as a three dimensional array) and the speed, in direction i = 1, . . . , d, of each one
of the N/p points of the local sub-lattice (implemented as a four-dimensional array).
We not use sparse data-structures for the speed because few points are null.

At the end of each loop iteration, data exchanges are made between the neighbor
processors: boundary data from each sub-lattice of each processor are sent to the neigh-
bors processors, since each processor operate with a sub-lattice. This communication
consist in data transmissions between orthogonal and diagonal sub-lattices, according
to the particle distribution. The Sect. 5 describes the communication scheme and its
complexity.

4.2 Parallelization with MPI

The parallel implementation has been performed with Message Passing Interface
(MPI) [15,25]. MPI is the main standard for parallel computing. It provides primi-
tives and data-structures for point-to-point and collective communication, as well as
for synchronization between the processes that participate to the computation. MPI is
both efficient and portable.

The functionalities of MPI that have been used for the LBM parallel implementation
include Cartesian mapping, synchronous, asynchronous and collective communica-
tion. A Cartesian communicator structure is used and defined at the beginning of the
computation, by a call toMPI_Cart_create(). This function defines the total num-
ber of coordinate dimensions adopted in the data partition and the number of divisions
for each one. Then, each MPI process is associated to this Cartesian communicator
using the MPI_Comm_rank() function and mapped by MPI_Cart_coords().
Thus, each process can be identified by a Cartesian position in a grid. Depending of
this Cartesian position, each process determines the blocked sub-lattice that it will
compute, as previously presented (see 4.1).

For each one of the d directions, the velocity of the particles that should migrate
from one sub-lattice to a neighbor must be transmitted to the neighbor in that specific
direction. The velocities are buffered, in order to be efficiently sent. The communi-
cation among the processes due to the data at the border of each cell is performed
with asynchronous operations MPI_Isend(). On the receiver side, the processes
use blocking receives operations MPI_Recv(), because the data is required on the
computation.

Collective and synchronous MPI communication have been used to calculate the
global mean velocity of the flow in each iteration. The mean velocity is defined for all
points of axis y and z for a fixed x-axis element. Thus, the calculation is made only by
processes where the selected region is present. All partial values are sent to a root pro-
cess through MPI_Send() that receives it by MPI_Recv(). We use MPI_Send()
and MPI_Recv() because only some processors are involved in this operation. The

123

Int J Parallel Prog (2009) 37:593–611 601

root process makes the sum and distributes the resulting value through the collective
function MPI_Bcast() to all processes. This way, all the processes know when the
stopping criterion is reached.

5 Communication Complexity of the Blocked Parallel Version

In order to evaluate the communication cost of a blocked partitioned, parallel version
of the LBM, the time to send a message of size N is modeled as:

τ = L + Ng = L + N/σ, (9)

where L is the latency and g is the inverse of the network throughput σ .

5.1 Bi-dimensional Model

In the D2Q9 lattice model there are 9 directions of particle propagation: 1 static, 4
orthogonal and 4 diagonal. These propagations imply communication, yet different
directions can be grouped, due to the Cartesian 2D decomposition of the lattice. As can
be seen in Fig. 1, each sub-lattice owned by a processor of rank (p, q) in the Cartesian
grid will have to communicate 3 propagations to (p −1, q), (p +1, q), (p, q −1) and
(p, q + 1) (see Fig. 3 for an example in the case of the “vertical” communication).

Let us call N = Nx × Ny the dimensions of the lattice, and P × Q the size of the
Cartesian 2D grid of processors. Then, each sub-lattice on each processor contains
roughly nx × ny points, with:

nx = Nx/P, (10)

ny = Ny/Q, (11)

and the communication penalty is:

Co = 4L + 6(nx + ny)

σ
. (12)

considering four communications (one in each direction) of three data information
(ei) for each processor.

Processor 3Processor 1

4 rossecorP2 rossecorP

Fig. 3 Example of communication between processors in the D2Q9 model

123

602 Int J Parallel Prog (2009) 37:593–611

Processor 1

Processor 4

Processor 3

Processor 2

Fig. 4 Example of communication of diagonal points in the D2Q9 model

However, this does not include the necessary communication of the diagonal
extreme points of each sub-lattice (see Fig. 4).

In this example, the Processor 1 send the information of the diagonal propagation of
its more extreme sub-lattice point to its diagonal neighbor, which is Processor 4. Only
the communication of these two processors are shown for illustration, but the same
data emission occurs to the other three diagonals. Therefore, each processor needs to
make four sends of only one value (each are of cost L + 1/σ) to its four diagonal
processors, which leads to the communication cost:

Cd = 4(L + (1/σ)) (13)

Thus, the total communication cost is given by Co + Cd :

C = 8L + 2

σ

(
3

(
Nx

P
+ Ny

Q

)
+ 2

)
. (14)

Notice that this equation gives an insight on the interest of a block partition: the
communication cost is dominated by Nx/P + Ny/Q, i.e. by a term that is equiva-
lent to the square root of the total number of points N divided by P , if the geometry
is squared. In a mono-dimensional partitioning, it would be dominated by a linear
function of N .

5.2 Three-dimensional Model

The communication costs of the D3Q19 lattice are similar to the bi-dimensional case.
In the D3Q19 model there are 18 different directions of particle propagations, plus
the static position. These 18 directions can be grouped, to reach the 6 orthogonal
neighbors of each sub-lattice of a given processor of rank (p, q, r) in the 3D Cartesian
grid. Each of these communications group five different propagation directions: one
orthogonal direction and four diagonals (see Fig. 1 and also Fig. 5 for an illustration
of the communication in one of the orthogonal directions.

Noting N = Nx × Ny × Nz the number of points in the lattice, and with P × Q × R
processors, each one of them owns roughly nx × ny × nz = Nx × Ny × Nz/(P Q R)

points of the lattice.

123

Int J Parallel Prog (2009) 37:593–611 603

Fig. 5 Example of
communication between
processors in the D3Q19 model

Processor 1

Processor 2

Processor 1

Processor 4

Fig. 6 Example of communication of diagonal points in the D3Q19 model

Therefore, the communication cost (to 5 data information ei) due to the orthogonal
communication (6 directions) is:

Co = 6L + 2

σ

(
5(nynz + nx nz + nx ny)

)
. (15)

Yet again, a few diagonal communication must occur: an example of diagonal
communication is shown in Fig. 6. Once more, only two processors are used for the
illustration, showing the data exchange only along one diagonal of the propagation.
However, each one of the 12 diagonal directions of the extreme points of the sub-lattice
need to be sent to the neighbor processors (four to each axis x, y and z).

Then, when the lattice is partitioned in a 3D geometry, the communication cost for
the diagonal elements is:

Cd = 12L + 4

σ

(
nx + ny + nz

)
. (16)

The total communication costs is obtained by Co + Cd :

C = 18L + 10W + 4Z

σ
,

W = nynz + nx nz + nx ny, (17)

Z = nx + ny + nz .

123

604 Int J Parallel Prog (2009) 37:593–611

This time, if the geometry is totally squared, the global communication cost will

be dominated by N
2
3 versus N with a mono-dimensional partition.

In both models, this theoretical analysis points at the block partitioning as a better
solution than the mono-dimensional partitioning. The next section presents an exper-
imental case study that confirms this result.

6 Performance Analysis

In order to evaluate the parallel implementation of the LBM, three case-studies are
presented. These case-studies are based on simulations of a fluid flow through a canal
with obstacles.

6.1 Case Studies

The first case study uses a bi-dimensional lattice structure with dimension N = 512×
512 points, that represents a pipe. Five obstacles forming a barrier are distributed
cyclically following the x axis, as can be seen in Fig. 7. In the same figure, one can
also observe the direction of the velocity and the two opened faces of the canal where
the fluid circulates.

The second and third case studies have three-dimensional lattice structures. The
second case has N = 128 × 128 × 128 points. The other case study has a dimension
of N = 256 × 256 × 256 points. Both have a cubic structure to simplify the consid-
erations about data distributions strategies. The obstacles in both three-dimensional
cases are formed by a rectangular set of elements placed in the canal at the first third
of the axis x , as represented in Fig. 8. In this figure one can also observe the direction
of the velocity and the two opened faces of the cube where the fluid circulates.

The tests with the bi-dimensional lattice case study model were made with 150,000
iterations of the main loop of the method. For the two 3D models, the difference of
the mean velocity between two consecutive iterations, measured on the points in the
middle vertical plane, has been adopted as stopping criterion with tolerance ε = 10−4.
To reach this criterion, 447 iterations have been necessary for the 128 × 128 × 128
lattice and 495 iterations for the other one.

An illustration of the velocity and pressure distribution after 150,000 iterations of
the bi-dimensional case study can be seen in Fig. 9. A similar illustration, projected
on the middle vertical plane x = 64 of the 128 × 128 × 128 lattice is presented in
Fig. 10.

Fig. 7 The obstacle in the
bi-dimensional case

x

y

123

Int J Parallel Prog (2009) 37:593–611 605

Fig. 8 The obstacle in the
channel

y

x

z

X/3X/3

Fig. 9 Velocity and pressure distribution after 150,000 iterations, 2D model

Fig. 10 Velocity and pressure distribution in the vertical plane x = 64, 3D model

6.2 Simulation Environment

All measurements have been made on the cluster Labtec, at the Institute of Informatics
of the Federal University of Rio Grande do Sul. This cluster is composed by 20 dual
nodes Pentium III, 1.266 Ghz with 512 MB of RAM memory, interconnected by a

123

606 Int J Parallel Prog (2009) 37:593–611

Fast Ethernet network. In addition, MPICH version 1.2.7 implementation has been
used for all the tests.

The computational results presented are based on 10 executions. After removing
the best and worst runtimes, we took the average of the remaining 8 executions. The
standard deviation of the values that compose the averages was below 2%. The execu-
tion time measures the main loop of the method using the MPI_Wtime() function
of the MPI library. Using this methodology, it was possible to evaluate the scalability
and the performance of the different adopted partitioning strategies.

6.3 Results with the Bi-dimensional Model

6.3.1 Scalability

The speed-up of the mono-dimensional partitioning of the lattice with 512 × 512
points is shown in Fig. 11. In this figure the results of line and column partitioning are
compared with the ideal speed-up. The line partitioning presents better results than
the column partitioning because the first partition strategy has better memory locality,
making better use of cache when less data need to be processed.

The Table 1 presents the best execution time for some mono- and bi-dimension par-
titioning strategies. The table also shows the percentage relation between the best result
for each number of processors using mono- and bi-dimension partitioning. The con-
clusion is that bi-dimensional strategies have a global execution time that is between
5.6 and 8.2% lower than with mono-dimensional partitioning, when the number of
processors is higher than 25.

6.3.2 Execution Time

In terms of execution time, using 40 processors and different partition strategies, better
results are obtained with blocked bi-dimensional partitioning, as can be see in Fig. 12.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

S
pe

ed
-u

p
G

ai
n

Processors

line
column
ideal

Fig. 11 Speed-up of the mono-dimensional partitioning of the D2Q9 case study

123

Int J Parallel Prog (2009) 37:593–611 607

Table 1 Best execution time
using 27, 32, 36 and 40
processors dividing the D2Q9
case study in one and two
dimensions

Distribution Time % of reduction time
in relation of the
mono dimensional division

25 × 1 5137.72 –

5 × 5 4739.85 7.74

32 × 1 4037.49 –

4 × 8 3808.57 5.67

36 × 1 3738.54 –

9 × 4 3430.8 8.23

40 × 1 3418.07 –

5 × 8 3152.42 7.77

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1X40 40X1 2X20 20X2 4X10 10X4 5X8 8X5

T
im

e
(s

)

Partitioning

Fig. 12 Execution time using 40 processors for the D2Q9 case study

These results show that the more quadratic the block size is, the better the execution
time.

6.4 Results with the Three-dimensional Model

6.4.1 Scalability

The scalability of the parallel implementation of the LBM has been evaluated using
the lattice with 128 × 128 × 128 elements. Figure 13 shows the speed-up obtained
for the best mono-partitioning results (column partitioning) and for the best blocked
partitioning strategy.

One observes that blocked solutions are more scalable than mono-partitioning
implementations. Using 40 processors, the speed-up for the mono-partitioning strat-
egy has been approximately 18. With the blocked strategy, it has achieved 25. Besides,
mono-partitioning presents a fast stabilization of the speed-up factor, while the blocked
partitioning tends to maintain a continuously increasing speed-up.

123

608 Int J Parallel Prog (2009) 37:593–611

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

S
pe

ed
-u

p
G

ai
n

Processors

mono
block
ideal

Fig. 13 Speed-up for mono- and blocked partitioning of the D3Q19 case study

6.4.2 Execution Time

Execution times have been obtained for all the possible partitions of the data between
the 40 processors of the 20 nodes cluster.

In Table 2, the execution times of the mono-partitioning strategy for both case stud-
ies are presented. The values in the distribution field (40×1×1, for example) indicate
the number of cells in the partition in each one of the three x, y and z dimensions. In
each one of the three mono-dimensional distributions, only one of the three axis has
been distributed between the 40 CPUs of the cluster. For both sizes of the lattice, the
runtime has been significantly higher when the x axis has been partitioned.

Figures 14 and 15 show, respectively, the execution time for two- and three-dimen-
sional partitions of the lattices with 128 × 128 × 128 and 256 × 256 × 256 elements.
The values are relative to the execution time obtained for the 40×1×1 partition strat-
egy. This was the slowest one in both case studies. Thus, this normalization facilitates
the evaluation of the runtime gain.

The results demonstrate the advantages of using blocked partitioning. For the lattice
with 128 × 128 × 128 points, the performance has been up to 38% better for blocked
partitioning than for non-blocked partitioning. For the lattice with 256 × 256 × 256
points the gain in runtime reaches 22 and 18%, respectively, for two-dimensional and
three-dimensional partitioning.

Table 2 Execution time using
mono-dimensional partitioning
for the D3Q19 case studies

Distribution 128 × 128 × 128 (s) 256 × 256 × 256 (s)

40 × 1 × 1 352.4 2399.9

1 × 40 × 1 318.6 2281.3

1 × 1 × 40 322.8 2264.9

123

Int J Parallel Prog (2009) 37:593–611 609

 0

 0.2

 0.4

 0.6

 0.8

 1

1X5X85X1X81X8X58X1X55X8X18X5X11X4X104X1X101X10X410X1X44X10X110X4X11X2X202X1X201X20X220X1X22X20X120X2X1

R
el

at
iv

e
T

im
e

Partition Strategy

128 X 128 X 128
256 X 256 X 256

Fig. 14 Relative execution time using 2D blocked partitioning for the D3Q19 case studies

 0

 0.2

 0.4

 0.6

 0.8

 1

10X2X2 2X10X2 2X2X10 5X4X2 4X5X2 5X2X4 2X5X4 4X2X5 2X4X5

R
el

at
iv

e
T

im
e

Partition Strategy

128 X 128 X 128
256 X 256 X 256

Fig. 15 Relative execution time using 3D blocked partitioning for the D3Q19 case studies

Considering now the best case for each kind of data distribution, the performance
for the lattice with 128 × 128 × 128 points reaches up to 31% in relation to the best
mono-partitioning approach. For the lattice with 256 × 256 × 256 points, analyzing
only the best results in all data distributions, the increases of performance for two- and
three-partitioning approaches, when compared to the mono-partitioning approach, are
respectively, 17 and 14%.

In all results, one observes that when the x axis is partitioned, the execution time is
higher. This occurs because the mean velocity used as a stop criterion must be calcu-
lated in parallel when this axis is divided. Therefore, there are more communication
and synchronization operations in this case. This is the main reason why three-dimen-
sional partitioning presents similar results as two-dimensional partitioning.

123

610 Int J Parallel Prog (2009) 37:593–611

7 Conclusion

This article has presented a parallel version of the LBM with different partitioning strat-
egies of the data, both for a bi-dimensional geometry and for a three-dimensional one.
The use of efficient blocked data distributions clearly leads to an increased performance
in parallel implementations, as shown by a simple complexity analysis and by the
experimental results. Blocked implementations show to be both better performing and
more scalable than a mono-dimensional parallelization for Regular Domain Decom-
positions.

One of the points that has not been considered in the definition of the blocks are the
obstacles. Yet, their localization strongly influences the distribution of the velocities
in the fluid. Typically, if the obstacles were parallel to the plan x − y, the blocked
distribution should take x (and y) into consideration.

Another point is the adaptation of the size of the blocks to irregular loads during
the computation. This implementation has used the same block size on each one of
the cluster’s node. Since the cluster is homogeneous, this choice is close to optimal.
In a heterogeneous context, or if the lattice is not uniform, blocks of different sizes
should be used.

In this work we used only one sub-lattice in each processor. So, it was used the
maximum of local processing, reducing the cost of communications in the run time.
We have interest to analyze what happens with the running time if more than one
sub-domain is implemented by processor since the number of times required for data
exchanging amoung the processes increase.

References

1. Anderson, J.D.: Computational Fluid Dynamics. McGraw-Hill, New York (1995)
2. Artoli, A., Hoekstra, A., Sloot, P.: Optimizing Lattice Boltzmann simulations for unsteady flows. Com-

put. Fluids 35(2), 227–240 (2005)
3. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge,

MA (1987)
4. Buick, JM.: Lattice Boltzmann methods in interfacial wave modelling. Ph.D. Dissertation, University

of Edinburgh, Fluid Dynamics Group, Feb. 1997
5. Carter, J., Oliker, L.: Performance evaluation of Lattice-Boltzmann magnetohydrodynamics simula-

tions on modern parallel vector systems. Lawrence Berkeley National Laboratory, Paper LBNL-59340,
Jan. 2006

6. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–
364 (1998)

7. Chung, T.: Computational Fluid Dynamics. Cambridge University Press, Cambridge (2003)
8. Desplat, J.-C., Pagonabarraga, I., Bladon, P.: Ludwig: a parallel Lattice-Boltzmann code for complex

fluids. Comput. Phys. Commun. 134(3), 273–290 (2001)
9. Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy, K., Torczon, L., White, A., (eds.): The Source-

book of Parallel Computing. The Morgan Kaufmann Series in Computer Architecture and Design.
Elsevier, Nov. 2002

10. Dupuis, A.: From a Lattice Boltzmann model to a parallel and reusable implementation of a virtual
river. Ph.D. Dissertation, University of Geneva, CUI, Computer Science Departement, University of
Geneva (2002)

11. Elmroth, E., Gustavson, F., Jonsson, I., Kȧgström, B.: Recursive blocked algorithms and hybrid data
structures for dense matrix library software. SIAM Rev. 46(1), 3–45 (2004)

12. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer-Verlag, London (2002)

123

Int J Parallel Prog (2009) 37:593–611 611

13. Flekkøy, E.G.: Lattice Bhatnagar-Gross-Krook models for miscible fluids. Phys. Rev. E 47(6), 4247–
4257 (1993)

14. Foster, I.: Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engi-
neering. Addison Wesley, Reading, MA (1995)

15. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message
Passing Interface. MIT Press, Cambridge, Massachusetts, USA (1994)

16. He, X., Luo, L.-S.: Lattice Boltzmann model for the incompressible Navier-Stokes equation. J. Stat.
Phys. 88, 927–944 (1997)

17. He, X., Luo, L.-S.: Theory of the Lattice Boltzmann equation: from Boltzmann equation to Lattice
Boltzmann equation. Phys. Rev. E 56, 6811–6817 (1997)

18. Jonsson, I., Kȧgström, B.: Recursive blocked algorithms for solving triangular systems—Part I: one-
sided and coupled Sylvester-type matrix equations. ACM Trans. Math. Softw. 28(4), 392–415 (2002)

19. Kandhai, D., Koponen, A., Hoekstra, A., amd, K.M., Timonen, J., Sloot, P.: Lattice-Boltzmann hydro-
dynamics on parallel systems. Comput. Phys. Commun. 111, 14–26 (1998)

20. Körner, C., Pohl, T., Rüde, U., Thürey, N., and Zeiser, T.: Parallel Lattice Boltzmann methods for CFD
applications. In: Bruaset, A., Tveito, A. (eds.) Numerical Solution of Partial Differential Equations on
Parallel Computers, vol. 51 of Lecture Notes for Computational Science and Engineering, Chap. 5,
pp. 439–465. Springer-Verlag, London (2005). ISBN 3-540-29076-1

21. Lam, M.D., Rothberg, E.E., Wolf, M.E.: The cache performance and optimizations of blocked algo-
rithms. In ASPLOS-IV: Proceedings of the 4th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 63–74. ACM Press, New York, NY, USA (1991)

22. McNamara, G., Zanetti, G.: Use of the Boltzmann equation to simulate Lattice-Gas Automata. Phys.
Rev. Lett. 61, 2332–2335 (1988)

23. Pan, C., Prins, J.F., Miller, C.T.: A high-performance Lattice Boltzmann implementation to model flow
in porous media. Comput. Phys. Commun. 158(2), 89–105 (2004)

24. Pohl, T., Thürey, N., Deserno, F., Rüde, U., Lammers, P., Wellein, G., Zeiser, T.: Performance Evalua-
tion of Parallel Large-Scale Lattice Boltzmann Applications on Three Supercomputing Architectures.
Supercomputing (2004)

25. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: the Complete Reference, vol. 1
and 2. The MIT Press, Cambridge, MA (1998)

26. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University
Press, New York, USA (2001)

27. Wilkinson, B., Allen, M.: Parallel Programming: Using Networked Workstations and Parallel Com-
puters. Prentice Hall, USA (1998)

28. Wolf-Gladrow, D.A.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models: an Introduc-
tion. Springer, Berlin (2000)

123

	Parallel Lattice Boltzmann Method with Blocked Partitioning
	Abstract
	1 Introduction
	2 Related Work
	2.1 Parallel Implementations of the LBM
	2.2 Blocked Parallel Algorithms

	3 The Lattice Boltzmann Method (LBM)
	3.1 The Lattice Boltzmann Equation
	3.2 Lattice Structures
	3.3 Boundary Conditions
	3.4 The Algorithm

	4 Blocked Parallel Lattice Boltzmann Method
	4.1 Implementation Issues
	4.2 Parallelization with MPI

	5 Communication Complexity of the Blocked Parallel Version
	5.1 Bi-dimensional Model
	5.2 Three-dimensional Model

	6 Performance Analysis
	6.1 Case Studies
	6.2 Simulation Environment
	6.3 Results with the Bi-dimensional Model
	6.4 Results with the Three-dimensional Model

	7 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

