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Abstract Modular exponentiation is a basic operation in various applications, such
as cryptography. Generally, the performance of this operation has a tremendous impact
on the efficiency of the whole application. Therefore, many researchers have devoted
special interest to providing smart methods and efficient implementations for modu-
lar exponentiation. One of these methods is the sliding-window method, which pre-
processes the exponent into zero and non-zero partitions. Zero partitions allow for a
reduction of the number of modular multiplications required in the exponentiation
process. In this paper, we devise a novel hardware for computing modular exponentia-
tion using the sliding-window method. The partitioning strategy used allows variable-
length non-zero partitions, which increases the average number of zero partitions and
so decreases that of non-zero partitions. It performs the partitioning process in paral-
lel with the pre-computation step of the exponent so no overhead is introduced. The
implementation is efficient when compared against related existing hardware imple-
mentations.
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1 Introduction

Modular exponentiation is a cornerstone operation in many applications. For instance,
it is exploited by several public-key cryptosystems, such as the RSA encryption
scheme [15] to encrypt and decrypt information. Modular exponentiation computes
C = T E mod M , wherein E is called exponent and M modulus. Here, we assume that
0 ≤ T < M .

Obviously, modular exponentiation consists of a repetition of modular multipli-
cations. Therefore, the performance of the operation is primarily determined by the
efficiency of the implementation of the modular multiplication. Consequently, it is of
paramount importance to attempt to reduce both the time required to perform a single
modular multiplication as well as the number of modular multiplications performed
to compute the modular exponentiation.

A simple way to compute C = T E mod M starts by T mod M and keeps modu-
lar multiplying the partial result over and over again E times. This requires E − 1
modular multiplications. This straightforward method computes more multiplica-
tions than necessary. For instance, to compute T 8, it performs 7 multiplications:
T → T 2 → T 3 → T 4 → T 5 → T 6 → T 7 → T 8. However, T 8 can be computed using
only 3 multiplications: T → T 2 → T 4 → T 8. The answer to the question “what is
the fewest number of multiplications to compute T E , given that the only opera-
tion allowed is multiplying two already computed powers of T ?” is an NP-com-
plete problem [3,11,12], but there are several efficient algorithms that attempt to
reduce the number of multiplications required. Such algorithms are based on a pre-
processing of the binary representation of the exponent to group bits into parti-
tions and use repeated square-and-multiply computation to obtain the modular
power.

Maybe the most used and simple way to compute modular powers is the binary expo-
nentiation method. It uses the binary representation of the exponent (E = en−1 . . . e1e0)
as described in Algorithm 1. Note that this is the trivial case as the group of bits is
reduced to a single one.

Algorithm 1 Binary Method (T, M, E)
C := T en−1 mod M ;
For i := n − 2 downto 0 Do

C := C2 mod M ;
If ei �= 0 Then C := C × T ei mod M ;

Return C ;
End.

It has been proven that if one partitions the bits of the exponent into larger groups
(of more than one bit), one can further reduce the number of required multiplications
[2,4,13]. The m-ary method uses fixed-length groups of log2 m, where m is always a
power of 2. This method is a generalization of that described in Algorithm 1 and is
detailed in Algorithm 2, wherein exponent E = pw−1 pw−2 . . . p1 p0, in which each
partition pi has d = log2 m bits and value vi .
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Algorithm 2 m-ary Method (T, M, E)
For i := 2 to 2d − 1 Do

Compute and Store T i mod M ;
C := T vw−1 mod M ;
For i := w − 2 downto 0 do

C := C2d
mod M ;

If vi �= 0 then C := C × T vi mod M ;
Return C ;

End.

Note that for Algorithm 1 and Algorithm 2, the modular multiplication within the
loop is only performed when the bit and partition respectively is not zero. So one can
attempt to partition the exponent bits such that the zero partitions are more frequent
and thus the number of modular multiplication in the loop would be reduced. In such
a case, however, one has to deal with bit groups of variable lengths. The details of the
partitioning strategy and underlying computation will be given in Sect. 2 as it is at the
heart of this paper.

The rest of this paper is organized in four sections. First of all, in Sect. 2, we
introduce and detail the sliding-window method for modular exponentiation. Sub-
sequently, in Sect. 3, we present the architecture of the proposed hardware imple-
mentation. We also give details about the partitioner that performs the exponent
pre-processing required by the sliding-window method and we describe a massively
parallel implementation of the modular multiplier. Thereafter, in Sect. 4, we assess the
performance of the proposed hardware implementation and compare the corresponding
characteristics to those of existing related hardware implementations. Last but not least,
in Sect. 5, we summarize the content of the paper and draw some useful conclusions.

2 Sliding-Window Method

The sliding-window method uses the same logic as the m-ary method, except that for
the former the window size may vary and hence the exponent partitioning may be
performed so that the number of zero windows is as large as possible, thus reducing
the number of modular multiplications necessary in the multiplication phase [1,2].
Furthermore, as all possible partitions have their most significant bit equal to 1, the
pre-computation step needs to be performed for all possible non-zero odd partition
values only. This method proceeds as presented in Algorithm 3, wherein exponent
E = pw−1 pw−2 . . . p1 p0, �i is the length (i.e., number of bits) of partition pi and as
before vi is the corresponding partition value and #�(E) is the number of partitions
in exponent E . Furthermore, d denotes the maximum length of all non-zero partitions.
Note that zero partitions may be of any possible length.

Algorithm 3 Sliding Window (T, M, E)
Parallel begin

{Partitioning phase}
Build �(E) using the given strategy;
Let w = #�(E);
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{Pre-computation phase}
For i := 2, 3 to 2d − 1 step 2 do

Compute and Store T i mod M ;
Parallel end
{Exponentiation phase}
C := T vw−1 mod M ;
For i := w − 2 downto 0 Do

C := C2�i mod M ;
If vi �= 0 then

{Modular multiplication step}
C := C × T vi mod M ;

Return C ;
End.

Building � for a given exponent E can proceed using different strategies. For
instance, we can use a constant-length non-zero partition strategy or a variable-length
non-zero partition strategy [1,2]. The former is described as in Algorithm 4, wherein
d is the constant-length of a non-zero partition. The CLNZ partitioning strategy starts
a non-zero window when a 1 is encountered. Although the incoming d −1 bits may be
all 0s, the partitioning algorithm continues to append them to the current window. For
instance, if the exponent is E = 1110000011001 and d = 3 then the windows formed
will be p3 = 111, p2 = 0000, p1 = 011 and p0 = 001. The strategy that allows a var-
iable length for non-zero partitions proceeds as described in Algorithm 5, wherein d
is the maximum length of a non-zero window and q is the minimum number of zeros
required to switch from a non-zero to a zero window. The VLNW requires that during
the formation of a non-zero window, one should switch to a zero partition whenever the
remaining bits are all 0s. For the same example of exponent, this strategy would come
up with partitions p4 = 111, p3 = 00000, p2 = 11, p1 = 00 and p0 = 1. Note that the
VLNZ strategy produces partitions starting and ending with 1s while the CLNZ strat-
egy may produce partition ending with 0, but also always starting with 1. For the above
example, we used q = 2, l = 1 and r = 0.

Algorithm 4 CLNZ (E, d)
ZP: Check the incoming less significant single bit;

If it is zero then Stay in ZP
Else Go to NP;

NP: Stay in NP until all d bits are collected;
Check the incoming single bit;

If it is zero then Go to ZP
Else Go to NP;

End.

Algorithm 5 VLNZ (E, d, q)
ZP: Check the incoming less significant single bit;

if it is 0 then Stay in ZP
Else Go to NP;
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NP: Let d = l × q + r + 1, where 1 < r ≤ q;
Check the incoming q bits;

If these are all zero then Go to ZP
Else Stay in NP;

Stay in NP until lq + 1 bits are received;
At last, the number of incoming bits must be r ;

If these r bits are 0s then Go to ZP
Else Stay in NP;

After d bits collected, Check the incoming bit;
If it is zero then Go to ZP
Else Go to NP;

End.

Compared to the m-ary method, the sliding-window based on the constant-length
non-zero partition strategy increases the number of zero windows and so decreases the
number of non-zero windows. Therefore, using this strategy we reduce the number
of modular multiplications, performed in the multiplication phase (the if-statement in
Algorithm 3). The strategy that allows variable-length non-zero windows attempts to
increase further the number of zero partitions and so reduces further more the num-
ber of non-zero partitions. Therefore, the number of multiplications computed in the
multiplication phase is also further reduced. The impact of each strategy is depicted
in the chart of Fig. 1 (data taken from [1]), depending on the scaled average number
of modular multiplications MN/n and the total number of bits in the exponent n.

In this paper, we focus on the implementation of the modular exponentiation using
the sliding method that decomposes the exponent in variable-length non-zero parti-
tions (see Algorithms 3 and 5) in order to reduce to a minimum the number of required
modular multiplications. This should yield a faster modular exponentiation hardware
when compared to both the one based on the m-ary method (see Algorithm 2) and
the one based on the constant-length non-zero partitioning strategy (see Algorithms 3
and 4).

Fig. 1 Impact of the partitioning strategies
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3 Proposed Hardware Architecture

The macro-architecture of the hardware for the modular exponentiator is depicted in
Fig. 2. Signal Rst allows hardware initialization, signal Start triggers the commencing
of the exponentiation computation, and signal Final indicates that the sought modular
power (i.e. T E mod M) has been obtained and is available in C . It uses modular
multiplier that implements the modular multiplication using Montegomery’s algo-
rithm (see Sect. 3.3 for details). The exponentiator uses partitioner to take care of
the partitioning process as described in Algorithm 5. The output of this process is
available in the partition memory, which is controlled by the partitioner. During
the exponentiation phase, whenever the exponentiator needs to proceed to the next
partition, it asks the partitioner to provide the details of this partition such as type,
bit formation in the case of a non-zero window and the length in the case of a zero
window. In parallel with the partitioning process, the exponentiator computes all the
possible modular powers of T for odd exponents, considering the maximum length d
of a non-zero partition and stores them in the power memory. Later on, in the expo-
nentiation process, it uses these pre-computed powers to yield the expected result.
Note that the partial results, obtained during the exponentiation phase, are not stored
in the power memory.

The partitioning process applied to exponent for E defined in (1) with d = 10 and
q = 4 produces the data in Table 1, which forms the content of partition memory
for E . Note that, for these settings, l = 2 and r = 1 (see Algorithm 5). Besides the
type bit, in case of a non-zero partition, the stored word consists of the bits forming the
partition and its length. Otherwise, i.e. zero partition, the word is d 0s and the length
of the partition. The pre-computation step occurs in parallel with the partition step
and produces the powers in Table 2. The content of power memory is given in the
second column of Table 2. As there are 2d−1 distinct powers to be stored, the address
must have d − 1 bits and is shown in the first column. Note that the address where T x

is stored can be obtained by the d − 1 most significant bits of x .

E = 110111011000011000011110111001111110101000011011 (1)

Fig. 2 Macro-architecture of the sliding-window based exponentiator
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Table 1 Content of partition
memory for the example
settings

Type Formation Length

1 0000011011 000101

0 0000000000 000100

1 1111110101 001010

0 0000000000 000010

1 0011110111 001000

0 0000000000 000100

1 0000000011 000010

0 0000000000 000100

1 0110111011 001001

Table 2 Address and content
of power memory for the
example settings

Address Power Current exponent

000000000 T 0000000001

000000001 T 3 0000000011

000000010 T 5 0000000101

000000011 T 7 0000000111

· · · · · · · · ·
111111110 T 1021 1111111101

111111111 T 1023 1111111111

3.1 The Partitioner

Besides the data signals (i.e. E, d and q) and the result signal Word, the interface of
the partitioner that uses the strategy described in Algorithm 5 includes three control
signals. Signal pstart triggers the commencing of the partitioning process and signal
pfinal indicates that the process has been completed. When pfinal = 1, the content of
the partition memory is ready to be used. The input/output signal Read is used, during
the exponentiation phase, to start a read cycle of the partition memory. The read word
is sent to the exponentiator through signal word. As soon as the partitioner answers
the requirement of the exponentiator, it withdraws signal Read in preparation for the
next read cycle.

The overall hardware architecture of the partitioner is shown in Fig. 3. During
the partitioning process, the partition memory is set to work in reading mode. How-
ever, as soon as this process is completed, the memory enters the writing mode. The
inout signal Read is set by the exponentiator controller when a new read operation
is required. The address is computed by decrementing register Address used in the
partitioner. Note that when the partitioning process ends, the content of this register
is the address of the word containing the details of the last formed partition. The role
of the registers used to accomplish the partitioning process is described below. Note
that some of these registers are included in Fig. 3 and others show in Fig. 4.
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Fig. 3 Hardware architecture of the partitioner

Register Exp is initialized with the exponent value and is right-shifted when the
current least significant bit has been treated. Register Size is initialized with the total
number n of bits in the exponent and is decremented whenever register Exp is right-
shifted.

Register Q right-shifts the q bits from register Exp, after the least significant bit
from the actual partition of Exp has been treated. This is done l times, iteratively. For
this purpose, register L is first set to l and decremented every time q bits are received
from Exp. Register QL indicates how many useful bits there are in register Q so far.
It is first set to q, being decremented every time a right-shift into register Q is done.

Once the l × q bits have been treated, register R right-shifts r bits from register
Exp. Similarly to QL , register RL indicates how many useful bits there are in register
RL so far. It is first set to r , being decremented every time a right-shift into register R
is done.

Register Win stores the bits of a non-zero partition, in which the least significant
bit is right-shifted from register Exp, the following l × q bits from register Q and
the final ones r bits from register R to form a partition of d bits at most (according
to Algorithm 5). The least and most significant bits of register Win are necessarily 1,
which characterizes a non-zero partition.
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Fig. 4 Interface signals of the partitioner controller

Register D is used to control the maximum length allowed for a non-zero partition.
First, it is set to d, then it is decremented whenever register Win is right-shifted and
incremented in those occasions when Win is left-shifted as explained later on in this
section.

The size of a zero partition is stored in register pzl, while that a non-zero partition
is kept in register pnl. Once in a zero partition and every time a 0 is received from
Exp, pzl is incremented. Note that the bits of a zero partition are never registered.
On the other hand, once in a non-zero partition and every time register Win is right-
shifted, pnl is incremented, except during the padding process, as explained later on
in this section. The switching from a non-zero to a zero partition occurs in one of the
following situations:

• The q bits in register Q are all 0s: this means that we must switch to a zero partition.
So, register Win must be padded with 0s as to obtain the right value of the current
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non-zero partition. The 0s in register Q are the first bits of the new zero partition.
Therefore, register pzl must be set to q, in order to account for these bits.

• The r bits in register R are all 0s: this also means that we must end the current
non-zero partition and switch to a zero window. As in the previous case, register
Win must be padded with 0s. However, in this case, register pzl must start with r
to account for the 0s that are in register R.

In both cases, before the padding occurs, if the most significant bits of Win are 0s,
these must be accounted for in the new zero partition. This is guaranteed by left-shifting
Win, incrementing registers pzl and D and decrementing pnl.

For the last partition, which must be a non-zero one, the bits shifted out from Exp
may stop at any time before completing the d bits. This can happen in one of the
following situations:

• The bits of Exp ended before completing the q bits to fill in register Q: register
ppnl must be set to q. Besides, register Q must be left-padded with a number of
0s as dictated by the content of register ql. Each time a 0 is shifted into Q, register
ppnl is decremented. At the end, the value registered in ppnl indicates the exact
number of right-shifts required from Q to Win.

• The bits of Exp ended before completing r bits to fill in register R: register ppnl,
in this case, must be set to r . Furthermore, register R must be left-padded with a
number of 0s as indicated by the content of register rl. As before, each time a 0
is shifted into R, register ppnl is decremented. At the end, the value registered in
ppnl indicates the exact number of right-shifts required from R to Win.

Every time the starting bit of a new partition is identified, the data of the current
one are stored in the partition memory. These data are:

• The type of the partition, indicated by signal PN;
• Either the bit formation in register Win or 00 · · · 0, depending on whether PN is 1

or 0, respectively;
• The length of the partition, which is kept in register pzl or pnl, again depending

on whether PN is 0 or 1, respectively.

The controller of the partitioning process is implemented a synchronous finite state
machine of 37 states. State transitions occur as described as follows. Note that when
the current state is Si and no next state is explicitly specified, the transition to next
state Si+1 occurs. Note that pmem represents the partition memory. The interface
of the controller of the partitioner is shown in Fig. 4.

S0: Load E; Set Size; Reset Address; Reset PZL; RD := 1; WR := 0;
If pStart = 0 Then Go to S0 Else Go to S1;

S1: If Size = 0 Then Go to S34;
Else If E0 = 0 Then PN := 0; Go to S2;

Else PN := 1; Decrement Size; Go to S5;
S2: Reset Win; Set D; Left-Shift E; Increment PZL; Decrement Size;
S3: If E0 = 0 and Size /= 0 Then Go to S2

Else PMEM [Address].Type := PN; PMEM [Address].Length := PZL;
Increment Address; Reset PZL; Go to S4;

S4: If E0 = 1 Then PN := 1; MW := 2; Go to S5 Else Go to S0;
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S5: Reset PNL; Set D; Reset Q; Set L; Set QL; MQ := 0;
S6: Left-Shift Q; Decrement QL;
S7: Left-Shift E; Decrement Size;
S8: If Size /= 0 Then

If QL /= 0 Then Go to S6;
Else If QZ = 0 Then MW := 0; Go to S27

Else MW := 3; Go to S9;
Else MQ := 1; Set PPNL with q; Go to S20;

S9: Set QL;
S10: Left-Shift Win; Increment PNL; Decrement D; Decrement QL;
S11: If QL = 0 Then Decrement L; Go to S12

Else Left-Shift Q; Go to S10;
S12: If L = 0 Then Set RL; MR := 0; Go to S14;

Else Set QL; Go to S6;
S13: Left-Shift E; Decrement Size;
S14: Left-Shift R; Decrement RL;
S15: If Size /= 0 Then

If RL /= 0 Then Go to S13;
Else If RZ = 0 Then Set PZL with r; Go to S32;

Else MW := 1; Go to S16;
Else MR := 1; Set PPNL with r; Go to S24;

S16: Set RL;
S17: Left-Shift Win; Increment PNL; Decrement D; Decrement RL;
S18: If RL = 0 Then Go to S19 Else Shift R; Go to S17;
S19: PMEM[Address].Type := PN; PMEM[Address].Length := PNL;

PMEM[Address].value := Win; Increment Address; Shift E;
Decrement Size; Reset PZL; Go to S1;

S20: Left-Shift Q; Decrement QL; Decrement PPNL;
S21: If QL = 0 Then Set QL; MW := 3; Go to S22 Else Go to S20;
S22: Left-Shift Win; Increment PNL; Decrement D; Decrement PPNL;
S23: If PPNL = 0 Then MW := 0; Go to S28 Else Go to S22;
S24: Left-Shift R; Decrement RL; Decrement PPNL;
S25: If RL = 0 Then Set RL; MW := 1; Go to S26 Else Go to 21;
S26: Left-Shift Win; Increment PNL; Decrement D; Decrement PPNL;
S27: If PPNL = 0 Then MW := 0; Set PZL with q; Go to S28;

Else Go to S26;
S28: Left-Shift Win; Decrement D;
S29: If D = 0 Then Go to S30 Else Go to S28;
S30: PMEM[Address].Type := PN; PMEM[Address].Length := PNL;

PMEM[Address].Value := Win; Increment Address;
S31: If Size /= 0 Then PN := 0; Go to S2 Else Go to S34;
S32: If Win[d-1] = 0 Then Go to S33 else MW := 0; Go to S28;
S33: Right-Shift Win; Decrement PNL; Increment D;

Increment PZL; Go to S32;
S34: pFinal := 1; WR := 1; RD := 0;
S35: If Read = 1 Then Go to S36;

Else If pStart = 0 Go to S0 Else Go to 35;
S36: Decrement Address; Go to S35;

3.2 The Modular Multiplier

One of the widely used algorithms for efficient modular multiplication is Montgom-
ery’s algorithm [5,8,9],̧. This algorithm computes the modular product of two integers
modulo a third one without performing any trial divisions. It yields the reduced prod-
uct using a series of additions. Let A, B and M be the operands such that we would like
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to compute R = A × B mod M . The pre-conditions for the application of Montgom-
ery’s algorithm are as follows: (i) the modulus M needs to be relatively prime to the
radix, i.e. there exists no common divisor for M and the radix; (i i) the multiplicand
and the multiplier need to be smaller than M . As we use the binary representation
of the operands, then the modulus M needs to be odd to satisfy the first pre-condi-
tion. The Montgomery algorithm uses the least significant digit of the accumulating
modular partial product to determine the multiple of M to subtract. The usual multi-
plication order is reversed by choosing multiplier digits from least to most significant
and shifting down. If R is the current modular partial product, then q is chosen so that
R + q × M is a multiple of the radix r , and this is right-shifted by one position, i.e.
divided by r for use in the next iteration. Consequently, after n iterations, the result
obtained is R = A × B × r−n mod M . In order to yield the exact result, we need an
extra Montgomery modular multiplication (2n mod M)× R mod M . The Montgomery
algorithm is given in Algorithm 6.

Algorithm 6 Montgomery (A, B, M)
R := 0;
For i := 0 to n − 1 Do

R := R + A[i] × B;
If R mod 2 = 0 then R := R div 2
Else R := (R + M) div 2;

Return R;
End.

A modified version of Montgomery algorithm is given in Algorithm 7. The least
significant bit of R + ai × B is the least significant bit of the sum of the least sig-
nificant bits of R and B if ai is 1 and the least significant bit of R otherwise. Fur-
thermore, new values of R are either the old ones summed up with ai × B or with
ai × B +qi × M depending on whether qi is 0 or 1, wherein Q represents the quotient
(A × B)/M .

Algorithm 7 ModifiedMontgomery (A, B, M)
R := 0;
For i := 0 to n − 1 Do

Q[i] := (R[0] + A[i] × B[0]) mod 2;
R := (R + A[i] × B + Q[i] × M) div 2;

Return R;
End.

Consider the expression R + ai × B + q × M in Algorithm 7. It can be computed
as indicated in the last column of the Table 1 depending on the value of the bits ai and
q. In Table 3, MB represents the sum M + B. A bit-wise version of Algorithm 7 that
is at the basis of our systolic implementation, is described in Algorithm 8.

Algorithm 8 SystolicMontgomery (A, B, M, M B)
R := 0; R1 := 0; carry := 0; t := 0;
For i := 0 to n Do
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Table 3 Computation of
R + ai × B + qi × M

ai qi R + ai × B + qi × M

1 1 R + M B

1 0 R + B

0 1 R + M

0 0 R

Q[i] := R[0] xor A[i] and B[0];
For j := 0 to n Do
Switch A[i], Q[i]

1,1: t := M B[i];
1,0: t := B[i];
0,1: t := M[i];
0,0: t := 0;

R[ j] := R1[ j + 1] xor t xor carry;
carry := R1[ j + 1] and t or R1[ j + 1] and carry or t and carry;
R1 := R;

Return R;
End.

All algorithms, i.e. Algorithms 6, 7 and 8 are equivalent. They yield the same result.
In Algorithm 8, M B represents the result of M + B, which at most has n + 1 bits.
Notice that R1 is R in the previous iteration.

Assuming the Algorithm 8 as basis, the main processing element PE of the systolic
architecture of the Montgomery modular multiplier computes a bit r j of residue R.
This represents the computation of line 8. The left border PEs of the systolic arrays
perform the same computation but beside that, they have to compute bit qi as well.
This is related to the computation of line 1. The duplication of the PEs in a sys-
tolic form implements the iteration of line 0. The systolic architecture of the modular
Montgomery multiplier is shown in Fig. 5.

The architecture of the basic PE, i.e. celli, j , 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n − 1, is
shown in Fig. 6a. It implements the instructions of lines 2–9 in systolic Montgomery
algorithm of Algorithm 8. The architecture of the right-most top-most PE, i.e. cell0,0,
is given in Fig. 6b. Besides the computation of lines 2–9, it implements the computation
indicated in line 1. However as r (0)

0 (i.e., least significant bit of residue in iteration 0) is
zero, the computation of q0 is reduced to a0.b0. Besides, the full-adder is not necessary
as carry in signal is also 0 so r (0)

1 xor t xor carry and r (0)
1 .t + r (0)

1 .carry + t.carry
are reduced to t and 0 respectively. The architecture of the rest of the PEs of the
first column is shown in Fig. 6c. It computes q0 in the more general case, i.e. when
r (i)

0 is not null. Moreover, the full-adder is substituted by a half-adder as the carry in
signals are zero for these PEs. The architecture of the left border PEs, i.e. cell0, j , is
given in Fig. 6d. As r i

n = 0, the full-adder is unnecessary and so it is substituted by a
half-adder.
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Fig. 5 Systolic architecture of Montgomery modular multiplier

3.3 The Modular Exponentiator

As explained in Sect. 2, the data signals used by the exponentiator are T, M, E, n, d
and q. They are part of the interface of the hardware that implements the sliding-win-
dow methods (see Algorithms 3 and 5). Recall that signal n provides the total number
of bits in exponent E , signal d provides the maximum number of bits allowed for a
non-zero window and signal q provides the minimum number of 0s to switch from a
non-zero to a zero partition.

Component mersenne, in Fig. 7, is used to generate the constant 2d − 1, which
defines the maximum exponent to be pre-computed. Component counter1 is used to
address the power memory. During pre-computation, it stores the current odd exponent
and is incremented by two for every new operation. Excluding its least significant bit,
COUNTER1 provides the address where to store the computed power (see Table 2, in
Sect. 3). In order to terminate the pre-computation step, the contents of COUNTER1
is compared to the constant generated by mersenne. During the exponentiation step,
COUNTER1 is loaded with the current partition value fetched from the partition
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Fig. 6 Processing elements of the modular multiplier. a Basic PE architecture; b Right-most top-most PE
cell0,0; c Right border PEs celli,0; d Left border PEs cell0, j

memory, which allows to address the power memory in the same manner as in the
pre-computation step.

Component counter2 initially stores the current partition length, which determines
the number of required squaring and is decremented every step of this operation. The
proposed architecture of the exponentiator is shown in Fig. 7.

As for the partitioner, the work of the components constituting the modular
exponentiator is synchronized using a finite state machine of 21 states. The transi-
tions between these states along with the corresponding output actions are described
as follows, wherein R references the partial modular product computed at that point.
Observe that as soon as the pre-computation phase starts, it triggers the partitioning
phase (see state S1). These two steps proceed in parallel. Once the pre-computa-
tion has been completed the controller waits for the partitioning work to end (see
state S8), so it can carry on with the exponentiation phase to yield the expected
result. Recall that the most significant bit of the partition memory word indicates
the current partition type (see Table 1) and is used by the exponentation controller to
decide whether the multiplication step is required. The power memory is referenced
as WMEM
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Fig. 7 Detailed architecture of the sliding-window based exponentiator

S0: If Start = 1 Then Go to S1;
S1: pStart := 1; Reset COUNTER1; m := 0; WR := 1;
S2: WMEM[COUNTER1] := T; Load A; Load B;
S3: mstart := 1; If mFinal = 1 Then m := 1; Go to S4;
S4: Load R into B;
S5: mstart := 1; If mFinal = 1 Then Go to S6;
S6: Increment COUNTER1;
S7: WMEM[COUNTER1] := R; Load A;

If Equal = 1 Then Go to S5 Else Go to S8;
S8: If pFinal = 1 Then Go to S9;
S9: Read := 1;
S10: Set COUNTER1 with Word.value;

Set COUNTER2 with Word.length;
S11: Read := 0; RD := 1;

If Zero2 = 0 Then Go to S12 Else Go to S18;
S12: Load A; Load B;

If Zero1 = 0 Then Go to S13 Else Go to S20;
S13: Read := 1;
S14: Set COUNTER1 with Word.value;

Set COUNTER2 with Word.length;
S15: mstart := 1;

If mFinal = 1 and Zero2 = 0 Then m := 1; Go to S16;
Else If mFinal = 1 and Zero2 = 1 Then Go to S19;

S16: Load A; Load B; Decrement COUNTER2;
S17: If Zero2 = 1 and Word.type = 1 Then Go to S11;

Else If Zero2 = 1 and Word.type = 0 and Zero1 = 0 Then
Go to S13;
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Else If Zero2 = 1 and NZW = 0 and Zero1 = 1 Then
Go to S20;

S18: Load B; Go to S15;
S19: Load A; Load B;

If Zero1 = 1 Then Go to S20 Else Go to S13;
S20: final := 1; If start = 0 Then Go to S0;

4 Performance Results

We modeled the proposed architecture for the sliding-window method with the vari-
able-length non-zero window partitioning strategy for processing modular exponenti-
ation using VHDL [6]. Then, we functionally simulated the obtained specification and
implemented it through automatic synthesis in reconfigurable FPGAs of the Spartan
family. The reported area (in CLBs) and time (in ns) requirements are given in Table 4.
Unfortunately, it was impossible for us to obtain the power consumption of the design
as this characteristics is not provided in the synthesis report. We compare these fig-
ures to those required by the hardware implementation based on m-ary method [7,16]
and that of the sliding-window with the constant-length non-zero window partition-
ing strategy [14]. In Table 4, n is the number of bits in the exponent, d is log2 m for
the m-ary method and it represents the constant-length of non-zero partitions in the
CLNZ sliding-window and the maximum bits in a non-zero partition in the case of
VLNZ sliding-window. Note that for VLNZ sliding-window, the minimum number of
0s before zero partition used, i.e. q is 2 for all listed cases.

From the performance results in Table 4, it can be observed that despite the hard-
ware area required by the proposed exponentiator, the response time was consid-
erably reduced and so was the performance factor 1/(area × t ime). This effect is

Table 4 Area and time requirements for the VLNZ versus CLNZ sliding-window and m-ary based hardware
implementations

n d M-ary Hard. CLNZ Hard. VLNZ Hard.

Area Time Area Time Area Time

64 3 392 16.1 598 14.2 567 12.3

4 404 15.4 606 13.7 678 10.4

5 683 17.3 717 13.5 815 9.2

128 3 811 22.0 723 18.5 899 13.7

4 821 20.1 872 14.2 992 10.1

5 1002 24.5 1178 13.6 1355 7.3

256 3 1351 39.8 1565 26.3 1793 19.2

4 1405 38.3 1690 22.3 1900 15.0

5 1688 44.4 1778 20.9 2114 8.5

512 3 2229 65.4 2809 39.2 2910 26.3

4 2385 62.9 3079 31.9 3212 18.9

5 2661 69.1 3102 27.2 3378 12.3
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Fig. 8 Comparison of the performance factor for the implementations based on m-ary, CLNZ and VLNZ
sliding-window

graphically shown in Fig. 8, wherein the experiments are numbered sequentially. For
each of the experiments, the same exponents were used with the three implementa-
tions. The improvement of this implementation are mainly due to the maximization
of the number of zero partitions, which require no multiplication step, reducing thus
the total number of executed multiplications.

5 Conclusion

In this paper, we propose a novel hardware architecture for the modular exponentiation
method based on the sliding-window method. The exponent partitioning strategy used
allows variable-length non-zero partitions as well as variable-length zero partitions.
Compared with related work, the engineered implementation presents a very high
throughput, which is necessary in cryptographic systems. It minimizes the number of
required multiplications. Besides, it performs the partitioning process in parallel with
the pre-computation step of the exponent so no overhead is introduced. The perfor-
mance of the proposed implementation is further enhanced with the use of a massively
parallel implementation of the modular multiplication.

The architecture was specified in VHDL and the obtained specification was sim-
ulated and its functionality validated. The hardware specification was synthesized
so as to obtain some figures about the hardware area required as well as the time
delay imposed by the implementation. The figures of merit were compared to those
obtained with related hardware implementations of the modular exponentiation. The
first implementation used for performance comparison is based on the m-ary method
while the second is based on the sliding-window method but with the constant-length
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non-zero partition strategy. Of course, in the latter implementation, zero-windows are
also allowed to be of variable length. The comparison allowed us to assess the quality
and practicality of this hardware. For all the cases we considered, the performance
factor, which is the product of the requirements of hardware area and signal propaga-
tion delay for the proposed exponentiator is much smaller than that obtained for the
other two implementations.

In the future, we intend to investigate the co-design methodology [10] that allows us
to implement the partitioning process in software while keeping the modular multipli-
cation in hardware. This solution should reduce to a minimum the hardware resources
required and hopefully, yield a good response time, as proven through the performance
factor of the three designs that is depicted in the chart of Fig. 8 in the previous section.
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