
Int J Parallel Prog (2009) 37:462–487
DOI 10.1007/s10766-009-0107-8

A Bipartite Genetic Algorithm for Multi-processor
Task Scheduling

Mohammad Reza Bonyadi ·
Mohsen Ebrahimi Moghaddam

Received: 31 August 2008 / Accepted: 15 May 2009 / Published online: 3 June 2009
© Springer Science+Business Media, LLC 2009

Abstract Until now, several methods have been presented to optimally solve the
multiprocessor task scheduling problem that is an NP-hard one. In this paper, a genetic-
based algorithm has been presented to solve this problem with better results in com-
parison with related methods. The proposed method is a bipartite algorithm in a way
that each part is based on different genetic schemes, such as genome presentation and
genetic operators. In the first part, it uses a genetic method to find an adequate sequence
of tasks and in the second one, it finds the best match processors. To evaluate the pro-
posed method, we applied it on several benchmarks and the results were compared
with well known algorithms. The experimental results were satisfactory and in most
cases the presented method had a better makespan with at least 10% less iterations
compared to related works.

Keywords Genetic algorithm ·Multiprocessor · Task scheduling ·Makespan

1 Introduction

Scheduling problem in multiprocessor, parallel, and distributed systems is an NP-hard
problem. The scheduling problem is employed to solve problems, such as information
processing, whether forecasting, image processing, database systems, process control,
economics, and operation research. The efficient communication and well-organized
assignments of jobs to processors are important concerns in solving multiprocessor

M. R. Bonyadi ·M. Ebrahimi Moghaddam (B)
Electrical and Computer Engineering Department, Shahid Beheshti University G.C.,
Velanjak Ave, Tehran, Iran
e-mail: m_moghadam@sbu.ac.ir

M. R. Bonyadi
e-mail: m_bonyadi@std.sbu.ac.ir

123

Int J Parallel Prog (2009) 37:462–487 463

task scheduling problems (MTSPs) [46]. Also, in this problem, the limited or undeter-
mined processors should be assigned to some tasks such that minimum total execution
time of all tasks is achieved.

The multiprocessor task scheduling problem is defined as follows:
There are Nt tasks and Np processors. The tasks are related to each other such

that some tasks cannot start to process while its precedence is not accomplished. The
process is preemptive (the process is not stopped while the task is processing). After
a task is processed, its successor task may be processed but only after a predefined
time (called communication cost). It is worth noting that each processor can process
just one task simultaneously. The input of such a problem is usually considered as a
directed acyclic graph (DAG) which provides precedence, dependency, and priority
tasks together with communication cost among tasks and their precedence.

To solve this problem and achieve the minimum execution time, many heuristic and
Metaheuristic methods have been presented. In all of these methods, the basic idea is
to determine an order for tasks based on their execution priority. The approach of each
method is different with regards to various aspects of input DAG [6,17,27,41]. After
finding an optimal order, first task of the queue process is selected and an appropri-
ate processor is allocated to it. Therefore, each heuristic approach is comprises two
parts: firstly, finding an optimal order of tasks and secondly, allocating an appropriate
processor to tasks.

As already mentioned, multiprocessor scheduling is an NP-hard problem [46].
Genetic algorithm (GA) has been investigated as a method to find an optimal solution
for the NP-hard problems [11,32]. Thus, several methods have presented to solve this
problem based on GAs [12,15,21,25,43].

In this paper, we present a novel and efficient genetic-based method to improve the
results of related works in terms of makespan and number of convergence iterations
that is called bipartite genetic algorithm (BGA). In BGA, the problem is split into two
parts: the first part contains a population of processor numbers while the second one
includes a population of task sequences. Each part is altered using a GA according to
the other part. In fact, these parts cooperate with each other to solve the problem such
that in each iteration, the best match chromosome for all elements in the first popu-
lation is sought in the second population and vice versa. The proposed method was
applied on several test benches and the results were satisfactory and it outperformed
several related works.

The rest of paper is organized as follows: in Sect. 2, some of the previous studies
on the multiprocessor task scheduling are presented. In Sect. 3, the proposed method
is introduced and its various parts are defined. Section 4 consists of parameter setting
process and the experimental results. Finally, we conclude this study in Sect. 5.

2 Related Works

There are several approaches to solve multiprocessor task scheduling, such as heuris-
tic approaches [13,18,47], evolutionary or population-based approaches [12,14,15,
21,34,42,43] and hybrid methods [3]. In this section, several presented methods in

123

464 Int J Parallel Prog (2009) 37:462–487

the field of multiprocessor task scheduling from 1995 are reviewed. Each method is
introduced and its preferences and shortcomings are debated briefly.

In [2], critical path fast duplication (CPFD) algorithm as a heuristic one has been
presented. This algorithm is based on a classical technique in finding critical paths in
DAG and it gives high priority to tasks which are placed in DAG critical path (critical
path in DAG is the longest one between the first and one of the last nodes in terms of
execution time and communication cost).

In [19], another method has been proposed which schedules the tasks on several
processors, based on a greedy heuristic approach. The method consists of three phases:
assignment, unrolling, and scheduling. The authors showed that their algorithm has
better performance in comparison with an optimal branch and bound method.

The genetic-based methods have attracted a lot of researcher attention in solv-
ing the MTSP [12,14,15,21,34,42,43]. One of the main differences in these genetic
approaches is in their chromosome (solution) representations; different representa-
tions of genomes and chromosomes have been discussed and studied with their prom-
inences and shortcomings. Another important difference among genetic methods is in
their genetic operators, such as crossover and mutation. Using different crossover and
mutation methods for reproducing the offspring is strongly dependent upon the chro-
mosome representation which may lead to the production of legal or illegal solutions.
Another important point in designing a GA is simplicity of algorithm and complexity
of evolutionary optimization process.

The first and most important work which has used GA for multiprocessor tasks
scheduling is a classic work called Hou, Ansari and Ren (HAR) algorithm [12]. The
height of tasks in input DAG is considered as the main feature in the proposed work.
Each chromosome is composed of several strings. The number of strings corresponds
to the number of processors and each string shows a schedule of some tasks based on
the height of that task in DAG. The height concept is used to restrain the possible vio-
lation of precedence condition, i.e., the tasks are ordered according to their heights in
each string. Based on this definition, the precedence condition is always satisfied and a
simple crossover structure can be applied on the problem solutions (precedence-aware
task schedules) to produce legal schedules. While this algorithm is very simple in terms
of computational complexity, but it cannot ensure that the search space is global so
that some feasible schedules are not reachable at all [49]. After HAR, in 1995 another
GA-based method has been published [45]. The main difference between this study
and the above-mentioned work is in their chromosome representation. The authors
have been presented a GA using a matrix genome encoding to schedule distributed
tasks. This algorithm provided better scheduling results than its previous works.

Another work that presents a new technique based on problem-space genetic algo-
rithms (PSGAs) has been introduced in [7]. It utilizes the search power of GAs in
combination with list scheduling heuristics, such as ISH [20] and DSH [20]. The
results showed that the combinatorial could work efficiently and scheduled the tasks
on several processors as well as the other methods. The methods presented in [1,3],
also, tried to combine the heuristic and genetic approaches to solve this problem.

After the success of PSGA in 1996, in the same year, another genetic-based method
which exploited some previous distributed techniques to develop a distributed GA
was introduced. The main aim of this study has been to develop a distributed genetic

123

Int J Parallel Prog (2009) 37:462–487 465

algorithm system (DGAS) that evaluates the performance of real time trial scheduling
algorithms on a targeted system instead of simply simulating the performance [48].

In 1998, two other genetic-based methods have been carried out. In the first work
[33], a comparison of genotype representations was prepared and genotype repre-
sentation was divided to two different models and these models were compared in
terms of respective quality of results and time of convergence. The proposed models
were direct and indirect. In the direct representation, the schedule is represented and
manipulated directly by the genetic operators. In this representation, the genotype is
just like the phenotype. However, in indirect genotype representation, only the deci-
sion on how to build the schedule is encoded in the chromosome. In the second work,
an evolutionary approach for multiprocessor scheduling of dependent tasks was stated
[28]. The authors presented an approach for pre-runtime scheduling of periodic tasks
on multiple processors in a hard real-time system.

Another genetic-based multiprocessor scheduling method in 1998 has been pre-
sented in [42]. The authors of this paper claimed that the task duplication is a useful
technique for shortening the length of schedules. In addition, they added new genetic
operators to the GA to control the degree of replication of tasks.

In [34], Corrga et al. tried to overcome the three drawbacks of the HAR which were
presented in [12]. These drawbacks were: (1) the searches in the global solution space
were weak, (2) load balancing between processors has not been observed in the case of
initializing population, and (3) there was no knowledge about the quality of individu-
als, because in creating individuals only the validity of individuals had been observed
and the quality of them had not been monitored. These authors have presented com-
bined genetic list (CGL) algorithm that was a combined approach. In this method,
some knowledge about the scheduling problem was introduced. This knowledge was
represented by the use of list heuristic and improved the GA in the genetic operators.
These improvements removed the mentioned drawbacks of the HAR algorithm to a
large degree. The chromosome structure in this method was just like the structure in
HAR. Nevertheless, CGL removed the HAR problems and it was a suitable algorithm
in terms of solutions quality in spite of causing a heavy computational load in cross-
over and mutation operators. The prepared results demonstrated that the CGL method
was more useful in generating better solutions in comparison with pure genetic or list
heuristic approaches.

In 2001, the load balancing problem which has high importance in parallel and
concurrent systems was thoroughly investigated in [50]. The load balancing includes
partitioning a program into smaller tasks that can be executed concurrently and map-
ping each of these tasks to a computational resource, such as a processor. The authors
used a GA to solve the dynamic load balancing problem. In this method, some param-
eters, such as threshold policies, information exchange criteria, and inter-processor
communication and their effects on load balancing were considered. Another work
that considers load balancing, memory locality, and scheduling overhead issues was
published in 2000 [10].

With advances in genetic methods for scheduling the tasks on several processors,
some works tried to change the conventional approach of GA. They combined other
problem solving techniques, such as divide and conquer mechanism with GA. In 2003,
a modified genetic approach called partitioned genetic algorithm (PGA) was proposed

123

466 Int J Parallel Prog (2009) 37:462–487

[21]. In PGA: at first, the input DAG is divided into partial graphs using a b-level par-
titioning algorithm and each of these separate parts is solved individually using GA.
After that, a conquer algorithm cascades the subgroups and forms the final solution.
The authors claimed that the PGA leads to a better scheduling time in comparison with
a chaste GA and a similar performance with common GA. Along the same lines, some
other genetic-based works which were published in 2003 are [49] and [35]. In [49], a
new GA called task execution order list (TEOL) was presented to solve the scheduling
problem in parallel multiprocessor systems. The TEOL guarantees that all feasible
search space is reachable with the same probability. Other heuristics can be combined
with TEOL to improve its performance because TEOL is based on the restrain of the
predecessor relationship of input DAG. This work tried to overcome the problems
of two prior works that presented in [43] and [34]. Its prepared results showed that
it could gain some improvements in shortening execution time toward [43], but it
had similar execution times or in some cases weak results in comparison with [34].
Besides, it is worth mentioning that this work reached a noticeable reduction in time
of solving scheduling problem in comparison with [34]. In the same manner, some
other works tried to schedule partially ordered parts of DAG. Making and forming
these parts is very intricate and some works, such as [5,39,43], and [4] have struggled
to employ this technique in different ways. For example, an incremental approach was
used in [43]. In this method, each solution or individual is shown using a set of cells
and each cell consists of a pair (t, p) that p is corresponded with a processor and
t is related to a task. Main contribution of this paper is presenting a novel, flexible
and adaptive chromosome representation. Another important issue about this method
is permission of duplicating tasks in an individual. Non-string representation of the
solutions for scheduling problems together with genetic operators that were selected
via a hybrid mechanism have been used in [5]. This partitioning technique can be very
useful although it makes the scheduling problem more complicated.

In the fourth year of new millennium, some other new methods which used different
ways for scheduling multiprocessor tasks using GA were proposed [24,26,29]. As a
sample, the method presented in [29], sets up a GA approach for scheduling problem
in a multilayer multiprocessor environment. In multilayer multiprocessor task sched-
uling, it is required that tasks or jobs go through more than one stage where each stage
has several parallel processors. This kind of multiprocessor task scheduling is widely
used specially in industrial and computing applications. Also, in this research, a new
crossover operator has been introduced.

In 2005, a new dynamic task scheduling using GAs for heterogeneous distributed
computing was proposed [30]. This dynamic scheduler used GA for finding a min-
imum execution time. The term “dynamic” is used since the algorithm can work in
an environment with dynamically changing resources and adapts to variable system
resources.

In [16], a novel representation called fixed task, alternative processors (FTAP) was
proposed to schedule the tasks. In this work, the length of chromosomes is intelli-
gently adapted according to the given problem. The main focus of this paper is on the
effect of solution representation on solving problems and its speed and accuracy and
universality through the problem space.

123

Int J Parallel Prog (2009) 37:462–487 467

One of the recent works that was performed in 2007 on multiprocessor task sched-
uling using GA is a study that employs MTSP in dynamically reconfigurable hardware
[31]. In this work, a pair of two dimensional strings is used in representation of chro-
mosome. In this study, it is shown that the GA is more efficient than list scheduling
algorithm for scheduling tasks onto a dynamically reconfigurable hardware.

Many GAs have been applied for scheduling multiprocessor tasks but just a few
of them considered the communication cost so far [14]. One of the most recent and
important works on the multiprocessor task scheduling using GA was presented in
[14] wherein the authors proposed the extension of the priority-based coding method
as the priority-based multi-chromosome (PMC). In this method, each gene in each
chromosome was a number in the interval [1, p × t] where p was the number of
processors and t was the number of tasks and there was no duplication in each chro-
mosome. In this presentation, each gene index represented the task number. Hence, a
new crossover method compatible with this new encoding was proposed which was a
permutation based crossover and was called weight mapping crossover (WMX). The
priority-based encoding is the knowledge of how to handle the problem of producing
encoding that can treat the precedence constraints efficiently [49]. As far as it has
been studied and based on a vast investigation on GA methods for multiprocessor
scheduling, the PMC method is one of the best works that has ever been performed
in terms of its simple chromosome structure and the suitable and intelligible design
of GA operators. Their designed chromosome structure could simply convey all of
the required information for scheduling in only one dimension and just using an array
structure. The specific proposed chromosome structure and crossover has resulted in
valid solution production and also a reduced algorithm time. In this respect, we have
used PMC method for comparing our approach results and validating our proposed
method.

Also, with increasing interests for solving the multiprocessor task scheduling, the
other search methods and techniques have been applied to solve multiprocessor sched-
uling problem. Some of these approaches use a combinatorial algorithms and some of
them try to exert new optimization algorithms, such as ACO, PSO, AIS, mean field
annealing and memetic algorithm [5,9,22,36–39].

To improve the results of related work in case of makespan and number of con-
vergence iterations; in this paper, we proposed a genetic based method to solve multi
processor task scheduling that is called BGA. The proposed method consists of two
parts; each part is based on independent genetic schemes. The experimental results
showed that BGA improved the makespan of several standard benchmarks with regard
to related works. In the next section, BGA is introduced and its parameters are defined.

3 Proposed Method

In this section, the proposed method for multiprocessor task scheduling is presented.
The proposed method consists of two parts and is called BGA. The first part finds the
best valid sequence of tasks independently of processors and is called GAS (GA for
task sequences). The second part finds the corresponding processors by improving the
best fitness value and is called GAP (GA for processors). In each generation of the

123

468 Int J Parallel Prog (2009) 37:462–487

BGA, the GAS and GAP are run for predefined number of generations. The GAS and
GAP are described in the following sections.

Since the proposed method consists of several parameters, all parameter acronyms
are defined again in “Appendix”.

3.1 The GAS: A GA to Find the Best Match Task Sequences

First, we introduce PopS and PopP that are two important parameters in GAS. PopS
is a population which contains predefined number of tasks sequences while PopP is
a population which contains predefined number of processor arrays. The length of
each array in PopP is equal to the length of each task sequence in PopS. GAS finds
a set (population) of task sequences which has the maximum compatibility with the
available processor arrays in the PopP. In each generation of GAS, the GA opera-
tors are applied on PopS. Each task sequence in PopS is combined with all processor
arrays in current PopP and produces several pairs. Then, for each pair, the makespan
is computed and the processor array that minimizes the makespan of the pair is used
as the best match for that sequence. After finding the best match for all sequences, the
GA operators (crossover and mutation) are applied on PopS to improve the makespan
of population. In other words, in each generation of GAS, the attempt is on evolving
PopS in a way that the makespan of the best match pairs is improved. Whenever GAS
is running, PopP is not changed and the reproduced sequences are matched with the
current PopP.

In GAS, the representation of task sequences in PopS and the fitness value for
each sequence are very consequential. In addition, adequate reproduction operators
are necessary to attain the best performance and find better solutions in less iteration.
The proposed coding scheme, fitness function and reproduction operators for GAS are
presented as follows.

3.1.1 Coding Scheme for GAS

The proposed coding scheme (representation of chromosomes) for each task sequence
is a permutation of task numbers. As an instance, Fig. 1b shows a corresponding chro-
mosome for a nine tasks problem in Fig. 1a. The chromosome in Fig. 1b shows an
order for executing the tasks independent from the processors. As it was mentioned,
each chromosome in PopS contains a permutation of the tasks; each of them is pro-
cessed (to schedule on processors) according to their appearance. Therefore, each task
in the chromosome should appear before all of its children and after all of its parents.
Thus, some permutations of the tasks may not be admissible and the validation state
of the chromosomes should be attended. Hence, a validation phase after producing the
chromosomes is considered. The validation procedure changes the order of the tasks
in a chromosome to make it valid. It is clear that if a chromosome is valid by itself,
the validation procedure does not change it. The validation procedure is introduced in
Algorithm 3.

It is noticeable that the chromosomes in the initialization phase are generated by
a process which always produces a legal chromosome. In other words, the PopS is
initialized by a random process but in such a way just to produce valid sequences.

123

Int J Parallel Prog (2009) 37:462–487 469

T1

T4

T3T2

T7

T6

T8

T5

T9

2

3
3

4

4

4

4

5

1

4

(a) (b)

20

1
1

1

1
5

5

1 1

10

10
10

10

5

Fig. 1 a A sample problem with 9 tasks that is shown by DAG. b Corresponding chromosome with (a) in
PopS; each task in the chromosome should be appeared before all of its children and after all of its parents

To attain this objective i.e., randomly producing valid chromosomes, the following
algorithm is proposed.

Algorithm 1 (Initialize PopS)

Input: PsS (Population Size), DAG (Problem Task relations), output: PopS
1) Make PopS as an empty matrix with the size PsS*Nt
2) Make Temp as an empty, temporary array that its size is equal to the number

of tasks in DAG
3) Temp← all tasks in DAG which can be scheduled now

(here, just the root tasks)
4) For i = 1 to PsS

a. For j = 1 to Nt
i. R← a random number between 1 and the current length of Temp
ii. PopS (i, j)← the Rth index of Temp
iii. Discard the Rth index of Temp
iv. Temp← Temp ∪ all tasks in DAG which can be scheduled now

b. End for
5) End for
6) Return PopS

In this algorithm, PsS shows the expected population size, Nt stands for number
of tasks, and DAG shows the problem tasks relations that are considered as algorithm
inputs. Using this algorithm, the PopS is initialized randomly and all chromosomes
are valid. Hence, no validation process is needed after initializing the PopS.

3.1.2 Fitness Values for GAS

The fitness values for the sequences in PopS are computed according to the processor
arrays in PopP. First, a processor array in current PopP is found for each sequence
in PopS (a pair of sequence and its corresponding processors) which minimizes the
makespan. Then, this makespan is defined as the fitness value for the sequence. The
following pseudo code realizes this procedure:

123

470 Int J Parallel Prog (2009) 37:462–487

Algorithm 2 (GAS Fitness)

Input: PopS, Pop; Output: Fitness values for PopS
1) For each sequence S in PopS

a. For each processor array P in PopP
i. Compute the makespan of the pair (S, P) (called MS,P)
ii. If the MS,P is the best found makespan for S so far, update the

fitness of this sequence (S) as the MS,P

b. End for
2) End for
3) Return all found fitness values

3.1.3 Reproduction Operators for GAS

The reproduction operators consist of crossover and mutation which are proposed to
use in GAS for producing new offspring. As it was pointed out earlier, the GAS employs
a permutation-based chromosome model. This induces us to use the operators which
are compatible with this chromosome structure. In this paper, two crossover operators
are used: weighted mapped crossover (WMX) [14] and “Order base” [8]. Also, three
mutation models are used (i.e. swap, scramble, and inversion). The results show that
the “Order based” crossover in combination with “Swap” mutation has the best per-
formance in comparison with other combinations. The used crossover and mutation
operators are presented as follows:

3.1.3.1 Crossover Operators

1. WMX: in this crossover model, first, two cutting points are randomly selected
as a substring and then the values of these substrings are checked for contents
and order. The order of the substring that is opted from the first parent is used
to reorder the corresponding substring in second parent and vice versa
[14].

2. Order-based crossover: in this crossover model, two cutting points are selected in
first parent and the substring between these points is copied in the first offspring.
Then, starting from the second crossover point in the second parent, the remain-
ing unused numbers in the first offspring are copied according to the order that
appears in the second parent, wrapping around at the end of the list. The creating
process for the second child is in an analogous manner with the parents’ role being
reversed [8].

3.1.3.2 Mutation Operators

1. Swap: in this mutation, two genes are selected and their contents are replaced [8].
2. Scramble: this mutation model uses two randomly selected points in each chro-

mosome and the content of this substring is randomly arranged and replaced by
the old substring [8].

123

Int J Parallel Prog (2009) 37:462–487 471

3. Inversion: in this mutation model, two points are selected in each individual and
the substring between these two points are reversed and replaced by the old sub-
string [8].

The mutation and crossover operators in GAS are applied with the probability
PmS and PcS, respectively. Because of the precedence constraints in multiprocessor
task scheduling and the permutation-based coding scheme for tasks, some of the off-
spring which are produced via the mentioned crossovers and mutations may be invalid.
Therefore, a validation phase is needed to construct valid sequences according to the
produced chromosomes. In fact, in each iteration of the GAS, each chromosome is
validated via a validation procedure. In the validation phase, first, each chromosome
in PopS is processed to find its best matched array processor in PopP and to produce
an array of pairs. Then, if an element of this array cannot be scheduled in its place
(the parent of the task is not scheduled yet), it is placed in a queue. In each iteration
of the validation phase, this queue is processed to find the pairs which can be sched-
uled. The remaining pairs in the queue are scheduled in their appearance order in the
queue after scheduling all the elements of the array. The following algorithm shows
the validation procedure.

Algorithm 3 (Validation)

Input: an array of pairs P (a sequence of tasks and its best matched array
processor); Output: validated form of P (called RP)

1) Set the Q as an empty queue and RP as an empty array
2) For all elements Pi in P

a. If Pi can be scheduled (all parents of the ithtask in P are scheduled)
then

i. R P ← R P ∪ Pi

b. Else
i. Place Pi in Q

c. End if
d. For all elements Qi in Q

i. If Qi can be scheduled (all parents of the i th task in Q
are scheduled) then
1. R P ← R P ∪ Qi

2. Remove Qi from Q
ii. End if

e. End For
3) End For
4) While Q is not empty

a. For all elements Qi in Q
i. If Qi can be scheduled (all parents of the ithtask in Q

are scheduled) then
1. R P ← R P ∪ Qi

2. Remove Qi form Q
ii. End if

b. End For

123

472 Int J Parallel Prog (2009) 37:462–487

5) End while
6) Return the tasks in RP

The “while” loop in line 4 of the algorithm is necessary because after the “for”
loop, it is probable that some tasks remain in Q and have not been scheduled yet. In
this procedure, RP contains the validate chromosomes and Q is a temporary queue
that is used in procedure.

3.1.4 The Step by Step Procedure of GAS

Underneath, GAS is presented step by step:

Algorithm 4 (GAS)

Inputs: PopS, PopP, GNS (maximum number of generations) and SGNS (number
of successive iteration which algorithm is not improved); Output: PopS, NSS
(number of iteration which GAS is run)

1) Initialize the parameters PmS, PcS
2) NSS=0
3) While stopping criteria are not satisfied

a. Calculate the fitness values for PopS (Algorithm2)
b. Perform crossover with the probability PcS according to

Sect.3.1.3 on PopS
c. Perform mutation with the probability PmS according to

Sect.3.1.3 on PopS
d. Validate the offspring (Algorithm3)
e. NSS=NSS+1

4) End for
5) Return the PopS and NSS

The stopping criteria for GAS are the maximum number of generations (GNS) and
number of successive iteration that the algorithm not make any improvement thereof
(SGNS). In this algorithm, the NSS is the number of iterations which GAS is run. Other
parameters have been defined in last section (also “Appendix”).

3.2 The GAP: A GA for Finding the Best Match Processor Arrays

The GAP is employed to evolve the PopP to generate the processor arrays which are
more compatible with the sequences in PopS. In fact, in each generation of GAP,
the new offspring are produced via the GA operators. The PopP is combined with
PopS in each generation and best pair matches are found. Then the fitness values for
processor arrays in PopP are computed using the makespan for the best match pairs.
The coding scheme, fitness function, and reproduction operators are introduced as
follows.

123

Int J Parallel Prog (2009) 37:462–487 473

3.2.1 Coding Scheme for GAP

Having in mind that each element in PopS contains Nt (Nt is number of tasks) task, the
coding scheme for the chromosomes GAP is an array which contains Nt cells and the
value of each cell is between one and Np (Np is the number of processors). Each cell
value shows the processor number for the corresponding task to run on. Figure 2 shows
an instance for this coding. This chromosome is the best match for the chromosome
in Fig. 1b. The pair array of this array processor and the chromosome in Fig. 1b is
presented in Fig. 3.

As an example, pair (3, 1) in Fig. 3 indicates that the task 3 has to be executed in
processor 1 after executing the first task in processor 2 (with regard to Fig. 1a). The
communication cost should be considered to calculate the makespan. Figure 4 shows
the Gantt chart for this pair array where its makespan is equal to 21.

3.2.2 Fitness Value for GAP

The fitness values for the sequences in PopP are computed according to the current
sequences in PopS. First, we try to find a sequence in current PopS for each chromo-
some in PopP (a pair of sequence and its corresponding processors) which minimizes
the makespan. Then we define this makespan as the fitness value for the processor
array. The following pseudo code shows this procedure:

Fig. 2 An instance of chromosomes in PopP. In this example, it is considered that there are two processors
to process the tasks of Fig. 1a. This figure shows the chromosome that is matched with chromosome in
Fig. 1b

Fig. 3 The pair array of the chromosomes in Figs. 1b and 2. This pair is used to find the makespan and
fitness for these chromosomes

Fig. 4 The scheduling results for the problem in Fig. 1a. The results have been obtained by using BGA in
100 iterations when there were two processors. This figure corresponds with Fig. 3

123

474 Int J Parallel Prog (2009) 37:462–487

Algorithm 5 (GAP Fitness)

Input: PopS, PopP; Output: Fitness values for PopP
1) For each sequence P in PopP

a. For each processor array S in PopS
i. Compute the makespan of the pair (S, P) (called MS,P)
ii. If MS,P is the best found makespan for S so far, update the fitness

of this processor array (P) as the MS,P

b. End for
2) End for
3) Return all found fitness values

In this procedure, MS,P is the best found makespan of each pair (S, P) where S
is a chromosome in PopS and P is a chromosome in PopP. The definitions of other
parameters are same as last sections (see “Appendix”).

3.2.3 Reproduction Operators for GAP

According to the simple coding scheme for GAP, a simple crossover and mutation
can efficiently work to improve the PopP. Here, the “One Point” crossover and the
“Uniform” mutation have been used. In one-point crossover, two parents are selected
via a selection procedure and one cutting point is chosen via a random process. Then
the second part of the parents is replaced and two offspring are produced. The cross-
over operator is employed with the probability PcP. In the uniform mutation, each
chromosome is mutated with the probability Pm (here PmP). In this process, one gene
of the selected chromosome changes to a value that is selected randomly from the
problem space.

3.2.4 The Step by Step Procedure of GAP

The following algorithm presents the GAP

Algorithm 6 (GAP)

Input: PopS, PopP, GNP (max number of generations) and SGNP (number of
successive generations that algorithm is not improved), output: PopP, NSP
(Number of iterations that GAS is run)

1) Initialize the parameters PmP, PcP.
2) NSP = 0;
3) While stopping criteria are not satisfied

a. Calculate the fitness values for PopP(Algorithm5)
b. Perform crossover with the probability PcP according to

Sect.3.2.3 on PopP
c. Perform mutation with the probability PmP according to

Sect.3.2.3 on PopP
d. NSP = NSP + 1

4) End for
5) Return the PopP and NSP

123

Int J Parallel Prog (2009) 37:462–487 475

The stopping criteria for GAP are the maximum number of generations (GNP)
and number of successive iteration that the algorithm does not make any improve-
ment thereof (SGNP). PcP and PmP show the probability of crossover and mutation,
respectively. In this algorithm, the NSP is the number of iterations which GAS is run.
It is worthwhile to note that the population of processors (PopP: population of proces-
sors) is initialized via a random process. Here, no validation process is needed. The
definitions of other parameters are same as last sections (see “Appendix” also).

3.3 The Proposed BGA

The following pseudo code shows the proposed BGA.

Algorithm 7 (BGA)

Input: DAG, output: best order of tasks and their corresponding processors
with minimum makespan

1) Initialize the parameters PmP, PmS, PcP, PcS, PsP, PsS, GNP, GNS, SGNS,
SGNP, IT, SIT

2) Initialize PopS population by Algorithm1.
3) Initialize PopP population randomly.
4) NS = 0
5) While stopping criteria are not emerged (NS<IT and the algorithm is

improved for SIT last iterations)
a. [PopS NSS]=GAS(PopS, PopP, GNS, SGNS)
b. NS = NS + NSS
c. [PopP NSP]=GAS(PopS, PopP, GNP, SGNP)
d. NS = NS + NSP

6) End while
7) Return the best task sequence in PopS with its corresponding processor

array in PopP as the best solution

In this algorithm, Pm is the mutation rate, Pc the crossover Ps the population size,
GN the maximum number of generations and SGN the maximum number of succes-
sive generations that the algorithm (GAS or GAP) is not improved in. In all of these
parameters, the postfix term P indicates that the parameter is relevant to the GAP and
the postfix term S shows that the parameter is relevant to GAS. As an example, PmP
means and PmS the same rate in GAS. NS is a counter that shows number of iterations
in algorithm. The definitions of other parameters are same as last section and they
are introduced in “Appendix”. The algorithm goes on while predefined criteria do not
emerge. In the implementation, we use two criteria to stop the algorithm:

1. The maximum number of iterations (IT)
2. Number of successive iterations which the fitness value is not improved in (SIT)

The first condition will emerge when NS is bigger than or equal to IT. The second
condition emerges when the algorithm could not find better solutions in the last prede-
fined iterations (SIT). In fact, if NS is bigger than IT or the algorithm is not improved
for the last SIT iterations, the algorithm stops.

123

476 Int J Parallel Prog (2009) 37:462–487

4 Experiments and Results

4.1 Experiment Environment

In this part, the results of experiments are presented. The proposed algorithm has been
implemented in Matlab environment and the simulations were performed on a per-
sonal computer with 512 MB of RAM and 1.8 GHz AMD CPU. First, a sample graph
was used to set the parameters of the proposed BGA. The parameters PmS, PcS, cross-
over and mutation models were adjusted via some experiments. To evaluate BGA and
compare its results with related works, standard task graph (STG) test bench [40] was
used. The communication costs are not included in STG so they were produced via
a random process. The resulted communication costs are available online in [51]. In
addition, task scheduling problems that are shown in Table 1 were used in evaluation
and comparison. In Table 1, each problem has been marked as P#. Also, the number
of tasks (no. of tasks) for each one, and the communication costs have been given.
The communication costs for P5, P6 and P7 have been declared in [20,23] and [44],
respectively, as well. Except for P (5–7), each problem corresponds to a well known
mathematical problem described in the last column of the Table 1. The problems listed
in Table 1 usually were used in the literature to evaluate multiprocessor task schedul-
ing methods [43]. The problems presented in Figs. 1a and 7 were other problems that
have been used to evaluate the methods. Each method was run 10 times and min, max
and average of makespan together with number of generations were compared.

4.2 Parameter Setting

The problem P7 in Table 1 is used to find the best parameters values of the BGA.
Table 2 illustrates the results of running BGA to solve problem P7. The crossover and
mutation model for GAS are mentioned in Table 2. The parameters were initialized by
the following values:

Table 1 Some task scheduling problems that were used to evaluate the proposed method

Problem No. of tasks Communication costs Source Description

P1 15 25 (fixed) Tsuchiya et al. [42] Gauss-Jordan algorithm

P2 15 100 (fixed) Tsuchiya et al. [42] Gauss-Jordan algorithm

P3 14 20 (fixed) Tsuchiya et al. [42] LU decomposition

P4 14 80 (fixed) Tsuchiya et al. [42] LU decomposition

P5 15 Variable for each graph edge Kruatrachue and Lewis [20] –

P6 17 Variable for each graph edge Mouhamed [23] –

P7 18 Variable for each graph edge Wu and Gajski [44] –

P8 16 40 (fixed) Wu and Gajski [44] Laplace

P9 16 160 (fixed) Wu and Gajski [44] Laplace

The communication cost of each problem has been presented except for P5–P7. The communication costs
are fixed in some ones and variable for others. The source column shows the reference of the problem and
the description column shows the corresponding well known problem

123

Int J Parallel Prog (2009) 37:462–487 477

• GNS and GNP: 20
• SGNS and SGNP: 10
• PsS and PsP: 20
• PmS and PmP: 0.2
• PcS and PcP: 0.8
• Maximum iteration for BGA (IT): 1000
• Number of successive iterations without improvement to stop the algorithm (SIT):

100

The used crossover for GAP was “one point” and the used mutation was “uniform”.
Table 2 indicates that the algorithm finds the best solutions when the crossover was
order-based and the mutation was swap. Hence, in all implementations, we use these
operators for GAS. In addition, to find the best values for crossover and mutation rates,
the PcS and PmS have been iteratively. The value of PcS was changed in the interval
[0.5, 0.9] with the step size 0.1. Figure 5 shows the results of variations versus make-
span average that is average of 10 runs of the BGA to solve P7. The value of other
parameters was as follows:

• GNS and GNP: 20
• SGNS and SGNP: 10
• PsS and PsP: 20
• PmS and PmP: 0.2

Table 2 The results of applying BGA on P7 using several models of mutation and crossovers in GAS part

Cross over Mutation Average number of iterations Average of makespan

Order based Swap 212 402

Inversion 239 408

Scramble 228 408

WMX Swap 299 412

Inversion 225 404

Scramble 218 406

The results are average of running BGA 10 times. The makespan values are reported in time unit (e.g.
second)

Fig. 5 The average makespan
values that has been obtained by
10 times applying BGA on P7
versus variation of PcS in
interval [0.5, 0.9]. The best
result obtained when PcS was
equal to 0.74

0.5 0.6 0.7 0.8 0.9
380

390

400

410

420

430

440

450

 Average of makespans

M
ak

es
p

an

PcS

123

478 Int J Parallel Prog (2009) 37:462–487

Fig. 6 The average makespan
values that has been obtained by
10 times applying BGA on P7
versus variation of PmS in the
interval [0.1, 0.4]. The best
result obtained when PmS was
equal to 0.32

0.10 0.15 0.20 0.25 0.30 0.35 0.40
385

390

395

400

405

410

415

420

425

M
ak

es
p

an

PmS

 Average of makespan

• PcP: 0.8
• Maximum iteration for BGA (IT): 1000
• Number of successive iterations without improvement to stop the algorithm (SIT):

100

The used crossover and mutation for GAS was “order based” and “swap”, respec-
tively, while the “one point” and “uniform” was used for GAP. Figure 5 shows that
the best performance of the BGA emerges when the value of PcS is 0.74. Since the
interval [0.7, 0.8] was a critical range (the makespan of PcS 0.7 and the makespan of
PcS 0.8 are close to each other), the PcS in this range has been changed with the step
size 0.02. The best performance was achieved when the PcS was set to 0.74. Figure 5
shows the STD of average makespan also. Moreover, to determine the best value for
PmS, a similar performed. In this experiment, the value of PmS was changed in the
interval [0.1, 0.4]. Figure 6 shows the makespan average in 10 times running of BGA
to solve P7 problem vs. PmS in the interval [0.1, 0.4] with the step size 0.05. Again,
because the interval [0.3, 0.35] is a critical interval (the average for PmS = 0.3 and
PmS = 0.35 are close), the step size in this interval was investigated in more details
(0.01). Figure 6 also shows the STD (standard deviation) of makespan.

It is obvious in Fig. 6 that the best performance of the algorithm emerges when
PmS is 0.32. A similar parameter setting is performed for GAP parameters (PmP and
PcP). The experiments show that the best outcome is obtained when PcP is chosen as
0.8 and PmP was set as 0.2. Hence, in all experiments, the following parameters were
used in BGA implementation:

• PsS and PsP: 20
• GNS and GNP: 2×PsS and 2×PsP
• SGNS and SGNP: GNS/2 and GNP/2
• PmS: 0.32, PmP: 0.2
• PcS: 0.74, PcP: 0.8
• Maximum iteration for BGA (IT): 100×max(PsS, PsP)
• Number of successive iterations without improvement to stop the algorithm (SIT):

10×max(PsS, PsP)

The literature with which the BGA was compared, utilized 400 chromosomes in
their populations. Hence, the PsS and PsP are chosen as 20 because in this case, we

123

Int J Parallel Prog (2009) 37:462–487 479

can say that we have 400 chromosomes. About the values of GNS and GNP, we can
say that, if the values for GNS and GNP are chosen as big numbers IT) and the value
of IT are considered as a constant value, the improvement will slow down because the
evolution process (GAS and GAP) is performed in a big number of generations on just
one population (PopS or PopP). Thus, that population will be greatly compatible with
the current other (PopP or PopS). We call this phenomenon as “over compatibility”
which is something like “overtraining” phenomenon occurring in neural networks.
Furthermore, if these values (GNS and GNP) are chosen as small values (according
to PsS and PsP), the GAS and GAP will not have enough time to exploit the it can be.
Hence, we use factor 2 to ensure that the GNS and GNP are small enough according
to IT (about 1/50) and big enough according to Ps (twice), at the same time. A similar
problem has been considered for the values of SGNS and SGNP.

4.3 Comparisons with Well Known Heuristics

In this section, the BGA is compared with some well known heuristics, such as mod-
ified critical path (MCP) [44], dominant sequence clustering (DSC) [46], mobility
directed (MD) [44], dynamic critical path (DCP) [47], insertion scheduling heuris-
tic (ISH) [20], duplication scheduling heuristic (DSH) [20], and CPFD [2]. Table 3
demonstrates the makespan of problem presented in Fig. 1a when it is solved by BGA,
MCP, DSC, and MD. The results of BGA in all cases are better than the results achieved
by mentioned heuristics. The BGA was run 10 times in each case (2, 3 and 4 proces-
sors) and the best makespan of each case has been reported in Table 3. PsP and PsS in
this test are selected 10. The best results in Table 3 are shown by font. As it is shown
in Table 3, the results of BGA is outperformed other methods.

Table 4 shows the results of the comparisons between the BGA and the ISH, DSH
and CPFD. The problems of Table 1 were used for this experiment. In this case, the
best makespan in 10 runs of the algorithm has been reported. As it is shown in Table 4,
the BGA is always better than ISH algorithm, but its results are often worse than CPFD
and DSH algorithms. The best result in each row is shown by Bold-Italic-Underline
font.

4.4 Comparisons with GA Based Algorithms

In order to compare BGA with other GA-based methods, two such methods have been
considered that their results were better than any other ones (i.e., incremental GA [43]

Table 3 Results of applying BGA and some well known heuristics on the problem in Fig. 1a

Algorithms MCP DSC MD DCP BGA

No. of processors 3 4 2 2 2 3 4

Best solution 29 27 32 32 21 21 21

The BGA could find less makespan. The values in row “Best solution” show the best makespan of problem
achieved in 10 separate runs of algorithms. The makespan values are reported in time unit (e.g. second)

123

480 Int J Parallel Prog (2009) 37:462–487

Table 4 The comparison results between the BGA and some heuristics in terms of the best gained makespan
to solve the problems presented in Table 1

Problem Algorithm ISH DSH CPFD BGA

P1 Best solution 300 300 300 300

P2 Best solution 500 400 400 420

P3 Best solution 260 260 260 270

P4 Best solution 400 330 330 360

P5 Best solution 650 359 446 440

P6 Best solution 41 37 37 37

P7 Best solution 450 370 330 390

P8 Best solution 760 670 760 790

P9 Best solution 1220 1030 1040 1088

Indeed, the BGA was run 10 times and the best result is mentioned. The makespan values are reported in
time unit (e.g. second)

Table 5 Comparison of PMC, incremental GA, and BGA based on structural aspects

BGA Incremental GA [43] PMC [14]

Needed parts for chromosomes 2 2 1

Is all problem space searched? Yes Yes Yes

Search space size Nt!×NpNt Nt!×NpNt P(Nt×Np, Nt) where P is
permutation

Is any specific type of GA
operators needed?

Yes No Yes

Feasibility after GA operators Needs validation Sometimes not feasible Always feasible

How treat invalid chromosomes? Validate them Discard them Always valid

and PMC [14]). Table 5 compares the structure of BGA with these methods. Also,
Table 5 consists of problem space, feasibility of chromosomes, and the comparisons
among operators.

As shown in Table 5, both BGA (the proposed method) and incremental GA [43]
employ two-part chromosomes (incremental GA utilizes a pair for each gene) to pres-
ent and code the problem. In contrast, the PMC utilizes a one-dimensional chromosome
but its search space is larger.

The search space that is sought by incremental GA and BGA is very close to the
actual problem space. Moreover, the BGA needs permutation-based GA operators in
GAS part while GAP part of BGA exploits simple GA operators. Hence, a validation
phase is needed in BGA to validate the task sequences where afterward all chromo-
somes become valid. On the other hand, the PMC exerts a specific crossover that
sustains the feasibility of chromosome structures. However, in the incremental GA
method, some chromosomes might have an incompatible length and they cannot be
decoded. In this case, the crossover does not apply and the original chromosomes are
used. Also, the precedence constraints are not considered in designing the operators
in incremental GA and the method employs a penalty function in calculation of fitness
values.

123

Int J Parallel Prog (2009) 37:462–487 481

Fig. 7 A task scheduling
problem with 18 tasks which
was introduced in [14]

T1

T10T9T8

T 7

T6T5T3T2 T4

T11

T14T13 T15

T12

T16

T17 T18

80

40

60

30

40

20

20

10

120

8080

120

80

80
80 80

120

80

80 80 80

120

To compare the results of BGA with the mentioned related methods, three test
benches were employed. At first, the BGA and PMC were applied on two problems
shown in Figs. 1a and 7 and their results were compared in terms of the STD and the
mean of obtained makespan. Then these methods were applied on some test cases of
STG [40]. Next, these methods (BGA, incremental GA, and PMC) were applied on
test benches which have been presented in Table 1 and the results were compared.

Table 6 shows the results of applying BGA and PMC on the problem in Fig. 1a.
It is worth mentioning that the results are the outcomes of running the algorithms
10 times independently. As it is shown in Table 6, BGA has better results in all cases;
for example, the achieved makespan with three processors in mean case is 21 by BGA
compared to 22.4 by PMC which shows 6% improvement. Also, the zero value of
STD shows that BGA has a robust behavior in solving this problem. The best results
in each row are shown by Bold-Italic-Underline font.

In this experiment, the parameters of PMC were set as follow:

• Population size: 400
• Pc: 0.7
• Pm: 0.3

123

482 Int J Parallel Prog (2009) 37:462–487

Table 6 The comparison results between the BGA and PMC for the problem in Fig. 1a

No. of processors BGA PMC [14]

Best Worst Mean Std Best Worst Mean Std

2 21 21 21 0 21 23 21.9 0.56

3 21 21 21 0 21 23 22.4 0.69

4 21 21 21 0 21 23 22.3 0.82

In this case, PsP and PsS were equal to 10. The values show the best, worst and mean makespan in 10 times
running algorithms to solve the problem. The Std column shows standard deviation of makespan results in
different running of algorithms. The makespan values are reported in time unit (e.g. second)

Table 7 The makespans obtained by applying PMC and BGA on the problem in Fig. 7

No. of processors BGA PMC [14]

Best Worst Mean Std Best Worst Mean Std

2 460 470 463 4.83 460 520 491 20.78

3 440 490 461 12.86 490 600 522 35.21

4 440 470 461 8.75 500 580 544 25.90

6 460 490 471 11.00 510 580 556 19.55

The Best, Worst, Mean, and Std (standard deviation) values have been calculated over 10 times running the
algorithms. The problem solved with different number of processors. The makespan values are reported in
time unit (e.g. second)

• Maximum iterations: 2,000
• Number of iterations without improvement: 200

As it is shown in Table 6, the BGA found the best known optimum solution in all
runs and surpassed the PMC in terms of the obtained mean value for the makespan of
the problem.

In addition, BGA was compared with PMC by applying both algorithms on problem
that has been shown in Fig. 7. Table 7 shows the results of applying BGA and PMC
on the problem presented in Fig. 7 using several numbers of processors. In this case,
each algorithm was run 10 times and the results were reported. The BGA could find
better makespan in comparison to PMC in terms of average, worst and best solutions
in all cases, for example, the achieved makespan with four processors in mean case
is 461 by BGA compared to 544 by PMC which shows 15% improvement. Also, the
values of STDs for BGA are quite smaller than the STDs for PMC which reveals the
stability of BGA.

Table 8 shows the results of the BGA and PMC while both of them have been applied
on some test cases of STG. Each algorithm was run 10 times and the average values of
makespans have been reported. It shows that the BGA could find better makespan in
comparison to PMC in all cases, for example, the average improvement to PMC when
Nt= 50 is about 17.8%. Also, the STD of the the solutions for BGA is smaller than the
PMC in most cases. This shows that the BGA is more stable in comparison to the PMC.
The last row of Table 8 shows the results of applying the algorithms (BGA and PMC) on

123

Int J Parallel Prog (2009) 37:462–487 483

Table 8 The results of applying BGA and PMC on some test cases of STG in 10 times running

Nt Problem name Np BGA PMC [14] BGA improvement with
regard to PMC (%)*Makespan average STD Makespan average STD

50 Rand0002 4 105 6.1 128.9 5 18.6

8 104.2 1.5 136.4 4.44 23.6

Rand0016 4 166.6 9.2 210.8 12 21.3

8 161 4.3 189.4 11.71 14.99

Rand0019 4 167.2 8 221.1 12 24.4

8 176.46 7.5 203.4 32 13.24

Rand0028 4 207.2 7.3 256.4 6 19.1

8 206.6 7.9 239.2 8.78 13.6

Rand0043 4 77 2.1 94.6 7 18.6

8 71.4 2.9 80.1 1.64 10.8

Average of improvement in percent 17.8

100 Rand0002 4 223.4 12.1 286.6 14.55 22

8 215.8 7.12 262.4 13.86 17.76

Rand0016 4 184.2 7.4 236.8 11.6 22.3

8 154.4 6.65 199.6 8.61 22.65

Rand0019 4 296.2 3.34 369.4 19.44 19.8

8 224.6 1.5 274.8 12.49 18.2

Rand0028 4 140.6 1.51 165 10.66 15.2

8 89 0 108 7 17.6

Rand0043 4 247 2.73 271.2 12.39 9

8 134.2 3.08 159.4 3.57 15.8

Average of improvement in percent 18.3

300 Rand0002 4 760 4.2 955 22.2 20.1

* The last column shows the improvement of BGA with regard to PMC. Nt shows number of tasks and Np
shows number of processors. The makespan values are reported in time unit (e.g. second)(

1− BGA makespan average
PMC makespan average

)
× 100 in percentages

a 300-node graph. In this case, the STD value of algorithms is significant. As a matter of
fact, it shows that the BGA in bigger problems has much better stability and reliability.
The best results in each row of Table 8 are shown by Bold-Italic-Underline font.

To compare BGA with incremental GA, the test benches in Table 1 have been
employed. Table 9 shows the results of applying BGA, PMC, and incremental GA on
these test benches. In each case, the average results are the outcomes of 10 runs of these
algorithms. According to Table 9, it is obvious that the BGA could find the acceptable
solutions in much less iterations in comparison to incremental GA. In other words,
incremental GA can find better makespan in some cases with much more iterations.
Also, in some cases, the BGA could achieve the better average of makespan in com-
parison with this method. It is worth mentioning that the BGA is not improved in the
last 200 iterations (second termination criterion) so the average iterations should be
subtracted by 200. For instance, the BGA could find the makespan 300 for P1 in just
54 iterations in average while the incremental GA found this value in 682 iterations.

123

484 Int J Parallel Prog (2009) 37:462–487

Table 9 The resultant makespans in solving problems in Table 1 by BGA, incremental GA, and PMC

Problem name BGA PMC [14] Incremental GA [43]

Makespan
average

Average of
generations

Makespan
average

Average of
generations

Makespan
average

Average of
generations

P1 300 254 300 304 300 682

P2 440 320 472 375 430 1011

P3 270 311 290 340 263 934

P4 365 361 418 372 370 1333

P5 440 311 539 393 445.9 871

P6 37.2 374 38.4 384 37.78 1375

P7 390 380 424 375 380 1316

P8 790 280 810 330 780 1168

P9 1088 314 1232 380 1101 1627

Each algorithm was run 10 times and makespan average and average of generations are presented in corre-
sponding column. The makespan values are reported in time unit (e.g. second)

Also, BGA found better makespan in compare to PMC in all problems. The best results
in each row are shown by Bold-Italic-Underline font.

5 Conclusions and Future Works

In this paper, a new approach for multi-processor task scheduling has been presented.
In this approach, a BGA was proposed which splits the problem into two sub prob-
lems: finding an adequate sequence of tasks and its best match processors to process
the tasks. In fact, the problem space is split into two subspaces and each of them is
solved and the results are combined to find the answer for the main problem. The
algorithm has been implemented and its parameters were set by separate experiments
to find the best performance. The results were compared with some recent GA-based
and heuristic algorithms in terms of STD, average makespan, best obtained makespan
and iterations. The experimental results showed that the BGA could find acceptable
solutions for the problem in comparison with the recent algorithms and in some cases,
the BGA works strongly better. The main virtue of BGA was its stability in big prob-
lems (Table 9). In addition, in some cases, the BGA could get better makespan for
problems in much less iterations with the same population size in comparison with
other related algorithms (Table 9). In future, we are going to develop a much stronger
method which can solve all problems in their optimized values.

Appendix

Acronyms Used in the Paper

BAG Bipartite genetic algorithm (the name of the proposed method)
GAP Genetic algorithm for processors. This is a part of BGA
GAS Genetic algorithm for task sequences. This is a part of BGA

123

Int J Parallel Prog (2009) 37:462–487 485

GNP Generation number for processors part (GAP). It shows the maximum num-
ber of generations that the GAP should be run

GNS Generation number for sequences (GAS). It shows the maximum number of
generations that the GAS should be run

IT Maximum number of iterations the algorithm (BGA) can continue. It is
compared with NS in each iteration

Np Number of processors
NS Number of iterations that GAP and GAS are run. It is equal to NSS + NSP
NSP Number of iterations that the GAP is run in the current call. After calling

GAP, it should be ceased based on two stopping criteria. If it stops because
it achieves GNP iterations, the NSP will be equal to GNP but if it terminates
because it didnot improve for the last SGNP iterations, the NSP is not equal
to GNP

NSS Number of iterations that the GAS is run in the current call. After calling
GAS, it should be ceased after some iterations based on two stopping criteria.
If it stops because it achieves GNS iterations, the NSS will be equal to GNS
but if it terminates because it didnot improve for the last SGNS iterations,
the NSS is not equal to GNS

Nt Number of tasks
PcP Crossover rate for GAP
PcS Crossover rate for GAS
PmP Mutation rate for GAP
PmS Mutation rate for GAS
PopP Population of processor arrays. Indeed, this is a pool of processor numbers.

Each element in this population contains an array which its length is equal
to the number of tasks

PopS Population of sequences. In fact, this is a pool of task sequences
PsP Population size for GAP. In fact, PsP is an integer that exhibits the number

of chromosomes in GAP
PsS Population size for GAS. In fact, PsS is an integer that exhibits the number

of chromosomes in GAS
SGNP Successive generation number for processor arrays (GAP). In fact it shows

the maximum successive number of generations that the GAP can continue
evolving without any improvement

SGNS Successive generation number for sequences (GAS). In fact it shows the max-
imum successive number of generations that the GAS can continue evolving
without any improvement

SIT Number of successive iterations the algorithm (BGA) can continue without
improvement

References

1. Ahmad, I., Dhodhi, M.K.: Multiprocessor scheduling in a genetic paradigm. Parallel Comput. 22,
395–406 (1996). doi:10.1016/0167-8191(95)00068-2

2. Ahmad, I., Kwok, Y.: On exploiting task duplication in parallel program scheduling. IEEE Trans.
Parallel Distrib. Syst. 9(9), 872–892 (1998). doi:10.1109/71.722221

123

http://dx.doi.org/10.1016/0167-8191(95)00068-2
http://dx.doi.org/10.1109/71.722221

486 Int J Parallel Prog (2009) 37:462–487

3. Bonyadi, M.R., Rahimi Azghadi, M., Hashemi, S., Ebrahimi Moghadam, M.: A hybrid multiprocessor
task scheduling method based on immune genetic algorithm. In: Qshine 2008 Workshop on Artificial
Intelligence in Grid Computing (2008). doi:10.4108/ICST.QSHINE2008.4263

4. Braun, T.D., Siegel, H.J., Beck, N.: A comparison of eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed computing systems. J. Parallel Distrib. Comput. 61,
810–837 (2001). doi:10.1006/jpdc.2000.1714

5. Chen, H.,Cheng, A.K.: Applying ant colony optimization to the partitioned scheduling problem for
heterogeneous multiprocessors. Special Issue: IEEE RTAS 2005 Work-in-Progress, vol. 2, issue 2, pp.
11–14 (2005)

6. Corbalan, J., Martorell, X., Labarta, J.: Performance-driven processor allocation. IEEE Trans. Parallel
Distrib. Syst. 16(7), 599–611 (2005). doi:10.1109/TPDS.2005.85

7. Dhodhi, M.K., Ahmad, I.: A multiprocessor scheduling scheme using problem-space genetic algo-
rithms. In: Proceedings of IEEE International Conference on Evolutionary Computution, pp. 214–219
(1995)

8. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computation, 1st edn. Springer, Natural Com-
puting Series (2003)

9. Ercan, M.F.: A hybrid particle swarm optimization approach for scheduling flow-shops with multipro-
cessor tasks. In: International Conference on Information Science and Security, pp. 13–16 (2008)

10. Hamidzadeh, B., Kit, L.Y., Lilja, D.J.: Dynamic task scheduling using online optimization. IEEE Trans.
Parallel Distrib. Syst. 11(11), 1151–1162 (2000). doi:10.1109/71.888636

11. Holland, J.H.: Adaption in Natural and Artificial Systems. University of Michigan Press, Ann
Arbor (1975)

12. Hou, E.S.H., Ansari, N., Hong, R.: A genetic algorithm for multiprocessor scheduling. IEEE Trans.
Parallel Distrib. Syst. 5(2), 113–120 (1994). doi:10.1109/71.265940

13. Hwang, J., Chow, Y., Anger, A., Lee, C.: Scheduling precedence graphs in systems with inter-processor
communication times. SIAM J. Comput. 8(2), 244–257 (1989). doi:10.1137/0218016

14. Hwang, R., Gen, M., Katayama, H.: A comparison of multiprocessor task scheduling algorithms with
communication costs. Comput. Oper. Res. 35, 976–993 (2008). doi:10.1016/j.cor.2006.05.013

15. Hwang, R.K., Gen, M.: Multiprocessor scheduling using genetic algorithm with priority-based coding.
In: Proceedings of IEEJ Conference on Electronics, Information and Systems (2004)

16. Jelodar, M.S., Fakhraie, S.N., Montazeri, F., Fakhraie, S.M., Ahmadabadi, M.N.: A representation for
genetic-algorithm-based multiprocessor task scheduling. In: IEEE Congress on Evolutionary Compu-
tation, pp. 16–21 (2006)

17. Kafil, M., Ahmad, I.: Optimal task assignment in heterogeneous distributed computing systems. IEEE
Concurr. 6, 42–51 (1998). doi:10.1109/4434.708255

18. Kasahara, H., Narita, S.: Practical multiprocessing scheduling algorithms for efficient parallel process-
ing. IEEE Trans. Comput. 33, 1023–1029 (1984). doi:10.1109/TC.1984.1676376

19. Kermia, O., Sorel, Y.: A rapid heuristic for scheduling non-preemptive dependent periodic tasks onto
multiprocessor. ISCA PDCS, pp. 1–6 (2007)

20. Kruatrachue, B., Lewis, T.G.: Duplication scheduling heuristic, a new precedence task scheduler for
parallel systems. Technical Report, Oregon State University (1987)

21. Lee, Y.H., Chen, C.: A Modified genetic algorithm for task scheduling in multi processor systems. In:
The Ninth Workshop on Compiler Techniques for High Performance Computing (2003)

22. Man, L., Yang, L.T.: Hybrid genetic algorithms for scheduling partially ordered tasks in a multi-proces-
sor environment. In: 6th International Conference on Real-Time Computing Systems and Applications
(RTCSA ‘99), pp. 382–387 (1999)

23. Mayez, A.: Al-Mouhamed, lower bound on the number of processors and time for scheduling pre-
cedence graphs with communication costs. IEEE Trans. Softw. Eng. 16(12), 1390–1401 (1990). doi:
10.1109/32.62447

24. Meijer, M.: Scheduling parallel processes using genetic algorithms. Master thesis in the field of artificial
intelligence, University of Amsterdam, February 2004

25. Montazeri, F., Salmani-Jelodar, M., Fakhraie, S.N., Fakhraie, S.M.: Evolutionary multiprocessor task
scheduling. In: Proceedings of the International Symposium on Parallel Computing in Electrical Engi-
neering (PARELEC’06) (2006)

26. Musnjak, M., Golub, M.: Using a set of elite individuals in a genetic algorithm. In: 26th International
Conference on Information Technology Interfaces, pp. 531–536 (2004)

123

http://dx.doi.org/10.4108/ICST.QSHINE2008.4263
http://dx.doi.org/10.1006/jpdc.2000.1714
http://dx.doi.org/10.1109/TPDS.2005.85
http://dx.doi.org/10.1109/71.888636
http://dx.doi.org/10.1109/71.265940
http://dx.doi.org/10.1137/0218016
http://dx.doi.org/10.1016/j.cor.2006.05.013
http://dx.doi.org/10.1109/4434.708255
http://dx.doi.org/10.1109/TC.1984.1676376
http://dx.doi.org/10.1109/32.62447

Int J Parallel Prog (2009) 37:462–487 487

27. Nissanke, N., Leulseged, A., Chillara, S.: Probabilistic performance analysis in multiprocessor sched-
uling. J. Comput. Contr. Eng. 13(4), 171–179 (2002). doi:10.1049/cce:20020403

28. Nossal, R.: An evolutionary approach to multiprocessor scheduling of dependent tasks. Special Issue:
Bio-inspired Solutions to Parallel Processing Problems, pp. 383–392 (1998)

29. Oguz, C., Ercan, M.F.: A genetic algorithm for multi-layer multiprocessor task scheduling. In:
TENCON 2004, IEEE Region 10 Conference, vol. 2, pp. 168–170 (2004)

30. Page, A.J., Naughton, T.J.: Dynamic task scheduling using genetic algorithms for heterogeneous dis-
tributed computing. In: Proceedings of the 19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS) (2005)

31. Qu, Y., Soininen, J.P., Nurmi, J.: A genetic algorithm for scheduling tasks onto dynamically re-
configurable hardware. In: IEEE International Symposium on Circuits and Systems (ISCAS 2007),
pp. 161–164 (2007)

32. Rechenberg, I.: Cybernetic solution path of an experimental problem. Royal Aircraft Establishment,
Library Translation No. 1122, August 1965

33. Rebreyend, P., Sandnes, F.E., Megson, M.: Static Multiprocessor Task Graph Scheduling in the Genetic
Paradigm: A Comparison of Genotype Representations, Parallel Emergent and Distributed Architec-
ture Laboratory (PEDAL). The University of Reading, UK (1998)

34. Ricardo, C.: Corrga, Afonso Ferreira and Pascal Rebreyend, scheduling multiprocessor tasks with
genetic algorithm. IEEE Trans. Parallel Distrib. Syst. 10(8), 825–837 (1999). doi:10.1109/71.790600

35. Rinehart, M., Kianzad, V., Bhattacharyya, S.S.: A modular genetic algorithm for scheduling task
graphs. Technical Report UMIACS-TR-2003-66. Institute for Advanced Computer Studies, Univer-
sity of Maryland at College Park (June) (2003)

36. Ritchie, G.: Static multi-processor scheduling with ant colony optimization & local search. Master of
science thesis, artificial intelligence, University of Edinburgh (2003)

37. Salleh, S.,Zomaya, A.Y.: Multiprocessor scheduling using mean-field annealing. Special Issue: Bio-
inspired Solutions to Parallel Processing Problems, vol. 14, issue 5–6, pp. 393–408

38. Sivanandam, S.N., Visalakshi, P., Bhuvaneswari, A.: Multiprocessor scheduling using hybrid particle
swarm optimization with dynamically varying inertia. Int. J. Comput. Sci. Appl. 4(3), 95–106 (2007)

39. Sutar, S., Sawant, J., Jadhav, J.: Task scheduling for multiprocessor systems using memetic algorithms.
In: 4th International Working Conference Performance Modeling and Evaluation of Heterogeneous
Networks (HET-NETs ‘06) (2006)

40. Standard Task Graph Set is available online at: http://www.kasahara.elec.waseda.ac.jp/schedule
41. Thanalapati, T., Dandamudi, S.: An efficient adaptive scheduling scheme for distributed memory mul-

ticomputer. IEEE Trans. Parallel Distrib. Syst. 12(7), 758–768 (2001). doi:10.1109/71.940749
42. Tsuchiya, T., Osada, T., Kikuno, T.: Genetics-based multiprocessor scheduling using task duplica-

tion. J. Microprocess. Microsyst. 22(3–4), 197–207 (1998)
43. Wu, A.S., Yu, H., Jin, S., Lin, K.-C., Schiavone, G.: An incremental genetic algorithm approach to

multiprocessor scheduling. IEEE Trans. Parallel Distrib. Syst. 15(9), 824–834 (2004). doi:10.1109/
TPDS.2004.38

44. Wu, M.Y., Gajski, D.D.: Hypertool A programming aid for message-passing systems. IEEE Trans.
Parallel Distrib. Syst. 1(3), 330–343 (1990). doi:10.1109/71.80160

45. Wang, P.C., Korfhage, W.: Process scheduling using genetic algorithms. In: 7th IEEE Symposium
Parallel and Distributed Processing, Texas, San Antonio, pp. 638–641, October 1995

46. Yang, T., Gerasoulis, A.: DSC: scheduling parallel tasks on an unbounded number of processors. IEEE
Trans. Parallel Distrib. Syst. 5(9), 951–967 (1994)

47. Yo-Kwong, K.: Ishfaq Ahmad, dynamic critical path scheduling: an effective technique for allocating
task graphs to multiprocessors. IEEE Trans. Parallel Distrib. Syst. 7(5), 506–521 (1996). doi:10.1109/
71.503776

48. Yue, K., Lilja, D.J.: Designing multiprocessor scheduling algorithms using a distributed genetic algo-
rithm system. Technical Report No. HPPC-96-03, University of Minnesota, High performance Parallel
Computing Research Group, May 1996

49. Zhong, Y.W., Yang, J.G.: A genetic algorithm for tasks scheduling in parallel multiprocessor sys-
tems. In: Proceedings of the Second International Conference on Machine Learning and Cybernetics,
pp. 1785–1790 (2003)

50. Zomaya, A.Y., Teh, Y.H.: Observations on using genetic algorithms for dynamic load-balancing. IEEE
Trans. Parallel Distrib. Syst. 12(9), 899–911 (2001). doi:10.1109/71.954620

51. http://faculties.sbu.ac.ir/~moghadam/STG

123

http://dx.doi.org/10.1049/cce:20020403
http://dx.doi.org/10.1109/71.790600
http://www.kasahara.elec.waseda.ac.jp/schedule
http://dx.doi.org/10.1109/71.940749
http://dx.doi.org/10.1109/TPDS.2004.38
http://dx.doi.org/10.1109/TPDS.2004.38
http://dx.doi.org/10.1109/71.80160
http://dx.doi.org/10.1109/71.503776
http://dx.doi.org/10.1109/71.503776
http://dx.doi.org/10.1109/71.954620
http://faculties.sbu.ac.ir/~moghadam/STG

	A Bipartite Genetic Algorithm for Multi-processor Task Scheduling
	Abstract
	1 Introduction
	2 Related Works
	3 Proposed Method
	3.1 The GAS: A GA to Find the Best Match Task Sequences
	3.2 The GAP: A GA for Finding the Best Match Processor Arrays
	3.3 The Proposed BGA

	4 Experiments and Results
	4.1 Experiment Environment
	4.2 Parameter Setting
	4.3 Comparisons with Well Known Heuristics
	4.4 Comparisons with GA Based Algorithms

	5 Conclusions and Future Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

