
Int J Parallel Prog (2009) 37:292–305
DOI 10.1007/s10766-009-0101-1

A Proposal to Extend the OpenMP Tasking Model
with Dependent Tasks

Alejandro Duran · Roger Ferrer ·
Eduard Ayguadé · Rosa M. Badia ·
Jesus Labarta

Received: 4 March 2009 / Accepted: 7 April 2009 / Published online: 25 April 2009
© Springer Science+Business Media, LLC 2009

Abstract Tasking in OpenMP 3.0 has been conceived to handle the dynamic gen-
eration of unstructured parallelism. New directives have been added allowing the user
to identify units of independent work (tasks) and to define points to wait for the com-
pletion of tasks (task barriers). In this document we propose extensions to allow the
runtime detection of dependencies between generated tasks, broading the range of
applications that can benefit from tasking or improving the performance when load
balancing or locality are critical issues for performance. The proposed extensions are
evaluated on a SGI Altix multiprocessor architecture using a couple of small applica-
tions and a prototype runtime system implementation.

Keywords OpenMP · Task parallelism · Programming models ·
Tasks synchronization

A. Duran (B) · R. Ferrer · E. Ayguadé · R. M. Badia · J. Labarta
Computer Sciences Department, Barcelona Supercomputing Center, Jordi Girona, 31, Barcelona, Spain
e-mail: alex.duran@bsc.es

R. Ferrer
e-mail: roger.ferrer@bsc.es

E. Ayguadé
e-mail: eduard.ayguade@bsc.es

R. M. Badia
e-mail: rosa.m.badia@bsc.es

J. Labarta
e-mail: jesus.labarta@bsc.es

E. Ayguadé · J. Labarta
Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya,
Jordi Girona, 1–3, Barcelona, Spain

R. M. Badia
Consejo Superior de Investigaciones Cientificas, Barcelona, Spain

123

Int J Parallel Prog (2009) 37:292–305 293

1 Introduction

OpenMP grew out of the need to standardize the directive languages of several ven-
dors in the 1990s. It was structured around parallel loops and was meant to handle
dense numerical applications. The simplicity of its original interface, the use of a
shared memory model, and the fact that the parallelism of a program is expressed
in directives that are loosely-coupled to the code, all have helped OpenMP become
well-accepted today.

The latest OpenMP 3.0 specification released [1] includes tasking, which has been
conceived to handle the dynamic generation of unstructured parallelism. This allows
programmers to parallelize program structures like while loops and recursive func-
tions more easily and efficiently. When a thread in a parallel team encounters a task
directive, the data environment is captured. That environment, together with the code
represented by the structured block, constitutes the generated task. The data-sharing
attribute clauses private, firstprivate, and shared determine whether vari-
ables are private to the data environment, copied to the data environment and made
private, or shared with the thread generating the task, respectively. The task may be
executed immediately or may be queued for execution. All tasks created by a team in
a parallel region are completed at the next barrier. It is also possible to wait for all
tasks generated by a given task (whether implicit or explicit) using the taskwait
directive.

The Intel work-queueing model [2] was an early attempt to add dynamic genera-
tion of tasks to OpenMP. This proprietary extension to OpenMP allowed hierarchical
generation of tasks by nestingtaskq constructs. Synchronization of descendant tasks
was controlled by means of implicit barriers at the end of taskq constructs. Tasks
have to be defined in the lexical extent of a taskq construct. The Nanos group at
UPC proposed dynamic sections as an extension to the standard sections con-
struct to allow dynamic generation of tasks [3]. Direct nesting of section blocks
was allowed, but hierarchical synchronization of tasks was only possible by nesting
parallel regions.

An early approach to include dependences in programming models that exploit
task-level parallelism is Jade [4]. Programs in Jade are written standard serial, imper-
ative language, and Jade constructs are used to declare how parts of the program
access data. Jade programmers must specify three things: how data is decomposed
into the atomic units that the program will access, how to decompose a sequential
program into tasks, and a description of how each task will access data when it runs,
indicating if a task reads or writes a given data. Given this information, the imple-
mentation automatically extracts and exploits the task-level concurrency present in
the computation.

SMP superscalar (SMPSs) [5] has recently been proposed as a task based parallel
programming model. Similarly to OpenMP 3.0 the code is annotated with pragmas,
although in this case the pragmas annotate when a function is a task and inline anno-
tation is not allowed. Another difference is that the pragmas indicate the direction
(input, output, or inout) of the functions’ parameters with the objective of giv-
ing hints to the runtime in order to discover the actual tasks’ data dependencies. SMPSs
runtime also implements data renaming, allowing to eliminate false dependencies in

123

294 Int J Parallel Prog (2009) 37:292–305

the task dependency graph. The SuperMatrix [6] approach is similar in motivation
and in technique to SMPSs. However, SuperMatrix is exclusively focused on linear
algebra algorithms. No pragmas or specific programming model is defined, since the
runtime directly considers for parallelization a set of linear algebra routines. Superm-
atrix also implements a task dependency analysis, but in this case data renaming is not
considered.

There have been several attempts to include dependences in the scope of sections
in OpenMP. The Nanos group proposed the pred and succ constructs to specify
precedence relations among statically named sections in OpenMP [7]. Authors in
[8] also proposed an extension to define a name for section and to specify that a
section dependson another named section.

2 Motivation

Task parallelism in OpenMP 3.0 gives programmers a way to express patterns of con-
currency that do not match the worksharing constructs defined in OpenMP 2.5. The
extension in 3.0 addresses common operations like complex, possibly recursive, data
structure traversal, and situations which could easily cause load imbalance. However
tasking, as currently proposed in 3.0, may still be too rigid too express all the parallel-
ism available in some applications, specially when we want to scale to systems with
large number of processors.

To motivate the proposal in this paper we use one of the examples [9] that was used
to test the appropriateness and performance of the tasking proposal in OpenMP 3.0:
the sparseLU kernel shown in Fig. 1. This kernel computes an LU matrix factorization
on a blocked matrix. The matrix is organized as a hypermatrix with pointers to the
actual blocks of data (which may not be allocated due to the sparsity of the original
matrix). In this kernel, once lu0 is computed (line 14), all instances of fwd and bdiv
can be executed in parallel (lines 18 and 22, respectively). Each pair of instances fwd
and bdiv allow the execution of an instance of bmod (line 27). Across consecutive
iterations of the kk loop there are dependences between each instance of bmod and
instances of lu0, fwd, bdiv and bmod in the next iteration.

With these data dependences in mind, the programmer could use traditional work-
sharing directives in OpenMP to partially exploit the parallelism available in the kernel,
for example using for to distribute the work in the loops on lines 16 and 20. It would
be necessary to apply loop distribution to isolate the loop that executes the multiple
instances of function bdiv and exploit the parallelism that exist among the instances
of functions fwd and bdiv. Due to the sparseness of the matrix, a lot of imbalance
may exist, forcing the programmer to use dynamic scheduling of the iterations to have
good load balance. The resulting code is shown in Fig. 2.

Using the tasking execution model proposed in 3.0, the code restructuring is quite
similar, as shown in Fig. 3; however tasks allow to only create work for non-empty
matrix blocks. We also create smaller units of work in thebmod phase with an overhead
similar to the outer loop parallelization. This reduces the load imbalance problems.
Notice that all threads are involved in task generation due to the combination of the
for work distributor and the task generator. The nowait clause in line 9 allows

123

Int J Parallel Prog (2009) 37:292–305 295

Fig. 1 Main code of the sequential SparseLU kernel

Fig. 2 Main code of the OpenMP 2.5 SparseLU kernel

123

296 Int J Parallel Prog (2009) 37:292–305

Fig. 3 Main code of SparseLU with OpenMP 3.0 tasks

the parallel execution of fwd and bdiv task instances. The implicit barrier at the end
of loop in line 15 forces the dependencies between pairs of fwd/bdiv with bmod
inside a single kk iteration. Similarly, the implicit barrier at the end of loop in line 22
forces the dependencies across consecutive iterations of loop kk.

As we previously pointed, there exists more parallelism in this kernel that cannot
be exploited with the current task definitions: (1) parallelism that exists between tasks
created in lines 13 (fwd) and 19 (bdiv) and tasks created in line 30 (bmod) inside
the same kk iteration; and (2) parallelism that exists across consecutive iterations of
the kk loop. Figure 4 shows the dependences among nodes in the task graph. The
extensions proposed in this paper intend to exploit this parallelism.

3 Proposed OpenMP Extensions

In this section we propose a set of architecture independent extensions to the OpenMP
3.0 tasking model to express dependencies between tasks. In Sect. 3.6 we comment how
the basic proposal could be further extended to handle other target architectures, such
as heterogeneous multicores with local memories (e.g. the Cell/B.E. architecture [10]).

3.1 Extension to the Task Construct

Tasks are the most important new feature of OpenMP 3.0. A programmer can define
deferrable units of work, called tasks, and later ensure that all the tasks defined up

123

Int J Parallel Prog (2009) 37:292–305 297

Fig. 4 Dependence graph among tasks in SparseLU

to some point have finished. Tasks are created in the context of a team of threads. In
OpenMP such team of threads is created with the parallel construct (an implicit
team with just one thread is created at the beginning of the parallel application). A
task is created when the code reaches the task construct, defined as follows:

#pragma omp task [clause-list]
structured-block

OpenMP defines several clauses that can be used in the task construct. They are
shared, private, firstprivate and untied. The first three are used for
setting data sharing attributes of variables in the task body; the last one specifies that
a the task can be resumed by a different thread after a possible task switching point.
Data sharing clauses have the following syntax:

• shared (variable-list)
• firstprivate (variable-list)
• private (variable-list)

where variable-list is a list of identifiers. Naming a variable inside a data sharing clause
explicitly sets the data sharing attribute for the variable inside the task construct. Ref-
erences in the task construct to variables whose data sharing attribute is private or
firstprivate will not refer to the original variable but to a private storage of the task.
Firstprivate ones, in addition, will have such storage initialized with the value of the

123

298 Int J Parallel Prog (2009) 37:292–305

original variable when the program execution reaches the task construct. References
to variables whose data sharing attribute is shared will refer to the original variable.

Our proposal extends the task construct with some additional clauses that are
used to derive dependence relationships among tasks. When a task requires a previ-
ously computed variable we say that it has an input dependence and we will express
it with the input clause. Similarly, when a task is generating a variable that might
be required later by another task we say that it has an output dependence and we use
an output clause to express such dependence. A clause inout exists to express
the case when a task requires a variable and generates a new value for it, meaning an
input–output dependence. The syntax of these clauses is shown below:

• input(data-reference-list)
• output(data-reference-list)
• inout(data-reference-list)

Dependences are expressed by means of data-reference-lists, which are a superset of
a variable-list. A data-reference in such a list can contain a variable identifier but also
references to subobjects. References to subobjects include array element references
(like a[4]), array sections (like a[3:6], defined below), field references (like a.b)
and shaping expressions (like [10][20] p, defined below).

Since C does not have any way to express ranges of an array, we have borrowed the
array-section syntax from Fortran 90. These array sections, with syntax a[e1:e2],
designate all elements from a[e1] to a[e2] (both ends are included and e1 shall
yield a lower or equal value than e2). Multidimensional arrays are eligible for mul-
tidimensional array sections (like a[1:2][3:4]). While not technically naming a
subobject, non-multidimensional array section syntax can also be applied to pointers
(i.e.: pA[1:2] is valid for int *pA, but note that pB[1:2][3:4] is invalid for
int **pB, also note that pC[1:2][3:4] is valid for int (*pC)[N] and so it is
pD[1:2][3:4][5:6] for int (*pD)[N][M]). For syntactic economy a[:x]
is the same as a[0:x] and, only for arrays of N elements, a[x:] and a[:] mean
respectively a[x:N-1] and a[0:N-1]. Designating an array (i.e.: a) in a data
reference list, with no array section nor array subscript, is equivalent to the whole
array-section (i.e.: a[:]).

Shaping expressions are a sequence of dimensions, enclosed in square brackets, and
a data reference, that should refer to a pointer type (like [10][20] p). These shap-
ing expressions are aimed at those scenarios where an array-like structure has been
allocated but only a pointer to its initial element is available. Shaping expressions goal
is returning back such unavailable structural information to the compiler.

3.2 Extension to the Tasking Execution Model

Explicit tasks are dynamically created and the memory region specifiers in data-ref-
erence-list are used to build a dependence task graph:

• Data references specified in input or inout clauses are checked against the data
references specified in output or inout clauses of all tasks, in the scope of the

123

Int J Parallel Prog (2009) 37:292–305 299

Fig. 5 Example with dependent tasks

same parent task, in execution or pending to be executed. If there is a match, a true
dependence is added between both tasks.

• Data references specified in the output or inout clauses are checked against
data references specified in input, output or inout clauses of all tasks, in
the scope of the same parent task, in execution or pending to be executed. If there
is a match, a false dependence appears. This dependence could be eliminated by
dynamically renaming the memory region specified in data reference. Renaming is
an optional feature of the runtime which can be selectively activated to increase the
potential parallelism in the task graph.

• A variable in a shared data clause, but not in a input, output or inout
clause, indicates that the variable is accessed inside the task but it is not affected
by any data dependence in the current scope of execution (or is protected by using
another mechanism).

• A task is ready for execution once all its dependencies in the task graph are honored.

Figure 5 shows an example with three tasks. Task taskA generates values for
all the elements of array a. Task taskB has an input dependence due to this gener-
ated array and generates the value of the scalar y. This scalar is an input dependence
to task taskC. A valid execution order for these three tasks involves running first
taskA, then taskB and later taskC. The result printed in task taskC should be
1275.

Figure 6 shows another simple example of dependent tasks in which scalar variables
are the subject of dependence detection. In this example, taskB and taskC can be
executed in parallel if the false dependence created by input(x) in taskB and
inout(x) in taskC is removed. In this case, even if taskC completes execution
before taskB starts, renaming should ensure that taskB receives the value of x
produced by taskA. If the runtime decides not to do renaming (or it is unable to do
it), taskC has to be executed once taskB finishes. TaskD should always print 4.

As previously specified, dependencies are detected inside the scope of the same
parent task. Assume the code excerpt shown in Fig. 7. In this case the programmer

123

300 Int J Parallel Prog (2009) 37:292–305

Fig. 6 Another example with dependent tasks

Fig. 7 Incorrect example with nested tasks

cannot expect that taskC waits for the termination of taskA, which would allow
the overlapped execution of taskA with codeB.1 inside taskB. And the same
with taskD and taskE. To ensure this the programmer needs to insert input(x)
and output(y) in taskB, which precludes the exploitation of any parallelism of
taskA and codeB.1, and codeB.2 and taskE.

Implicit tasks created in parallel regions are assumed to be totally independent.
It is not allowed to use input, output and inout in a parallel construct.

3.3 Additional Clause and Execution Model For taskwait

The execution of a taskwait has to force the write-back to memory of any pos-
sible data renaming that has been dynamically introduced by the runtime system to
eliminate false dependencies.

123

Int J Parallel Prog (2009) 37:292–305 301

Fig. 8 Example using the extended taskwait pragma

In this paper we also propose to extend the taskwait construct as follows

#pragma omp taskwait on(data-reference-list)

in order to wait for the termination of those tasks whose output or inout match
with data-reference-list.

For example, in code shown in Fig. 8, the programmer needs to insert the
taskwait pragma in order to ensure that the next statement reads the appropri-
ate value for variable x, which is generated by task A. However, task B can run
in parallel with the code after the taskwait pragma.

3.4 SparseLU Example

Figure 9 shows the SparseLU kernel (shown in Fig. 1) programmed with the exten-
sions proposed in this paper. The programmer identifies four tasks that correspond to
the invocation of functions lu0, fwd, bdiv and bmod. For example, for function
bmod the programmer is specifying that the first and second arguments (row and
col) are input parameters (they are only read during the execution of the function)
and that the third argument (inner) is inout since it is read and written during
the execution of the function. Notice that the annotations are placed on the original
sequential version, with no transformations applied to allow the specification of the
inherent parallelism available.

3.5 Multisort Example

Figure 10 shows the parallelization of function cilksort in Multisort. Dependen-
cies are expressed between the four instances of function cilksort and the two
first instances of cilkmerge. A final dependence between these two instances of
cilkmerge and the final instance of cilkmerge is also required.

3.6 Data Movement in Architectures with Local Memories

The information provided in the input, output and inout clauses can be used
by the runtime to move data physical address spaces of the processors executing the

123

302 Int J Parallel Prog (2009) 37:292–305

Fig. 9 Main code of SparseLU with the proposed dependent tasks

threads (tasks) in the team. For example, in a Cell-like architecture, the memory region
specifiers can be used to move data between main memory and the local memories
in the SPE. The implementation of the SMPSs programming model for Cell (named
CellSs [11]) does it. In addition, the information provided in these clauses can be used
to design locality-aware task scheduling policies. For this kind of architectures two
additional clauses can be used to partially unspecify dependencies or movement:

• nodep(data-reference-list)
• nomove(data-reference-list)

Clause nodep specifies that the memory data reference specified should not be used
to build the task graph, so that the programmer is responsible to enforce any data
dependence or to avoid any data race in the access to memory in that region. Clause
nomove specifies that the runtime should not take care of moving data between phys-
ical address spaces of the processors executing the threads in the team.

4 Preliminary Evaluation

In order to test the proposal in terms of expressiveness and performance, we have
developed the StarSs runtime for SMP (named SMPSs) and used the Mercurium com-
piler (source-to-source restructuring tool) [3]. For comparison purposes we also use
the reference implementation [12] of the tasking proposal in OpenMP 3.0 based on the
Nanos runtime and the same source-to-source restructuring tool, and the workqueue-
ing implementation available in the Intel compiler. In the final version of the paper, if
accepted for publication in the special issue, authors will also include an evaluation

123

Int J Parallel Prog (2009) 37:292–305 303

Fig. 10 Cilksort example with the proposed dependent tasks

of the proposal implemented on the same prototype tasking implementation for
OpenMP 3.0.

We evaluate how the proposed extension improves the scalability of the SparseLU
benchmark that has been used to motivate the proposal. All the executions have been
done on an SGI Altix 4700 using up to 32 processors in a cpuset (to avoid interference
with other running applications).

Figure 11 shows the speed-up with respect to the sequential execution time. Notice
that up to 16 threads the three versions (taskq, task and SMPSs) behave similarly.
When more threads are used, load unbalancing starts to be more noticeable and the
overheads of tasking are not compensated with the parallel execution. Task barriers
between instances of fwd/bdiv and bmod phases (inside iteration kk) and between
instances of bmod and fwd/bdiv phases (in consecutive iterations of kk introduce
this load unbalance and overheads. However, SMPSs is able to overcome these two
limitations by overlapping tasks in these computational phases inside and across iter-
ations of the kk loop.

The implementation of SMPSs has overheads. Table 1 shows a breakdown of the
execution time of the SMPSs version of SparseLU. The table shows the percentage of
time that each thread is in each phase (worker threads’ information has been summa-
rized due to space limitations). For this example, the main thread invests around the

123

304 Int J Parallel Prog (2009) 37:292–305

 0

 5

 10

 15

 20

 25

1 2 4 6 8 10 12 14 16 20 24 28 32

S
pe

ed
-u

p

of threads

sparseLU

omp-tasks

taskq
smpss

Fig. 11 Speed-up of taskq, task and SMPSs for SparseLU

Table 1 Breakdown of SMPSs overheads for the SparseLU with 16 threads

Thread phase Main thread (%) Max worker Min worker Avg. worker
th. (%) th. (%) th. (%)

User code 5.12

Initialisation 0.13

Adding task 10.51

Remove tasks 19.67 2.41 0.86 1.46

Waiting for tasks 0.46 1.95 1.04 1.47

Getting task descr. 0.36 1.28 0.56 1.10

Tasks’ execution 63.76 97.43 94.97 95.97

30% of its time in the maintenance of the task graph, and around 65% of its time is
left for execution of tasks. The worker threads also suffer of some overheads (around
5%), not only due to the maintenance of the task graph but also to the time the threads
are waiting for tasks ready to be executed and the time invested in getting the tasks
description. Depending on the application and on the number of threads, these over-
heads will have more or less impact in the performance, but we are looking for more
efficient implementations of the task graph to reduce them.

5 Conclusions

This paper proposes an extension to the OpenMP 3.0 tasking model: data dependent
tasks. Data dependencies among tasks are indirectly expressed by specifying the input
and output direction of the arguments as well as the memory range used. This is a key
difference with respect to previous proposals that were based on the specification of
named tasks and dependson relationships.

123

Int J Parallel Prog (2009) 37:292–305 305

The paper uses one of the application kernels used to demonstrate the expressive-
ness of tasking in OpenMP 3.0: SparseLU. We motivate the proposal with this kernel
and show how its scalability improves with a prototype implementation of the proposal
(SMPSs). We also use a second example (Cilksort) to illustrate the use of the proposed
extensions.

The possibility of expressing input and output direction for the data used by the
task provides extra benefits for other multicore architectures, such as for example the
Cell/B.E. processor [10] (Cell Superscalar [11]). In this case, the information provided
by the programmer allows the runtime system to transparently inject data movement
(DMA transfers) between SPEs or between SPEs and main memory.

Acknowledgments The Programming Models group at BSC-UPC is supported by the Spanish Ministry
of Science and Innovation (contract no. TIN2007-60625), the European Commission in the context of the
SARC project (contract no. 27648) and the HiPEAC Network of Excellence (contract no. IST-004408),
and the MareIncognito project under the BSC-IBM collaboration agreement. We are thankful to Josep M.
Perez from BSC-CNS for his comments to initial versions of this paper.

References

1. OpenMP Architecture Review Board. OpenMP 3.0 Specification. http://www.openmp.org, May 2008
2. Shah, S., Haab, G., Petersen, P., Throop, J.: Flexible control structures for parallelism in OpenMP. In

1st European Workshop on OpenMP, September 1999
3. Balart, J., Duran, A., Gonzàlez, M., Martorell, X., Ayguadé, E. Labarta, J.: Nanos mercurium: a research

compiler for openMP. In Proceedings of the European Workshop on OpenMP 2004, October 2004
4. Rinard, M.C., Scales, D.J., Lam, M.S.: Jade: A high-level, machine-independent language for parallel

programming. Computer 26(6), 28–38 (1993)
5. Perez, J.M., Badia, R.M., Labarta, J.: A dependency-aware task-based programming environment for

multi-core architectures. In IEEE Cluster 2008 (2008)
6. Chan, E., van Zee, F.G., Quintana-Ortí, E.S., Quintana-Ortí, G., van de Geijn, R.: Satisfying your

dependencies with supermatrix. In IEEE International Conference on Cluster 2007 (2007)
7. Gonzàlez, M., Ayguadé, E., Martorell, X., Labarta, J.: Exploiting pipelined executions in OpenMP. In

32nd Annual International Conference on Parallel Processing (ICPP’03), October 2003
8. Sinnen, O., Pe, J., Kozlov, A.: Support for fine grained dependent tasks in OpenMP. In 3rd International

Workshop on OpenMP (IWOMP’07) (2007)
9. Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Unnikrishnan, P., Zhang, G.:

A proposal for task parallelism in OpenMP. In 3rd International Workshop on OpenMP (IWOMP’07)
(2007)

10. Pham, D., Asano, S., Bolliger, M., Day, M.N., Hofstee, H.P., Johns, C., Kahle, J., et al.: The design
and implementation of a first-generation cell processor. In IEEE International Solid-State Circuits
Conference (ISSCC 2005) (2005)

11. Bellens, P., Perez, J.M., Badia, R.M., Labarta, J.: CellSs: a programming model for the Cell BE archi-
tecture. In Proceedings of the ACM/IEEE SC 2006 Conference, November 2006

12. Ayguadé, E., Duran, A., Hoeflinger, J., Massaioli, F., Teruel, X.: An experimental evaluation of the
new openMP tasking model. In Proceedings of the 20th International Workshop on Languages and
Compilers for Parallel Computing, October 2007

123

http://www.openmp.org

	A Proposal to Extend the OpenMP Tasking Model with Dependent Tasks
	Abstract
	1 Introduction
	2 Motivation
	3 Proposed OpenMP Extensions
	3.1 Extension to the Task Construct
	3.2 Extension to the Tasking Execution Model
	3.3 Additional Clause and Execution Model For taskwait
	3.4 SparseLU Example
	3.5 Multisort Example
	3.6 Data Movement in Architectures with Local Memories

	4 Preliminary Evaluation
	5 Conclusions
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

