
Int J Parallel Prog (2009) 37:306–323
DOI 10.1007/s10766-009-0098-5

Parallelism and Scalability in an Image Processing
Application

Morten S. Rasmussen · Matthias B. Stuart ·
Sven Karlsson

Received: 10 March 2009 / Accepted: 31 March 2009 / Published online: 23 April 2009
© Springer Science+Business Media, LLC 2009

Abstract The recent trends in processor architecture show that parallel processing is
moving into new areas of computing in the form of many-core desktop processors and
multi-processor system-on-chips. This means that parallel processing is required in
application areas that traditionally have not used parallel programs. This paper inves-
tigates parallelism and scalability of an embedded image processing application. The
major challenges faced when parallelizing the application were to extract enough par-
allelism from the application and to reduce load imbalance. The application has limited
immediately available parallelism and further extraction of parallelism is limited by
small data sets and a relatively high parallelization overhead. Load balance is diffi-
cult to obtain due to the limited parallelism and made worse by non-uniform memory
latency. Three parallel OpenMP implementations of the application are discussed and
evaluated. We show that with some modifications relative speedups in excess of 9 on
a 16 CPU system can be reached.

Keywords OpenMP · Image processing · Parallelization · Performance evaluation

M. S. Rasmussen (B) · M. B. Stuart · S. Karlsson
DTU Informatics, Technical University of Denmark, Richard Petersens Plads,
DTU - Building 322, 2800 Kgs. Lyngby, Denmark
e-mail: msr@imm.dtu.dk

M. B. Stuart
e-mail: ms@imm.dtu.dk

S. Karlsson
e-mail: ska@imm.dtu.dk

123

Int J Parallel Prog (2009) 37:306–323 307

1 Introduction

To reach higher performance, processor designers have in the last few decades focused
on clock frequency and elaborate designs that can extract instruction level parallelism
from sequential code. However, that approach presently leads to diminishing returns
and high power consumption. As a consequence, vendors have turned their focus to
multi-core architectures where several processors are placed on a single silicon chip
to increase system performance [1,2]. Such architectures are inherently explicitly par-
allel and trends indicate that this evolution will continue towards massively parallel
many-core architectures [3].

So far the programming models for multi-core architectures have been very similar
to those for shared memory multiprocessors. OpenMP [4,5] is one of these shared
memory programming models. OpenMP offers a multi-threaded programming model
based on a set of compiler directives and library calls. Instead of explicit thread man-
agement, OpenMP controls threads, synchronization and work distribution implicitly
based on the parallelism exposed in the code through the use of compiler directives.
Thus, explicit thread management and lock-based synchronization, which are both
complex and error-prone, are largely avoided. One example of the parallel constructs
supported by OpenMP is automated parallel execution of for-loops without dependen-
cies between the iterations.

Increasing parallelism in processor architecture is not limited to processors for
high performance systems. Embedded systems follow a similar trend where multi-pro-
cessor system-on-chip solutions with advanced interconnection networks have been
proposed [6–8]. Increasing amounts of available on-chip transistor resources allows
system architectures with multiple low-power processor cores. Furthermore, chip pro-
duction costs have increased the focus on designing embedded platform architectures
using more general processor cores, which can be used for a range of applications [9].
Thus, there is a need to explore parallel processing in the context of embedded sys-
tems where parallel programmers are faced with new types of applications. Thereby
new challenges are exposed as embedded systems have requirements different from
those of high performance computing systems. One example is applications with user
interaction, where fast processing time is more important than throughput to ensure
the necessary responsiveness.

Since embedded systems are an emerging area for parallel programming, effi-
cient programming models for these systems has yet to be found. Shared memory
has been used for decades in traditional multiprocessor systems and is therefore an
obvious starting point for exploring parallelism in applications for embedded sys-
tems.

In this paper, we explore an embedded image processing application for object iden-
tification using multi-spectral images and we investigate its parallel behavior using
OpenMP 2.5 [4]. In short, our contributions are: (i) The analysis of an embedded
image processing application; (ii) a thorough performance evaluation of the parallel
properties of the application using OpenMP.

The major challenges faced when parallelizing the application were to extract
enough parallelism from the application and to reduce load imbalance. The

123

308 Int J Parallel Prog (2009) 37:306–323

experimental results show that, with some tuning, relative speedups in excess of 9
on a 16 CPU system can be reached.

The rest of the paper is organized as follows. This section is concluded with a
discussion of related work. In Sect. 2, we describe the application and in Sect. 3 we
explain how the application has been parallelized. Section 4 discusses parallelization
using OpenMP and experimental results are presented in Sect. 5. The paper ends with
conclusions in Sect. 6.

1.1 Related Work

Parallelization of image processing algorithms for image classification using OpenMP
has previously been presented [10]. The work investigated an algorithm used for iden-
tifying forest areas in satellite images. The algorithm is parallelized to achieve better
performance by running individual processing steps in parallel and by decomposing
the data set into smaller parts. A high performance 64 processor computer was used as
test platform to process the 1.2 GB images. Our work differs in that we present expe-
riences with a potential embedded application with images two orders of magnitude
smaller, which means that parallelization overhead is more pronounced.

Parallelization approaches for image processing on smaller images has previously
been proposed by Meerwald et al. [11]. Two reference implementations of the
JPEG2000 image coding standard are analyzed to identify stages where parallelism
can be exploited for increased performance. The JPEG2000 implementations have
high memory bandwidth requirements. Cache performance is also an issue for the
JPEG2000 implementations. The scalability is found to be limited, reaching a speedup
of 2 on 16 processors. The application studied in our paper exhibit similar problems
with memory bandwidth requirements and cache performance.

Content-based image retrieval is another application of automated image classi-
fication which can benefit significantly from parallelization. Content-based image
retrieval allows advanced image database queries based on image content. A database
query thereby involves processing every image in the database in order to examine
its content. A shared memory parallelization of this application has been presented
previously [12]. The application is parallelized by processing individual queries and
images involved in each query in parallel. In contrast, we strive to minimize process-
ing latency of a single image by parallelizing the processing of the individual image,
which requires more fine-grained parallelization.

In many algorithms, tasks may be decomposed into subtasks which can be processed
in parallel. This is also the case for the application analyzed in this work, where
all possible parallelism must be exploited to ensure scalability. OpenMP supports
this form of nested parallelism, but load balancing among nested threads is limited.
an Mey et al. [13] discuss issues in nested parallelization of three production codes
using OpenMP. Similar to our work, selecting the parallelization strategy for each
nested level of parallelism and load balancing are major challenges. However, in con-
trast to our work, abundant parallelism is available at each level and the parallelization
overhead is low for two of the codes examined.

123

Int J Parallel Prog (2009) 37:306–323 309

An algorithm for finding good mappings of tasks to threads when using nested
parallelism has previously been proposed [14]. It is based on the assumption that the
outer-level layer of parallelism consists of coarse-grained independent tasks of unequal
sizes. The algorithm seeks to distribute the available threads among the tasks while
balancing the load. Large tasks may have multiple threads assigned, in which case
the algorithm is applied again to distribute its subtasks among the assigned threads.
In our work, the source of load imbalance is not unequally sized tasks, but rather
equally sized tasks that do not match the number of available processors. In this case,
load balancing equally sized tasks requires either sharing of nested threads among
coarse level tasks or automatic run-time management of the number of nested treads.
None of these features are supported by OpenMP 2.5 [4].

Automatic run-time thread distribution for nested parallelism has previously been
proposed to eliminate the need for hand optimization [15,16]. In the first proposal,
all available parallelism is exposed to the environment and leaves the parallelization
strategy to the run-time environment [15]. Instead of static parallelization, which can
not take run-time conditions into account, the run-time environment seeks to minimize
overhead and balance load by first exploiting as much coarse level parallelism as pos-
sible and then balance the load by exploiting fine-grained parallelism. This approach
would be beneficial for the application in our work, as it has the ability exploit coarse
level parallelism first and then reduce the slack by utilizing any available fine-grained
parallelism.

In the latter approach, the performance of each coarse level task is monitored at
run-time and threads are dynamically transferred between coarse level tasks to obtain
the best overall performance [16]. This approach could improve performance of our
nested implementation as the performance issue of thread dedication to groups of
nested threads is avoided by managing their assignment at run-time. However, none
of these two improvements have been included in the OpenMP specification yet and
thus they are not given further consideration in this work.

2 Image Processing Application

In this paper, we are focusing on an image processing application developed at
DTU [17] and written in Matlab. The application is used for object identification
based on multi-spectral imaging and can be used for many different purposes. One
example is identifying the species of a Penicillium fungus in a petri dish from a multi-
spectral image [17]. The object identification is based on information extracted from
the images in the form of scalar values, called features, that each describes some aspect
of the input image. Features are grouped into feature sets, based on extraction method
used for the particular features.

The flowchart in Fig. 1 gives an overview of the application. It consist of three
major parts: pre-processing, analysis and a statistical model. The application input
is a multi-spectral image of the object that has to be identified. The multi-spectral
image is a set of spectral images, where each spectral image shows the object exposed
to single colored source of light. Different wave lengths of light reveal different

123

310 Int J Parallel Prog (2009) 37:306–323

Fig. 1 Overview of the entire application

Fig. 2 Spectral image of fungi
colonies

elements in the object. Figure 2 shows an example of a spectral image of fungi colo-
nies.

The pre-processing part involves preparing the raw input image for processing,
which means removing unnecessary information in the image and normalizing the
image. The analysis part is feature extraction based on arithmetic and morphological
operations and scale space analysis. The extracted feature sets are used in the last part,
the statistical model, to classify the object using known statistical characteristics of
the object types to be identified.

In this paper, we focus on the pre-processing and analysis based on features from
arithmetic operations as these are the most computationally intensive parts of appli-
cation. Furthermore, the case of identification of fungi is based on features extracted
using these operations. The statistical methods for classifying the contents of images
are outside the scope of this paper and are described elsewhere [17].

The remaining parts of this section will describe the application in more detail.

2.1 Pre-Processing and Mask Generation

The pre-processing of the multi-spectral input image involves two steps: (i) the actual
pre-processing and (ii) the mask generation.

The pre-processing step produces a noise-filtered normalized image. First, the
pixel-wise average intensity across spectral bands in the multi-spectral input image is
found. The mean of the resulting single-channel image is found and subtracted from
each pixel. Following this, each pixel is then divided by the standard deviation to
produce the normalized image. Finally, a 3 × 3 median filter is used to filter noise.
These steps are illustrated in the more detailed overview of the application in Fig. 3.

The mask is used to select the interesting parts of the image, thus its genera-
tion varies depending on what information is extracted. For the input images used

123

Int J Parallel Prog (2009) 37:306–323 311

Fig. 3 Overview of immediately available parallelism in the application

in this paper, edge detection is used to find areas of interest in the images. For
each pixel in the single-channel image previously constructed by pixel-wise aver-
age of the spectral images, the magnitude of the numerical gradient |(δ f

δx ,
δ f
δy)| is cal-

culated where f describes the pixel values as function of coordinates (x, y). The
median of the gradient values is found and all pixels whose gradient are greater
than or equal to the median are included in the mask. They correspond to interesting
areas in the image. The mask can be seen as a bit field where each bit corresponds
to a pixel in the image. Each bit indicates if the pixel should be considered or
not.

2.2 Arithmetic Feature Extraction

The mask is applied to each spectral band in the input multi-spectral image by dis-
carding all pixels not in the mask. Five feature sets are extracted from the masked
spectral bands of the input image, using five different arithmetic operations. Two
operations take a single band at a time, while the other three operate on all pairs of
bands. The two single-operand operations are the identity function, which just pass
the image data through, and the pixel-wise base-10 logarithm. The other three oper-
ations find the pixel-wise difference, product and quotient of all pairs of spectral
images. Each pair is considered only once, e.g. if Ia − Ib is calculated, Ib − Ia is

123

312 Int J Parallel Prog (2009) 37:306–323

not. If the input image has n spectral bands, the operations produce 2n + 3 n(n−1)
2 data

sets.
The features of each feature set are extracted from the data sets produced by the

arithmetic operations by finding the 1st, 5th, 10th, 30th, 50th, 70th, 90th, 95th and
99th percentiles of the pixel values. Determining the percentiles requires the data sets
to be sorted individually.

3 Parallelization

We will now discuss the parallelization and the OpenMP implementation of the algo-
rithm described in Sect. 2. The image processing algorithm differs from traditional
high performance computing applications, such as matrix multiplication and physics
simulation by having a significantly smaller data set and shorter execution time. Thus,
the parallelization overhead can not be neglected.

The algorithm has two main parts as illustrated in Fig. 3. The pre-processing and
mask generation part is governed by data dependencies, while the arithmetic feature
extraction has parallelism immediately available between the feature sets, but also
within the individual sets.

Profiling a sequential implementation of the algorithm revealed that 95% of the
execution time is spent in feature extraction. Thus, it is the target for parallelization.

To summarize the task parallelism illustrated in Fig. 3, five independent feature sets
are computed, which each produce n or n(n −1)/2 data sets for which the features are
extracted by finding certain percentiles in the data sets. This means that the processing
required for each feature set differs significantly. The feature extraction within each
feature set should, in theory, be possible to split into parallel and equally sized work-
loads. However, non-uniform memory latencies caused by the target architecture may
cause the execution time of each such parallel workload to differ. Scaling properties
are discussed in Sect. 3.1 without considering architectural effects which are discussed
in Sect. 3.2.

3.1 Scaling Properties

The running times of the feature sets differ by up to a factor of (n − 1)/2 leading to
load imbalance problems if different feature sets are run in parallel. In this paper, we
therefore concentrate on extracting parallelism of each individual feature set.

As mentioned earlier, each feature set has n or n(n − 1)/2 equally sized workloads
immediately available, which can be run in parallel. But if n is less than the number
of available processors |P|, in processor set P , more parallelism must be extracted
from these workloads. This is also advantageous to reduce the imbalance slack for the
feature sets containing n(n −1)/2 workloads, as this may not match a multiple of |P|.

Additional parallelism can be extracted by splitting data sets into subsets that can
be computed independently and then recombined. This means adding an extra nested
level of parallelism. The arithmetic operations of all feature sets have no inter-pixel
dependencies, which mean that the processing of spectral bands into data sets can be
split without creating any subset border synchronization issues. The sorting involved

123

Int J Parallel Prog (2009) 37:306–323 313

in the percentile calculation can be done on each subset separately followed by a merge
of the sorted subsets before the percentiles are found. This allows the arithmetic oper-
ations to scale further, but with the overhead of merging the sorted subsets. It should
be noted that the execution time of sorting each subset decreases by d × log(d), where
d is the number of pixels in the subset. The execution time of merging the sorted
subsets increases proportionally with the number of subsets generated by the data
set decomposition. This means that the amount of parallel work decreases and the
sequential part increases with an increasing number of subsets. Thus, the gain of
increasing parallelism is diminishing. In addition, the parallelization overhead, such
as spawning threads and synchronization, may be significant at this level as the subsets
are small.

The two levels of parallelism within each feature set, among data sets and among
subsets, are denoted as l0 and l1 respectively. In our implementation, the parallelism
at each level s0 and s1, can be adjusted independently, though the parallelism at l0 is
limited. The total number of subsets across all data sets w is given by w = s0 × s1
and constitutes the total number of workloads in the application. Subset processing
time is defined as the wall clock time spent performing arithmetic operations on the
parts of the spectral band data that corresponds to the subset and time spent sorting
the subset.

In order to avoid load imbalance, s0 and s1 should be determined such that w is
equal to or slightly less than a m × |P|, where m is a multiple of the number of
available processors |P|. If w is slightly larger than m × P , only one or a few pro-
cessors will be involved in processing the last remaining subsets while the majority
of processors are idle, causing a large slack. The slack can be reduced by increas-
ing w. But as mentioned earlier, s0 is limited by n or n(n − 1)/2 and s1 is limited
by the merge sort overhead, which causes diminishing parallelization gain. Hence,
determining s0 and s1 is a trade off between load imbalance and parallelization over-
head.

3.2 Non-Uniform Memory Latency

The discussion in the previous section holds under the assumption that the execution
time of equally sized workloads do not differ. This assumption will not hold for archi-
tectures with non-uniform memory latencies. Threads running on processors which
have long memory latency will have longer subset processing times than threads with
short memory latency.

In this application, all spectral bands of the image are loaded into memory sequen-
tially and then processed in parallel. Assuming a first touch memory placement policy
in a hierarchical memory system, all image data will be located in the part of main
memory local to the processor loading in the images, e.g. in the local memory on the
Uniboard processor board, in a Sun Fire architecture system. A thread running on a
processor associated with a different branch of the memory hierarchy, e.g. a processor
on a different Uniboard than the one holding the main memory containing the image
data, will access all data through the global memory interconnect and therefore have a
significantly longer memory latency. This is not easily solved through parallel loading

123

314 Int J Parallel Prog (2009) 37:306–323

Fig. 4 Different workload
execution times caused by
non-uniform memory latency

of the spectral images due to the fact that the data set processing requires all combi-
nations of spectral bands. Thus, the effective subset processing time depends on the
location of the processor.

Combining this effect with the scaling properties means that even though the total
number of subsets w matches the number of available processors, linear speedup can
not be obtained. Consider a system with |P| processors, where Pl ⊂ P is the subset
of processors having local memory access to the image data and Pr ⊂ P is the subset
of processors having remote memory access to the image data through global memory
interconnect. The execution times of a subset on pi ∈ Pl and p j ∈ Pr are tl and tr
respectively, where tr > tl .

In the case of uniform memory latency, where P = Pl and w = m × |Pl |, the
total execution time is given by T = m × tl , ignoring the parallelization overhead.
In the non-uniform case where P = Pl ∪ Pr , T depends on the workload schedul-
ing. Consider the case where w equals the number of processors |P|. In this case,
every processor will process one subset each. Thus the total execution time is given
by T = max(tl , tr) = tr , if the parallelization overhead is assumed to be negligi-
ble. The processors in Pl finish before the processors in Pr , but the final result is
not available until all processors have finished processing their subset. In the case
where w = 2 × |Pl | + |Pr |, assuming dynamic scheduling, T = max(2tl , tr) as the
processors in Pl will finish two subsets. If 2tl > tr the remote memory access of
Pr , will not influence T . This is illustrated in Fig. 4. As a consequence of these two
cases, resolving load imbalance may not result in the speedup outlined in Sect. 3.1.
This applies to scaling both the number of processors and subsets, as these are both
parameters that influence the load imbalance. Increasing the number of processors,
such that w = 2 ×|Pl |+ |Pr1| becomes w = |Pl |+ |Pr2|, where |Pr2| = |Pr1|+ |Pl |,
results in T = tr . Thereby the total execution time reduction is only 2 × tl − tr , and
not tl .

The effect of load imbalance due to non-uniform memory latency also decreases
significantly when w becomes much larger than the number of processors. Then again,
the amount of parallelism available in the application may be limited and comes at
a high cost in terms of parallelization overhead. The optimum solution is a trade off
between parallelization overhead and load imbalance, where load imbalance is caused
both by the algorithm itself, but also the architecture of the target execution plat-
form. It should be noted that this is based on dynamic workload scheduling. Static
workload scheduling will perform worse, due to varying execution times among the
workloads.

123

Int J Parallel Prog (2009) 37:306–323 315

4 OpenMP Implementation

The application was originally implemented in Matlab, and then ported to C using
standard libraries only and without OpenMP parallelization in mind. All Matlab func-
tions used in application were re-implemented using standard C-libraries to allow
verification of the C-implementation by direct comparison to the results obtained
using the original Matlab implementation. Subsequently, it was modified to meet the
requirements for OpenMP parallelization.

In the sequential algorithm implementation, arithmetic feature extraction is imple-
mented as a loop, where each iteration performs the arithmetic operation on a spectral
band or pair of spectral bands, to form a new data set from which features are extracted.
Unary arithmetic operators are applied to each individual spectral band in feature sets
1 and 2. These are implemented by a single loop through all the pixels in the spectral
band. The feature sets 3, 4 and 5 are based on binary arithmetic operations between
two spectral bands. First a list of pairs to be processed is generated. Then all pairs
are processed using a loop. Similarly to the unary operations, the binary arithmetic
operations are applied pixel by pixel in a single loop. Hence, the features sets are
implemented using two nested loops.

Three different parallel versions of the application have been implemented using
OpenMP. One implementation uses nested parallelism, while the two other variants
do not make use of nested parallelism.

4.1 Nested Implementation

The nested version exploits the two levels of nested parallelism discussed in Sec. 3.1.
The first level of parallelism, l0, consists of the aforementioned loop over the data sets,
which is already present in the sequential implementation. This loop is parallelized
using the OpenMP [4] for workload sharing construct with dynamic scheduling, which
is illustrated as the first thread fork in Fig. 5a.

Within each l0-thread the data set is further split into subsets processed by another
loop, which adds an extra loop to the implementation and forms the nested parallelism

(a) (b) (c)

Fig. 5 Thread utilization in the three OpenMP implementations: a Nested parallelism, b non-nested par-
allelism, c improved non-nested parallelism using locks. Only two data sets are shown

123

316 Int J Parallel Prog (2009) 37:306–323

level l1. This is illustrated as the second thread fork in Fig. 5a. Sorting each individ-
ual subset before they are merged as described in Sec. 3.1 requires complete control
over the subset partitioning, which prevents the use of the existing pixel loop for this
purpose. When all nested threads have finished and reached the implicit barrier of the
OpenMP work sharing construct, the l0-thread will continue by merging the subsets
and extracting the features.

Since the assignment of the nested threads can not be managed dynamically as pro-
posed in Duran et al. [16] and it is generally not possible to assign the same number
of threads to each nested parallel section while having one thread per processor, one
thread is created for every subset without considering the total number of threads.
Balancing the load optimally may require one thread to process iterations from two
different nested loops, which is not possible in OpenMP 2.5. Thus, creating more
threads than processors will enable operating system schedulers capable of dynamic
thread migration to load balance the processors. However, spawning more threads
than processors may also induce a large scheduling overhead in the operating sys-
tem.

4.2 Non-Nested Implementation

To avoid relying on the operating system thread load balancing capabilities a non-
nested version has been made. To flatten the two levels of parallelism, all s1 × n or
s1 ×n(n −1)/2 subsets are enumerated and then processed in a single parallelized for
loop, as shown in Fig. 5b. The number of threads is thereby completely independent
of how many subsets the data sets are split into.

However, removing the two level hierarchy from the implementation and allowing
subsets to be processed in any order means that it is no longer known when all subsets
of each data set has been processed. Thus, merging can only take place when all subsets
of all data sets have been processed. This is in contrast to the nested implementation
where subsets are merged as soon as all nested threads belonging to a given data set
have finished. Hence, merging and percentile determination must be implemented as a
second parallelized loop executed afterwards. This is illustrated by the second thread
fork in Fig. 5b after all threads in the first thread fork have finished.

This implementation has the advantage of having only one thread per processor, but
separating the subset processing and merging in two parallel sections has great influ-
ence on the application memory access pattern and thus also the cache performance.

The processed subsets of a given data set can to a great extent be found in the caches
of the processors that processed them. But implementing merging as a second loop,
Fig. 5b, means that there is no guarantee that any of these processors will perform
the merging of the data set and exploit that one subset is located in its local cache.
In the nested implementation illustrated in Fig. 5a, however, the l0-thread will be one
of the nested threads and thus cache performance will be better.

Furthermore, by first processing all subsets and then merge them later, some of the
subset data may be evicted from the cache due to limited cache capacity before they
are merged. Merging the data set as soon as its subsets have finished, improves the

123

Int J Parallel Prog (2009) 37:306–323 317

probability of finding the subset data in the caches. However, this is very dependent
of the cache size.

4.3 Improved Non-Nested Implementation

To avoid the cache performance disadvantages of the initial non-nested implementa-
tion, a second improved non-nested version has been implemented. This implemen-
tation merges subsets as soon as all subsets of a data set have been completed and
improves locality and thus cache performance.

Subsets are enumerated like in the first non-nested implementation, but instead of
merging the data sets in a second loop, it is integrated into the subset processing. The
thread finishing the last subset of a data set is responsible for merging all the subsets
of the data set before it can process another subset as illustrated in Fig. 5c. This is
implemented by assigning an OpenMP lock and a counting variable to each data set,
illustrated by the “L” in Fig. 5c, which keeps track of how many subsets of the data
set that have been processed.

A drawback of this version is that the subset processing times are not equal. Though,
dynamic scheduling is used for the workload sharing construct, it can not be expected
to counter this effect completely.

A similar implementation could be done using tasks, which were introduced in
OpenMP 3.0 [5]. Subset processing can be implemented using the new task construct.
However, the OpenMP 3.0 specification does not support task data dependency nota-
tion. Thus the taskwait construct must be used to determine when the subset processing
has finished and the subsets can be merged, which is similar to using the lock in our
implementation. The number of tasks to be processed is known, so the application
will not generate tasks dynamically. In all, we envision that the net advantage of using
tasks is slightly simpler code.

5 Results and Discussion

This section presents results obtained by running the nested and the two non-nested
parallelized algorithm implementations using 16 processor cores on the test platform
and compares these with the scalability issues discussed in Sect. 3.

5.1 Test Setup

In the presented results, the algorithm has been used to calculate all arithmetic fea-
ture sets of the input images. The input images are ten images, each containing nine
spectral bands in a resolution of 777 × 776 pixels. The light intensity of each pixel is
represented by a double precision floating point number.

The test platform used for producing the results in this paper is a Sun Fire E6900.
The machine has 48 UltraSPARC IV CPUs. Each processor has two cores running
at 1200 MHz and has 8 MB L2 cache per core. The machine is running Solaris 10.
Compilation has been done using the Sun C compiler version 5.9 patch 124867-01

123

318 Int J Parallel Prog (2009) 37:306–323

using these options: -fast -xarch=sparcvis2 -m32 -xopenmp=paral-
lel -lm.

The image loading time has been excluded from the measurements by loading all
ten images, one by one, into main memory before they are processed. Warm up is done
by processing all ten images once. To increase the accuracy of the measurements the
presented results are based on the average execution times of ten or twenty consecutive
runs of each feature set, where all ten images are processed. The number of runs is
determined by the execution time of the particular test case. Using larger input images
is not representative for the practical use of the algorithm and will lead to unrealistic
results.

The average sequential execution times for feature sets 2 and 3 are 35 s and 127 s
respectively, processing all ten multi-spectral image.

5.2 Parallel Efficiency

All tests have been limited to a maximum of 16 processor cores. Several paralleliza-
tion approaches have been tested to investigate how the two levels of parallelism, l0
and l1, influence the parallel efficiency. It should be noted that even though all tests
have 16 processors available, they may not all be utilized, depending on the number of
threads in the particular test case. The nested version creates more than 16 threads in
some tests. In order to prevent the threads to use more than 16 processor cores in these
cases, a 16 core processor affinity set was specified using the SUNW_MP_PROCBIND
environment variable for all runs with the nested version. This method may potentially
lead to uneven load on the cores, but dynamic workload scheduling counters this effect
and no negative effects are observed in the results. Even though the main focus of the
tests is parallel efficiency, scalability trends can also be extracted from the results of
the nested version.

Figures 6 and 7 illustrate the speedup obtained in feature sets 2 and 3 for the nested
version by increasing the number of threads at l0 with different data set partitioning at
l1. As mentioned in Sect. 4, one l1-thread is created for each subset. The measurements
of feature set 1, 4 and 5 are not significantly different from what can be observed in
feature set 2 and 3, thus they are not shown.

Parallelization at l0 does not impose any parallelization overhead except for thread
creation overhead. However, parallelism is limited to nine l0 threads in feature set
2. Linear relative speedup should be expected, when more threads can be created to
utilize more processors. This can be observed in Fig. 6 for one to eight threads with no
data set partitioning for feature set 2, which means w = 9. As discussed in Sect. 3.2,
going from 8 to 16 threads would double the theoretical speedup since load imbalance
is improved. However, a speedup of only 1.5 is obtained, because tr > tl meaning that
data has to be fetched from a remote Uniboard leading to higher memory latency.

This effect has been confirmed by measuring the execution time of each l0-thread,
when running three and nine threads in parallel without any nested l1-threads. The
Sun Fire E6900 UltraSPARC IV Uniboards have four processors each with two cores,
which means that if more than eight threads are used, some of them will be running
on different processor boards. Figures 8 and 9 show histograms of thread execution

123

Int J Parallel Prog (2009) 37:306–323 319

Fig. 6 Speedups for the nested
version of feature set 2 with 16
processors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

l
0
−threads

S
pe

ed
up

Subsets = 1
Subsets = 2
Subsets = 4
Subsets = 8
Subsets = 16

Fig. 7 Speedups for the nested
version of feature set 3 with 16
processors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

l
0
−threads

S
pe

ed
up

Subsets = 1
Subsets = 2
Subsets = 4
Subsets = 8
Subsets = 16

time using three and nine threads. It can be seen that using three threads, the histogram
has a narrow range, while the histogram of nine threads is spread out. The lower part
represents threads running on the board that holds the main memory containing the
images, while the upper part is slow threads running on a different board. The ratio
between a fast and a slow thread match the speedup obtained going from eight to 16
l0-threads in Fig. 6.

As discussed in Sect. 3.1 parallelization at l1 has sequential overhead. This can
be observed in Figs. 6 and 7 when comparing the speedups of tests with one
l0-thread and increasing the number of l1 threads. Even though more processors are uti-
lized, the sequential merge eventually outweighs the parallelization speedup. Having
more threads than processors also adds thread switching overhead as several threads
share a single processor core. It can be observed on both Figs. 6 and 7 that matching
s0 × s1 = |P| leads to best results in general.

The effects observed in the results of feature set 2 can also be seen for feature set 3.
However, the amount of parallelism available at l0 is potentially 36 data sets. This
leads to better parallel efficiency as less parallelism needs to be extracted at the l1
level, where the sequential parts are limiting. The efficiency observed in feature set

123

320 Int J Parallel Prog (2009) 37:306–323

Fig. 8 Thread execution time
histogram when running 3
threads

350 400 450 500 550
0

50

100

150

200

250

Execution time [ms]
F

re
qu

en
cy

Fig. 9 Thread execution time
histogram when running 9
threads

350 400 450 500 550
0

20

40

60

80

100

120

140

160

180

Execution time [ms]

F
re

qu
en

cy

2 is considered more realistic for real uses of this application, as only a subset of the
features is typically needed [17].

The relation between work partitioning and the number of threads is removed in the
non-nested versions. The number of threads is completely independent of the subset
partitioning. Splitting the data sets creates more workloads that may lead to better
workload balancing among the threads. In Figs. 10 and 11, it can be observed that the
improved non-nested version performs up to 24% better than the nested version. Com-
paring speedup of the two implementations, when the number of subsets increases,
shows the overhead of having more threads than processors. With few threads, the two
implementations have very similar performance, while the improved nested version
performs significantly better with many subsets. The graphs representing the nested
version in Figs. 10 and 11 show the best performing thread configuration with the corre-
sponding number of subsets. However, it can be seen that when increasing the number
of threads, parallelization overhead counters any speedup gained by increased paral-
lelism. The effect of the parallelization overhead at l1 can also be observed clearly for
the improved non-nested implementation, as it is the cause of the decreasing speedup
when having 8 and 16 subsets.

123

Int J Parallel Prog (2009) 37:306–323 321

Fig. 10 Speedups for all
implementations of feature set 2
with 16 processors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

Subsets
S

pe
ed

up

Imp. non−nested
Non−nested
Nested

Fig. 11 Speedups for all
implementations of feature set 3
with 16 processors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

Subsets

S
pe

ed
up

Imp. non−nested
Non−nested
Nested

The performance of the initial non-nested implementation is difficult to predict due
to its issues with regard to cache utilization. At best it can reach the performance of
the improved version, but the real performance depends on the thread scheduling done
at run-time and the OpenMP library implementation. When having only one or two
subsets per data set, the impact of thread scheduling is large, as merging data on a
processor without any of the subsets in its cache, will perform significantly worse
than if it had a subset present in its cache. This effect will diminish as the number of
subsets increases, since the subsets become smaller. The difference of accessing all
data in other caches or main memory and having one small subset in the local cache
becomes very small. This effect is shown in Figs. 10 and 11, where the speedup of the
initial non-nested implementation approaches the improved one for larger numbers of
subsets. The observed speedup of the initial non-nested implementation stresses the
importance of considering cache utilization in parallel programming.

123

322 Int J Parallel Prog (2009) 37:306–323

6 Conclusions

This paper has investigated an image processing application that can be targeted for a
future multi-processor system-on-chip embedded system. Such a system is inherently
parallel, and the major challenges in parallelizing the application have been identified.

These challenges include limited directly exploitable parallelism, a significant par-
allelization overhead caused by small workloads and difficult load balancing which is
aggravated by non-uniform memory latencies.

Three different parallelization approaches have been applied, each of which required
increasing implementation effort. Restrictions on thread management when using
nested parallelism in OpenMP makes it difficult to optimize the number of threads
and thread utilization. Flattening the nested loops removes these restrictions, but also
removes implicit information on completion of the individual tasks. Our results show
that this causes poor cache performance and has led us to implement a cache opti-
mized version of the application using explicit locks. Using these application specific
improvements, a 14–24% gain in parallel efficiency was observed.

We have shown that despite these challenges, a relative speedup in excess of 9 on
a 16 CPU system can be achieved.

Acknowledgements We gratefully acknowledge the support from the Danish Center for Scientific Com-
puting at the Technical University of Denmark. In particular we acknowledge the technical support from
Bernd Dammann. We also would like to thank Jens Sparsø for many thoughtful comments. This work has
been supported by the HiPEAC2 European Network of Excellence.

References

1. Vangal, S.R., Howard, J., Ruhl, G., Dighe, S., Wilson, H., Tschanz, J., Finan, D., Singh, A., Jacob,
T., Jain, S., Erraguntla, V., Roberts, C., Hoskote, Y., Borkar, N., Borkar, S.: An 80-Tile Sub-100-W
TeraFLOPS processor in 65-nm CMOS. IEEE J. Solid-State Circ. 43(1), 29–41 (2008)

2. Shah, M., Barren, J., Brooks, J., Golla, R., Grohoski, G., Gura, N., Hertherington, R., Jordan, P., Lutt-
rell, M., Olson, C., Sana, B., Sheahan, D., Spracklen, L., Wynn, A.: UltraSPARC T2: a highly-threaded,
power-efficient, SPARC SOC. In: Proceedings of IEEE Asian Solid-State Circuits Conference,
pp. 22–25 (2007)

3. Asanovic, K., Bodik, R., Catanzaro B, C., Gebis, J.J., Husbands, P., Keutzer, K., Patterson, D.A., Plish-
ker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The Landscape of Parallel Computing Research: A
View from Berkeley. Technical Report. EECS Department, University of California, Berkeley (2006)

4. OpenMP Architecture Review Board. OpenMP Application Program Interface 2.5 [Online]. Available:
http://www.openmp.org. Accessed 8 Oct 2008 (2005)

5. OpenMP Architecture Review Board. OpenMP Application Program Interface 3.0 [Online]. Available:
http://www.openmp.org. Accessed 8 Oct 2008 (2008)

6. Magarshack, P., Paulin, P.: System-on-chip beyond the nanometer wall. In: Proceedings of Design
Automation Conference, pp. 419–424 (2003)

7. Benini, L., De Micheli, G.: Networks on chips: a new soc paradigm. Computer 35(1), 70–78 (2002)
8. Bertozzi, D., Jalabert, A., Murali, S., Tamhankar, R., Stergiou, S., Benini, L., De Micheli, G.: NoC

synthesis flow for customized domain specific multiprocessor systems-on-chip. IEEE Trans. Parallel
Distrib. Syst. 16(2), 113–129 (2005)

9. Bell, S., Edwards, B., Amann, J., Conlin, R., Joyce, K., Leung, V., MacKay, J., Reif, M., Bao, L.,
Brown, J., Mattina, M., Miao, C.-C, Ramey, C., Wentzlaff, D., Anderson, W., Berger, E., Fairbanks,
N., Khan, D., Montenegro, F., Stickney, J., Zook, J.: TILE64 processor: a 64-Core SoC with mesh
interconnect. In: IEEE International Solid-State Circuits Conference—Digest of Technical Papers,
pp. 88–598 (2008)

123

http://www.openmp.org
http://www.openmp.org

Int J Parallel Prog (2009) 37:306–323 323

10. Phillips, R., Watson, L., Wynne, R.: Hybrid image classification and parameter selection using a shared
memory parallel algorithm. Comput. Geosci. 33(7), 875–897 (2007)

11. Meerwald, P., Norcen, R., Uhl, A.: Parallel JPEG2000 image coding on multiprocessors. In: Proceed-
ings of the 16th International Parallel and Distributed Processing Symposium, pp. 9–14 (2002)

12. Terboven, C., Deselaers, T., Bischof, C., Ney, H.: Shared-memory parallelization for content-based
image retrieval. In: Proceedings of European Conference on Computer Vision Workshop on Compu-
tation Intensive Methods for Computer Vision, Graz, Austria (May 2006)

13. an Mey, D., Sarholz, S., Terboven, C.: Nested parallelization with OpenMP. Int. J. Parallel Pro-
gram. 35(5), 459–476 (2007)

14. Blikberg, R., Srevik, T.: Load balancing and OpenMP implementation of nested parallelism. Parallel
Comput. 31(10–12), 984–998 (2005)

15. Duran A., Silvera R., Corbalan J., Labarta J.: Runtime adjustment of parallel nested loops. In: Pro-
ceedings of the Workshop on OpenMP Applications and Tools, pp. 137–147 (May 2004)

16. Duran, A., Gonzalez, M., Corbalan, J.: Automatic thread distribution for nested parallelism in OpenMP.
In: Proceedings of the International Conference on Supercomputing, pp. 121–130 (2005)

17. Clemmensen, L.H., Hansen, M.E., Frisvad, J.C., Ersboll, B.K.: A method for comparison of growth
media in objective identification of penicillium based on multispectral imaging. J. Microbiol. Meth-
ods 69(2), 249–255 (2007)

123

	Parallelism and Scalability in an Image Processing Application
	Abstract
	1 Introduction
	1.1 Related Work

	2 Image Processing Application
	2.1 Pre-Processing and Mask Generation
	2.2 Arithmetic Feature Extraction

	3 Parallelization
	3.1 Scaling Properties
	3.2 Non-Uniform Memory Latency

	4 OpenMP Implementation
	4.1 Nested Implementation
	4.2 Non-Nested Implementation
	4.3 Improved Non-Nested Implementation

	5 Results and Discussion
	5.1 Test Setup
	5.2 Parallel Efficiency

	6 Conclusions
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

