
Int J Parallel Prog (2009) 37:324–342
DOI 10.1007/s10766-009-0097-6

A Collaborative Approach for Multi-Threaded SAT
Solving

Pascal Vander-Swalmen · Gilles Dequen ·
Michaël Krajecki

Received: 6 February 2009 / Accepted: 31 March 2009 / Published online: 23 April 2009
© Springer Science+Business Media, LLC 2009

Abstract The last decade progresses have led the Satisfiability Problem (sat) to
be a great and competitive practical approach to solve a wide range of industrial
and academic problems. Thanks to these progresses, the size and difficulty of the
sat instances has grown significantly. Among the recent solvers, a few are parallel
and most of them use the message passing paradigm. In a previous work by Vander-
Swalmen et al. (IWOMP, 146–157, 2008), we presented a fine grain parallel sat solver
designed for shared memory using OpenMP and named mtss, for Multi Threaded Sat
Solver. mtss extends the “guiding path” notion and uses a collaborative approach
where a rich thread is in charge of the search-tree evaluation and where a set of
poor threads yield logical or heuristics information to simplify the rich task. In this
paper, we extend the poor thread abilities of mtss and present extensive comparative
results on random 3-sat problems. These new experimentations show that fine grained
techniques associated to poor tasks within the framework of mtss can achieve very
interesting speedup on multi-core processors.

Keywords OpenMP · Parallel combinatorial optimization · Satisfiability · dll

P. Vander-Swalmen (B) ·M. Krajecki
University of Reims Champagne-Ardenne, Reims, France
e-mail: pascal.vander-swalmen@u-picardie.fr

M. Krajecki
e-mail: michael.krajecki@univ-reims.fr

P. Vander-Swalmen · G. Dequen
University of Picardie Jules Verne, Amiens, France

G. Dequen
e-mail: gilles.dequen@u-picardie.fr

123

Int J Parallel Prog (2009) 37:324–342 325

1 Introduction

The Satisfiability Problem (sat) is a well-known NP-Complete problem [1] and is a
core problem in mathematical logic and computing theory. The interest in studying
sat has grown significantly over the last years because of its conceptual simplicity
and ability to express a large set of various problems. To date, it remains a central
problem in artificial intelligence, logic and computational complexity theory. Thus,
it was recently used as a guide to show the convergence between combinatorial opti-
mization and the statistical physics of disordered systems and to propose a new class
of Algorithms [2]. Within a more practical framework, a lot of works highlight sat
implications in “real world” problems as diverse as Planning [3], Model Checking [4],
Cryptography [5], VLSI design, … . In recent years, several improvements dedicated
on the one hand, to the original backtrack-search dll procedure [6], and on the other
hand to the logical simplification techniques [7] have allowed sat solvers to be very
efficient in solving huge problems from industrial areas [8].1 All these improvements
have been proposed within a sequential framework.

In spite of the actual trend in processor development which is from single-core to
multi-core CPU, there are few parallel solving approaches dedicated to the sat prob-
lem and more generally to the solving of combinatorial problems. The parallel solvers
available in the literature are, for most of them, generally designed for the message
passing paradigm. Even if some CSP (Constraint Satisfaction Problems) solvers in
shared memory exist [9], they mainly distribute the search-tree among the available
processors.

In a previous work [10] we presented a collaborative approach dealing with the res-
olution of combinatorial problems. This parallel solver takes advantage from shared
memory architecture using the OpenMP Application Program Interface. The parallel
solving scheme we proposed was mainly focused on an exhaustive search-space enu-
meration. Thus, one thread has to implicitly enumerate the search-space of the problem
and consequently can guarantee an answer in a finite, but exponential, time. This thread
is named rich thread. All the other threads of our approach, named poor threads, aim
at providing partial or definitive information about the nodes of the search-tree which
are not visited by the rich thread. One of the key advantage of this solution is to manage
the parallel search using a shared memory data structure, the guiding tree, which is
interesting when considering multi-core CPU. Moreover, the data locality involved by
this approach is a good propriety when considering the cache memory management:
it can be useful to avoid cache misses.

This paper is organized as follows. In Sect. 2 we briefly describe the sat problem
and provide an overview of the main techniques used to efficiently solve it within a
sequential framework. Section 3 presents the different works dedicated to the parallel
implementation of the dll procedure. We describe our approach using the OpenMP
API in Sect. 4. Finally, we provide some experimental results in Sect. 5.

1 http://www.satcompetition.org.

123

http://www.satcompetition.org

326 Int J Parallel Prog (2009) 37:324–342

2 Preliminaries

Let V = {v1, v2, . . . , vn} be a set of boolean variables. A literal is the signed form
of a boolean variable. We note respectively v and v̄ be the positive and negative lit-
erals associated to the variable v. A CNF-Formula (Conjunctive Normal Form) F is
a set (interpreted as a conjunction) of clauses, where a clause is a set (interpreted
as a disjunction) of literals. An interpretation of F is an assignment of truth values
{true, f alse} to V . It is a partial interpretation if a subset of the variables of F are
assigned. A positive (resp. negative) literal is satisfied if the corresponding variable
has the value true (resp. false). A clause is satisfied if at least one of its literals
is satisfied. Finally, F is satisfied according to an interpretation if all its clauses are
satisfied. The sat problem is to decide if there exists an interpretation of F in such
a way as to make the formula evaluate to true. When no such an assignment exists,
F is false. In this latter case, we would say that F is unsatisfiable; otherwise it is
satisfiable and each interpretation satisfying F is a solution.

2.1 The sat Solving

The sat Problem is formulated as a decision problem and is proved NP-Complete [1].
However, we distinguish two related problems. The first one is to find an interpretation
that satisfies F . Local search methods [11] are useful in this case. Nevertheless, there
is no guarantee that such an algorithm will find a solution when it exits. Hence, these
approaches are incomplete. The second problem related to sat is to provide a certif-
icate of the non-existence of a solution of F . To date, only the enumerative methods
which mostly are based on Backtrack-Search process are able to prove efficiently the
unsatisfiability [12]. Thus, these methods scan the search-space systematically and
find a solution to the problem if it exists. If they cannot find a solution, they certify
that F has no solution. These methods are complete.

2.2 The dll Procedure

Even if our approach can be applied within an incomplete process, we mainly focus
this paper on the parallelization of the complete algorithms where most of them are
based on the dll procedure [6]. The dll procedure is described in the Algorithm 1.
Assigning a truth value to a variable v helps to simplify some clauses of F . If the
true literal associated to v belongs to a clause C , then C cannot participate to con-
tradict F . On the other hand, if it is the false literal then C cannot be satisfied by it.
Hence, when assigning a variable v to true (resp. false), we can delete the clauses
containing v (resp. v̄) and the occurrences of v̄ (resp. v). This is denoted F\v in the
Algorithm 1. A literal l is monotonic (see “Monotonic” label in Algorithm 1) when its
opposite does not belong to F . In this case, we can deduce that if it exists at least one
solution of F , we will find it when l is true. A unit clause is a clause which consists
of exactly one literal. Each unit clause will be satisfied by its unique literal (see “Unit
Propagation” label in Algorithm 1) unless an empty clause is encountered. The dll
procedure recursively enumerates the search-space by constructing a tree whose paths
correspond to variable assignments. At each node of this search-tree, a variable v is

123

Int J Parallel Prog (2009) 37:324–342 327

chosen and the formula F is split into two simpler sub-problems F\v and F\v̄. If at
least one of them contains at least one empty clause, dll backtracks to the nearest (in
term of hamming distance) unvisited assignment (see “Backtrack” label). A solution
is found when no clause belongs to at least one of them (see “Solution” label).

Algorithm 1 The dll procedure
Require: F : a propositional formula

DLL(F)
if F contains one monotonic literal l then

return DLL(F\l) (Monotonic)
else if F contains one unit clause containing l then

return DLL(F\l) (Unit Propagation)
else if F contains at least one empty clause then

return false(Backtrack)
else if F is empty then

return true(Solution)
else

v← one unassigned variable of F (Split)
if DLL(F\v) = true then

return true
else

return DLL(F\v̄)
end if

end if

In order to improve the dll procedure, the literature proposes some research fields
which the mains are:

• The choice of the splitting variable (see “Split” label of the Algorithm 1) deter-
mines the variables ordering in which search is executed. It is an essential key to
minimize the size of the search-tree. To date, we mainly distinguish splitting poli-
cies dedicated for randomly generated problems [12] and for industrial problems
[8]. In this latter case, some works propose “restart strategies” with aim to use the
clauses learning to improve the branching variable choice.

• The pruning techniques for dll are related to all techniques which are able to
reduce the domain of the variables. The most known of them is Unit Propagation
described above. We also refer to the look-ahead, equivalency reasoning, and more
recently the clause recording and non-chronological backtracking.

• The preprocessing of the formula refers to all techniques which simplify the
formula before applying dll. For instance we can find restrictive resolution or
hyper-resolution [7] techniques.

3 SAT Parallel Solving

During the last decade, a lot of works to improve the sequential resolution runtime of
the sat problem have been proposed and have allowed sat solvers to be very efficient
in solving formulas from which the size and the solving difficulty increase. Neverthe-
less, there is to date few parallel solving approaches dedicated to the sat problem.
Moreover, the most of them are dedicated to the message passing paradigm and use
the search-space partitioning to assign work to the available processors during the

123

328 Int J Parallel Prog (2009) 37:324–342

Fig. 1 Guiding path

Dangling nodes

Visited branches
Guiding Path
Unvisited branchesConflict

Nodes belonging to guiding path

runtime. This often leads to use a master-slave scheme where the most difficult part
consists in balancing the workload. Among the parallel sat solvers from the literature,
we can remark:

• PSATO [13]: This solver is based on the sequential solver SATO which introduces
the important notion of guiding path. The guiding path is a dynamic object which
represents the partial ordered interpretation of the splitting variables from the root
to the current leaf of the search-tree during the backtrack-search process. Thus, it
defines disjoint search-spaces respectively assigned to the parallel tasks. The Fig. 1
provides a sample illustration of it. Thus, each CPU executes the sequential solver
on each associated subtree rooted at each node of the guiding path.
• //satz [14]: An important characteristic of the sat search-space is its unbalanced

distribution. Hence, it is hard to predict the time needed to achieve the enumerative
process of a branch. The use of the guiding path accentuates the unbalanced phe-
nomenon. To limit this phenomenon and following the same master/slave model,
the parallel distributed solver //satz uses a dynamic workload balancing. This
solver is essentially dedicated to solve Random k-sat formula [15].
• GridSAT [16]: This distributed solver is especially dedicated to the grid comput-

ing. Its philosophy is to mainly keep the execution as sequential as possible and
to parallelize the task when it is advantageous. zchaff [8] is the core sequen-
tial solver launched by the “clients”. The “master” maintains a distributed learning
clause database and schedules the jobs requesting the available resources list.
• JackSAT [17]: It presents a new approach that does not use a search-space decom-

position but a cut and join scheme of the variables set. The idea is to decompose
the input problem in simpler sub-problems with less variables and thus that can be
independently solved. Within a parallel framework, the list of available solutions of
each sub-problem are computed. Finally, these partial interpretations are join and
check to exhibit, if it exists, a global solution.

Recently, the sat community is looking at multi-cores approaches. The SAT-Race
20082 had a special track for parallel sat solvers, each of them could use four cores.
Three sat solvers only participated in this competition. Here are some multi-threaded
sat solvers.

• ySAT [18]: It is a multi-threaded solver that proposes a lemma exchange pro-
tocols within a shared memory framework. As for the master/slave model, it
synchronizes a list of available tasks to minimize the idle threads. This global

2 http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/.

123

http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/

Int J Parallel Prog (2009) 37:324–342 329

synchronization leads to drastically decrease the performance when the number of
processors increases. This solver was not present at SAT-Race 2008.

• MiraXT [19]: This multi-threaded sat solver is based on the Conflict Driven
Learning Clause scheme and integrates a clause learning [20] technique in order
to share logical informations between tasks. Moreover, it implements a shared lazy
structure [8] which consists on Watched Literal Reference List. It was ranked third
at SAT-Race 2008 (parallel track).

• PMiniSat [21]: PMiniSat is a multi-threaded version of the sequential solver
MiniSat v2.0. This solver does not broadcast learnt clauses it they are too long
but only to close threads which have a long common part of guiding path. It was
ranked second at SAT-Race 2008 (parallel track).

• ManySat [22]: This solver is the winner of SAT-Race 2008 (parallel track). Ma-
nySat is a multi-threaded version of the sequential solver MiniSat v2.02
where is grafted some extensions of conflict-analysis. The parallel approach makes
unfair use of the weakness to tune the parameters of MiniSat for designing a
more robust system.

4 Our Collaborative Approach

In this paper we propose a new parallel scheme of the dll procedure with a fine grain
parallel process. The first of our contribution is to enhance the guiding path notion.
The guiding path (see Fig. 1) consists in the dynamic partition of the search-space
provided by the current assignment of the splitting variables. Each dangling node of
this binary depth-first search enumeration corresponds to a disjoint sub-space that can
be assigned to a parallel task. As mentioned above, one of the major problem of the
guiding path is the unbalanced distribution of the parallel tasks. Moreover, a sequential
SAT solver has to limit the mean depth of its search-tree to be efficient. This means
that a parallel solver which uses the guiding path cannot be divided in a number of
tasks greater than the maximum depth of the search-tree. Otherwise, it leads to have
idle processors. To avoid these two problems, we propose to extend the guiding path to
the notion of guiding tree. The guiding tree remains a dynamic object which includes
the guiding path where we dynamically open nodes of the unvisited search tree. The
Fig. 2 presents this object. This notion is strongly coupled with the two others concepts
of our approach: the rich thread and the poor thread.

The rich thread is able to conclude the logical value of the problem in a finite (and
exponential) time. One poor thread is a task which provides a partial or definitive
information about the formula (e.g.: unit propagation, choice heuristic of the splitting
variable, local search algorithm, look-ahead, preprocessing technique, clause learn-
ing, …). This approach leads to have a lot of exchanges between threads through the
search-tree structure. These exchanges will be small but numerous and quite unpre-
dictable, in extenso depending of both the instance of the SAT problem and the SAT
solver used. This is the main reason conducting us to use OpenMP rather than MPI. In
fact, using MPI will lead to a complicated program involving a large set of synchroni-
zation barriers to guarantee the global state of the guiding tree. Considering this point
of view, OpenMP provides a high level programming model oriented for multi-cores
architecture. Moreover, an MPI implementation will need more memory, due to buffer

123

330 Int J Parallel Prog (2009) 37:324–342

Conflict

Visited branches
Guiding Path
Guiding Tree

Nodes belonging to guiding path
Nodes belonging to guiding tree

Dangling nodes

Fig. 2 Guiding tree sample

management for exchanged messages, than an OpenMP one. We further describe the
OpenMP features we use.

4.1 Rich Thread

mtss is not a classical partitioning search-tree algorithm with similar solving threads.
It consists in exactly one rich thread (i.e. a dll-like procedure) which is helped by sev-
eral poor threads. When none of poor thread contributes to solve the formula, the rich
thread is equivalent to a usual sequential sat solver. As mentioned in the Algorithm
2, the cooperation between rich and poor threads is done when rich thread backtracks
and considers the nearest dangling node (see “Poor Task” label in Algorithm 2). At
this point, the rich thread is able to use logical or structural informations computed by
poor threads. Moreover, the rich thread maintains the context associated to all nodes
of the guiding path and then allows poor threads to compute additional informations.

Algorithm 2 The Rich Thread procedure
Require: F : a propositional formula

RichThread(F)
if F contains one monotonic literal l then

return RichThread(F\l) (Monotonic)
else if F contains one unit clause containing l then

return RichThread(F\l) (Unit Propagation)
else if F contains at least one empty clause then

return false(Backtrack)
else if F is empty then

return true(Solution)
else

v← one unassigned variable of F (Split)
if RichThread(F\v) = true then

return true
else if Information from Poor Threads computations is available then

replace current calculus context by the Poor Thread’s one (Poor Task)
else

return RichThread(F\v̄)
end if

end if

123

Int J Parallel Prog (2009) 37:324–342 331

Fig. 3 Poor threads search
themselves job (guiding path)

Conflict

Visited branches
Rich Path

a job
search for

Poor Threads

4.2 Poor Tasks

The poor threads are entities which browse the guiding tree resulting from rich and
poor computations (see Fig. 3). They manage themselves their jobs and are autono-
mous. This induces a natural workload balancing scheme based on a server initiated
principle [23]: idle poor thread will open new nodes extending the guiding tree. The
algorithm of the poor thread is presented in Algorithm 3.

Algorithm 3 PoorThread procedure
Require: F : a propositional formula
Require: T : a task

PoorThread(F , T)
n← Root of F -search-tree
while F has no solution do

if T can be applied on n then
Apply T on n

end if
if n is the last node of the guiding path or the threshold is reached then

n← Root of F -search-tree
else

n← next node of the guiding tree from n
end if

end while

The poor threads are looking for job browsing the guiding tree. When a task can be
computed, the poor thread follows this outline, divided in three steps:

(1) Get computation ready: During this step, the poor thread does not lock the node
it chooses. This preserves the ability of the rich to visit without any latency this
node. Hence, in this latter case, the poor thread spending time during this step is
lost. At the end of the preparation, the poor thread locks the node to indicate it is
working on it, then the lock is removed.

(2) Compute: During the computation, the poor thread can find three kinds of result: a
global (e.g. the formula is satisfiable) or a local (e.g. the rooted sub-tree is unsatis-
fiable) information or sometimes none of these. Each global information is given
to the rich by a global variable. In the second case, the result is stored in one of
the shared contexts of the search-tree.

123

332 Int J Parallel Prog (2009) 37:324–342

Fig. 4 Poor threads’s first task
and threshold system

Conflict

Visited branches
Rich Path

Task 1

Threshold

(3) Give result: In this final step, the poor thread leaves its calculus context on the
search-tree for a future use by the rich or a poor thread. The node is locked during
this step.

This collaborative approach allows us to devise many poor tasks in the future. To
date, our solver named mtss implements two essential tasks:

• Open Guiding Sub-Tree: The first task assigned to a poor thread is rooted in the
guiding path: the computation of the right branch of a node belonging to the guid-
ing path (if the rich thread is computing the left one). The poor thread computes
the formula with the opposite truth value chosen by the rich thread on the left
branch. It then computes the next branching variable of the sub-tree if no solution
was found. At the end of this task, either a root of a guiding sub-tree is created, or
a global or local solution is found. The computation of the context of a new node
in the guiding tree is very expensive. Each new node will have the smallest rank
as possible for the first flipped split variable from the root node unless to waste
time if the rich thread backtracks before the end of the poor thread. That is why
we define an empirical threshold value which corresponds to an upper bound of
the depth in the search-tree. Beyond this depth limit the poor threads do not work
(see Fig. 4). The default value is empirically chosen from experimental results and
is around the middle depth of the search-tree according to the splitting variable
selection rule used (i.e. BSH [12]).

• Develop Guiding Sub-Tree: This task consists in computing a node and the next
splitting variable in a guiding sub-tree. The implementation is the same as the pre-
vious task except that it can be computed independently for a left or a right node.
In this case, the context of the previous calculus is copied. Since we are far enough
in the search-tree from the guiding path of the rich thread, the threshold value
mentioned above is ignored in this case. Thus, the poor threads simultaneously
deploy several guiding sub-trees rooted in the guiding path (i.e. the guiding tree).
This task is shown in Fig. 5. In order to maximize the helpful future work of the
rich thread and the future nodes to develop (i.e. the right dangling nodes), a poor
thread chooses to first open left branch from a node belonging to the guiding tree.

4.3 Context Swap and Role Swap

The threads take information from others through the shared search-tree. This induces
significant data exchanges between threads and a lot of context swaps. In order to

123

Int J Parallel Prog (2009) 37:324–342 333

Fig. 5 Example of execution
with the second task

Conflict

Threshold

Visited branches
Rich Path

Task 2
(7 times)

Table 1 Context swap cost between one poor thread and one rich thread

Execution time: 0.6 s. (240 vars) 9.7 s. (300 vars) 40 s. (350 vars)

Thread: Rich Poor Rich Poor Rich Poor

Context swaps 327 3,764 2,756 53,383 8,188 170,944

% / Time 0.32% 3.63% 0.17% 3.77% 0.13% 3.74%

Time spent (s) 0.00192 0.02178 0.01649 0.36569 0.052 1.496

estimate the swap context spending time, we run mtss on Itanium Montecito dual
core processor (see Sect. 5.1) using only two threads: one dedicated to the rich thread,
and the second to a single poor thread.

Based on the initial version of mtss, some benchmarks have been conducted to
evaluate the spending time of the threads to make context swaps. Table 1 shows the
time spent to swap the context calculus from poor to rich (see the “rich” columns) and
from poor to poor (see the “poor” columns). Readers can notice that this information
exchange cost for rich thread decreases as the formula size increases. A poor thread
spends much more time swapping context than the rich one because it always begins
its second task by copying the current context of a node in its local memory, and
always copies the new computed context in the shared node at the end of each task.
The rich thread will change its context if and only if it can take valuable informations
from a poor thread.

To date, mtss operates less context swaps than in its previous version because the
parallel solver is now able to directly swap a poor thread and the rich thread. This
role swap happens when the rich thread needs a node on which one poor task is in
computation. The rich thread becomes a poor thread when it finds a such node.

The swap is possible because the poor thread unlocks the node during the compu-
tation (task’s second step), hence, the rich thread can lock it to read the information
about the task and the associated poor thread. A global variable containing the identity
of the rich thread is changed by the rich thread before it becomes a poor thread. Once
the poor thread has finished its computation, it reads the identity of the new rich thread
and becomes it if the number of the global variable is equal to itself. In a such case, the
poor thread does not copy context into the search-tree but stops its function and calls
the rich function. Moreover, this principle will permit us to add long tasks. Indeed,
now the rich thread never waits for any poor thread to finish its task. A mean number
of this function swap is given in Table 2. It is interesting to notice we had to develop

123

334 Int J Parallel Prog (2009) 37:324–342

Table 2 Number of role swaps
between three poor threads
and one rich thread

Formula size 350 vars 400 vars 450 vars

Execution time (s) 8.04 48.01 306.42

Role swaps 1731 7697 24686

Fig. 6 Impact of role swap
on th efficiency

 65

 70

 75

 80

 85

 90

 95

 100

 1 2 3 4 5 6 7 8

ef
fic

ie
nc

y

threads (3SAT / 450v)

mtss
mtss (+ role swap)

an iterative version of this swap principle to keep good efficiency. The efficiency gap
(Fig. 6) is quite reasonable but the most interesting by this improvement is the ability
to devise long poor tasks in future works.

4.4 Memory Management

Our technique leads to irregular time and space memory accesses. To insure good
performances despite that difficulty, we have implemented a specific memory man-
agement. It consists in isolating memory as mentioned in [24] (see Fig. 7). The memory
allocations are grouped by usage so that each part will be contiguous. Thus, cache-
faults (cache-misses not required) are restricted. Some free areas are needed to avoid

Fig. 7 Memory management

123

Int J Parallel Prog (2009) 37:324–342 335

Fig. 8 Efficiency of our
approach using two memory
managing policies according
to the number of threads

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ef
fic

ie
nc

y

threads

our memory allocation
classical memory allocation

the allocation of a memory page dedicated to two areas with different usages. Each area
is aligned on the beginning of a memory page. Three memory types are distinguished:

• Private memory for each thread (arrays of some datas in functions, …), moreover
each thread memory is isolated from others

• Shared and read-only memory (invariant datas as clauses or number of variables,
…)

• Read and write shared memory (search-tree), each node is isolated from the
others.

To estimate improvements due to this memory locality, a benchmark is shown in
Fig. 8. We can note a difference between efficiency: with four threads, our solver is
78% efficient versus 63% for a modified solver using classical mallocs. This difference
of efficiency increases with the number of threads.

4.5 New Features

On top of parallel improvements, we added some enhancements in the heuristic
BSH which are picking, pickdepth and pickback. This is a brief explanation of these
enhancements. First of all, we must explain what the look ahead technique is. This
technique is used by our heuristic to determine the best variable to choose: a set of
variables are propagated and we analyse the formula after each propagation. This
analysis helps us to determine the best choice.

• Picking: if during the look-ahead of the variable x , a variable y is always forced
at the same value v, the variable y can be assigned to v even if x is not choosed.

• Pickback: during the look-ahead of the variable x , we try to increase the number
of propagated variables by assigning variables which can propagate x .

• Pickdepth: during a look-ahead of the variable x , some more look-aheads are
launched on a subset of variables belonging to reduced clauses.

The new sequential version of mtss, thanks to these features, is nearly four times
faster than the previous one. For example, you can see computation time for the two

123

336 Int J Parallel Prog (2009) 37:324–342

Fig. 9 Running time on a 3-sat
formula of 450 variables

 0
 250
 500
 750

 1000
 1250
 1500
 1750
 2000
 2250
 2500
 2750
 3000
 3250
 3500

 1 2 3 4 5 6 7 8

se
co

nd
s

threads

mtss (previous version)
mtss (new features + role swap)

versions in Fig. 9. To take best advantage from these features, we had to change some
data structures, that is the reason why you can observe a light fall of efficiency. In
future works, we will try to conserve speed and regain efficiency.

4.6 Implementing Our Approach with OpenMP

Thanks to OpenMP, the parallel section was very easy to design (see Annex). Actually,
the main function remains smart: it defines a parallel section and creates the rich thread
and the set of poor ones. To launch threads, we use these following OpenMP directives
and functions: #pragma omp parallel, omp_set_num_threads, omp_get_thread_num.

Unfortunately, it was impossible to use automatic OpenMP parallel loops (like
“#pragma omp parallel for”) in mtss due to the unpredictable path followed by threads
during the computation and the unpredictable size of the search-tree. That is why we
had to explicitly manage ourself the threads of mtss. Synchronization of our threads
implies the use of locks on nodes each time the threads modify them (description in
Sect. 4.2). Hence, we use these following OpenMP directives and functions: #pragma
omp flush, omp_set_lock, omp_unset_lock, omp_test_lock and omp_init_lock.

5 Experimental Results

mtss is developed in C language with OpenMP primitives and functions. It has been
compiled with the Intel compiler ICC 10.1.

5.1 Protocol

The cluster of SMP used for benchmarks is ROMEO II3 from the University of Reims.
48 dual Core Itanium 2 (Montecito 4M 1.6Ghz) are dedicated to computation. The

3 http://www.romeo2.fr.

123

http://www.romeo2.fr

Int J Parallel Prog (2009) 37:324–342 337

Fig. 10 Efficiency graph of
random 3-sat unsatisfiable
formulas solving with a ratio

#vars
#clauses = 4.25 (pick of
difficulty) for 350, 400 and 450
variables

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 1 2 3 4 5 6 7 8

ef
fic

ie
nc

y

threads

mtss on 350v
mtss on 400v
mtss on 450v

Table 3 Informations on
sequential running time

#vars #Instances Sequential time (s)

Min Max Mean

350 10 17.33 32.39 24.20

400 10 46.2 248.18 144.86

450 10 451.46 1,568.30 933.97

cluster is made-up of six SMP servers of 8 cores, one of 16 cores and the last SMP
node offers 32 cores. Each core of the cluster has at least 2 Gbytes of main memory.

5.2 Formulas

The formulas tested are random 3-sat at the pick of difficulty [15] for each size. Each
curve is generated from several computations and for different number of threads on
10 formulas for each size. The benchmarks were on three different sizes of formulas:
350, 400 and 450 variables. Results are shown in Fig. 10.

The studied formulas are relatively small: the sequential solving time is around
25, 150 and 1000 s respectively for the formulas of tiny, medium and large size (see
Table 3).

5.3 Results

As mentioned earlier, the objective is to have an efficient sat solver for multi-core
CPU, this is the reason why the experiments are limited to 8 cores.

For each size of the problem, 10 formulas have been generated. Each formula
has been two times computed with 1, 2, 4 and 8 processors. So, 240 runs have been
conducted to obtain results in Fig. 10.

One can observe that mtss achieves good efficiencies until eight processors even
for the smaller problems (with 350 variables, the efficiency is greater than 65%). When
using only 4 cores, the efficiency measured is close to 75%. One may notice that we
have a fine grain application since mtss threads visit about 2,000 nodes per second.

123

338 Int J Parallel Prog (2009) 37:324–342

Second, when the size of the problem increases, the efficiency is more and more
higher. The efficiency observed with 450 variables is near from 72% for 8 processors
which is five points better than with 350 variables.

6 Conclusion and Future Works

In this paper, we presented a new parallel scheme to improve the main state-of-the-art
enumerative sat solving approaches and provided an easy way to use and to parallelize
the existing sequential deduction techniques. Our solution has been implemented in
a new parallel solver named mtss. Readers should also notice that sat is an original,
and difficult, application for OpenMP since it is not a computation-intensive applica-
tion and, in the same time, it is an irregular application in terms of data structures and
memory access. So, to reach good efficiency, one cannot assume that the computation
overlap will balance the time wasted in cache missings.

The mtss key features can be summarized in the following way:

• mtss defines a parallel exploration of the search space without any a priori
informations about the instance of the problem to solve or about the sat solver
used;

• it induces a dynamic load balancing scheme which is fully distributed and server
initiated;

• with the general concept of poor thread, any sequential sat optimization can be
easily effective in the parallel solver;

• mtss is particularly well adapted to multi-core processors by having reasonable
needs in terms of memory allocation and by offering reasonably memory access
predictions for an irregular application;

The current version of mtss is an efficient parallel solver, and is faster than the first
version introduced in [10]. Nevertheless, several improvements can be implemented
to make mtss a real concurrent to the actual best sat solvers.

In the short run, mtss will include a larger set of poor tasks. Each new poor task
is a new hope to improve it and we plan to study some of the existing ones such
as the preprocessing techniques, subsumption deduction, clause learning, stochastic
local search, … . Thanks to the architecture of mtss and its dynamic load balancing
strategy, the implementation of these new tasks will not impact the rich thread and the
efficiency of the parallel solver.

An other way of improving the parallel solver would consist in developing a more
effective collaboration between the threads, not only based on the guiding tree, but also
taking into account information learned by threads during the resolution, like good
or no good recording for example. To achieve this goal, mtss should introduce, and
manage, a new parallel shared learning space that can be read and modified by threads.

In the long run, mtss should be able to take advantage from a cluster of SMP
nodes. To address this goal, the parallel evaluation of the search space should used
both the guiding tree approach introduced in this paper and the classical search
tree decomposition. In the same time, mtss should be implemented using an hybrid
MPI/OpenMP model to manage the exchange between the nodes, using MPI and the
threads inside a node, using OpenMP.

123

Int J Parallel Prog (2009) 37:324–342 339

Annex: Implementing MTSS with OPENMP

Thanks to OpenMP, the parallel section was very easy to design. In main function:

nb_all_threads = number of poor threads required by user +1;

omp_set_num_threads(nb_all_threads);
#pragma omp parallel
{
thread_handler(omp_get_thread_num());

}

function thread_handler(me) {

#pragma omp flush(formula_unsolved, rich_id)
while(formula_unsolved) {

if (me == rich_id) rich_thread(me);
else poor_thread(me);
#pragma omp flush(formula_unsolved, rich_id)

}
}

The rich_thread function is in charge of the guiding-path management.

function rich_thread(me) {
node = my_node[me];

#pragma omp flush(formula_unsolved)
while(formula_unsolved) {

result = propagation & BSH (node);

switch(result) {
case UNDEF:
node = new_node_rooted_in(node);
break;

case SAT:
omp_set_lock(solution);
formula_solution = SAT;
formula_unsolved = FALSE;
#pragma omp flush(formula_unsolved)
omp_unset_lock(solution);
break;

case UNSAT:
node = last_node_with_a_side_not_finished_from

(node);
if (node == ROOT && right_branch(node) == UNSAT)

{omp_set_lock(solution);

123

340 Int J Parallel Prog (2009) 37:324–342

formula_solution = UNSAT;
formula_unsolved = FALSE;
#pragma omp flush(formula_unsolved)
omp_unset_lock(solution);

}
else {

omp_set_lock(node);
if (a poor is working on ’node’)
{rich_id = the poor’s id which is working on

’node’;
#pragma omp flush(rich_id)
omp_unset_lock(node);
return;

}
else {
if (informations from poor threads are
available) {
omp_unset_lock(node);
copy_context from ’node’ to my_context;

}
else {
omp_unset_lock(node);
update_current_context;//normal backtrack

}
}

}
}
#pragma omp flush(formula_unsolved)

}
}

The poor_thread function browses the guiding-tree constructed by the rich_thread
function and the poor_thread functions.

function poor_thread(me) {
node = ROOT;

while(node != NULL && node.depth < threshold) {
switch (node.poor_task_done) {
case NONE:
prepare_task_1(node);
omp_set_lock(node);
’me’ is computing task 1 on ’node’;
omp_unset_lock(node);
compute_task_1(node);
omp_set_lock(node);

123

Int J Parallel Prog (2009) 37:324–342 341

#pragma omp flush(rich_id)
if (me == rich_id) {

my_node[me] = node;
omp_unset_lock(node);
return;

}
else give_infos_and_results_from_task_1(node);
node.poor_task_done = OPEN_GUIDING_SUBTREE;
omp_unset_lock(node);
break;

case OPEN_GUIDING_SUBTREE:
case DEVELOP_GUIDING_SUBTREE:
temp_node = browse_guiding_subtree_from(node);
prepare_task_2(temp_node);
omp_set_lock(temp_node);
’me’ is computing task 2 on ’temp_node’;
omp_unset_lock(temp_node);
compute_task_2(temp_node);
omp_set_lock(temp_node);
#pragma omp flush(rich_id)
if (me == rich_id) {

my_node[me] = temp_node;
omp_unset_lock(temp_node);
return;

}
else give_infos_and_results_from_task_2
(temp_node);
node.poor_task_done = DEVELOP_GUIDING_SUBTREE;
omp_unset_lock(temp_node);

}
node = next_node_of_guiding_path(node);

}
}

Since the way followed by a thread is unpredictable, it was impossible to use
OpenMP parallel loops in mtss. That is why we had to use locks on nodes to do it by
ourself.

References

1. Cook, S.A.: The complexity of theorem proving procedures. In: 3rd ACM Symposium on Theory of
Computing, pp. 151–158. Ohio (1971)

2. Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: an algorithm for satisfiability. Random
Struct. Algorithms 27(2), 201–226 (2005)

3. Kautz, H., Selman, B.: Pushing the envelope: planning, propositional logic and stochastic search.
In: Proceedings of the 30th National Conference on Artificial Intelligence and the 8th Innovative

123

342 Int J Parallel Prog (2009) 37:324–342

Applications of Artificial Intelligence Conference, pp. 1194–1201. AAAI Press / MIT Press, Menlo
Park, 4–8 August 1996

4. Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encodings of bounded LTL model
checking. Logic. Method Computer Sci. 2, (2006)

5. Potlapally, N.R., Raghunathan, A., Ravi, S., Jha, N.K., Lee, R.B.: Aiding side-channel attacks on cryp-
tographic software with satisfiability-based analysis. IEEE Trans. VLSI Syst. 15(4), 465–470 (2007)

6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. J. Assoc. Comput.
Mach. 5, 394–397 (1962)

7. Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality reduction. (Online).
Available: citeseer.ist.psu.edu/bacchus03effective.html (2003)

8. Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in a boolean
satisfiability solver. In: Proceedings of ICCAD, San Jose, Nov 2001

9. Habbas, Z., Krajecki, M., Singer, D.: Decomposition techniques for parallel resolution of constraint
satisfaction problems in shared memory: a comparative study. Intern. J. Comput. Sci. Eng. (IJCSE).
1(2/3/4):192–206, inderscience Publishers, ISSN : 1742–7185 (2005)

10. Vander-Swalmen, P., Dequen, G., Krajecki, M.: On multi-threaded satisfiability solving with openmp.
In: IWOMP, pp. 146–157 (2008)

11. Hoos, H.H., Stützle, T.: Stochastic local search : foundations and applications (The Morgan Kaufmann
Series in Artificial Intelligence). Morgan Kaufmann, September 2004

12. Dequen, G., Dubois, O.: An efficient approach to solving random-satproblems. J. Autom. Reason-
ing. 37(4), 261–276 (2006)

13. Zhang, H., Bonacina, M.P., Hsiang, J.: Psato: a distributed propositional prover and its application to
quasigroup problems. J. Symb. Comput. 21(4–6), 543–560 (1996)

14. Jurkowiak, B., Li, C.M., Utard, G.: Parallelizing Satz using dynamic workload balancing. In: Pro-
ceedings of Workshop on Theory and Application of Satisfiability Testing (Sat’2001), pp. 205–211.
Boston, June 2001

15. Mitchell, D., Selman, B., Levesque, H.J.: Hard and easy distribution of SAT problems. In: Proceedings
of 10th National Conference on Artificial Intelligence, pp. 459–465. AAAI (1992)

16. Chrabakh, W., Wolski, R.: Gridsat: design and implementation of a computational grid application. J.
Grid Comput. 4(2), 177–193 (2006)

17. Singer, D., Monnet, A.: JaCk-SAT: A new parallel scheme to solve the satisfiability problem (SAT)
based on join-and-check. In: Proceedings of Parallel Processing and Applied Mathematics, Gdansk,
(2007)

18. Feldman, Y., Dershowitz, N., Hanna, Z.: Parallel multithreaded satisfiability solver: design and imple-
mentation (2004)

19. Lewis, M., Schubert, T., Becker, B.: Multithreaded sat solving. In: ASP-DAC ’07: Proceedings of the
2007 Conference on Asia South Pacific Design Automation, pp. 926–931. Washington, DC, USA:
IEEE Computer Society (2007)

20. Silva, J.P.M., Sakallah, K.A.: Grasp a new search algorithm for satisfiability. In: ICCAD ’96: Pro-
ceedings of the 1996 IEEE/ACM International Conference on Computer-aided design, pp. 220–227.
Washington, DC, USA: IEEE Computer Society (1996)

21. Chu, G., Stuckey, P.J.: Pminisat: a parallelization of minisat 2.0. Tech. Rep. (Online). Available: http://
www-sr.informatik.uni-tuebingen.de/sat-race-2008/descriptions/solver_32.pdf (2008)

22. Hamadi, Y., Jabbour, S., Sais, L.: Manysat a multicore sat solver (first rank at the sat race 2008 com-
petition). Tech. Rep. (Online). Available: http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/
descriptions/solver_24.pdf (2008)

23. Wand, Y.T., Morris, R.J.: Load sharing in distributed systems. IEEE Trans. Computers 202–217 (1985)
24. Jaillet, C., Krajecki, M.: Parallel programming with openmp: a new memory allocation model avoid-

ing cache faults. In: International Workshop on OpenMP 2007 (IWOMP2007). Tsinghua University,
Beijing, China, jun 2007, short paper

123

citeseer.ist.psu.edu/bacchus03effective.html
http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/descriptions/solver_32.pdf
http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/descriptions/solver_32.pdf
http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/descriptions/solver_24.pdf
http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/descriptions/solver_24.pdf

	A Collaborative Approach for Multi-Threaded SAT Solving
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The sat Solving
	2.2 The dll Procedure

	3 sat Parallel Solving
	4 Our Collaborative Approach
	4.1 Rich Thread
	4.2 Poor Tasks
	4.3 Context Swap and Role Swap
	4.4 Memory Management
	4.5 New Features
	4.6 Implementing Our Approach with OpenMP

	5 Experimental Results
	5.1 Protocol
	5.2 Formulas
	5.3 Results

	6 Conclusion and Future Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

