
Int J Parallel Prog (2008) 36:478–492
DOI 10.1007/s10766-008-0079-0

Scalability and Parallel Execution of Warp Processing:
Dynamic Hardware/Software Partitioning

Roman Lysecky

Received: 4 March 2008 / Accepted: 23 July 2008 / Published online: 19 September 2008
© Springer Science+Business Media, LLC 2008

Abstract Warp processors are a novel architecture capable of autonomously opti-
mizing an executing application by dynamically re-implementing critical kernels
within the software as custom hardware circuits in an on-chip FPGA. Previous
research on warp processing focused on low-power embedded systems, incorporating
a low-end ARM processor as the main software execution resource. We provide a
thorough analysis of the scalability of warp processing by evaluating several possible
warp processor implementations, from low-power to high-performance, and by eval-
uating the potential for parallel execution of the partitioned software and hardware.
We further demonstrate that even considering a high-performance 1 GHz embedded
processor, warp processing provides the equivalent performance of a 2.4 GHz pro-
cessor. By further enabling parallel execution between the processes and FPGA, the
parallel warp processor execution provides the equivalent performance of a 3.2 GHz
processor.

Keywords Warp processing · Hardware/software partitioning · Dynamically
adaptable systems · Embedded systems

1 Introduction

Field programmable gate arrays (FPGAs) are increasingly becoming more popular
and mainstream. FPGAs have moved from primarily being used as a prototyping and
debugging platform to being incorporated within many computing domains, from
high-performance supercomputers to consumer electronics. FPGAs can implement
any hardware circuit simply by downloading bits for the hardware circuit, much in the

R. Lysecky (B)
Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 857821, USA
e-mail: rlysecky@ece.arizona.edu

123

Int J Parallel Prog (2008) 36:478–492 479

same way that microprocessors can execute any software program simply by down-
loading a new application binary. The programmability, flexibility, rapid prototyping,
and debugging advantages that FPGAs offer over ASICs have enabled more designs
to be implemented using FPGAs. This trend will likely continue as FPGAs become
more advanced with larger capacities, higher performance, domain specific architec-
tural features, and decreasing costs.

With the continuing evolution of FPGAs, single-chip microprocessor/FPGA
devices have emerged, incorporating one or more microprocessors and an FPGA into a
single device along with efficient mechanisms for communication between the micro-
processor, FPGA, and shared memory. Such devices, available from Xilinx, Altera,
and Atmel, are ideally suited to hardware/software partitioning.

Hardware/software partitioning is the task of partitioning an application between
software executing on a microprocessor and hardware coprocessors, which can be effi-
ciently implemented within an FPGA. Extensive research has demonstrated the ben-
efits that can be obtained by re-implementing a software application’s critical kernels
as a custom hardware coprocessor on an FPGA. For many applications, researchers
and commercial vendors have observed overall application speedups of 10X–100X
[1–11], and approaching 1000X [12,13] for several highly parallelizable applications.
Hardware/software partitioning can also reduce energy consumption by up to 99%
[14–17].

Programming an FPGA is fundamentally the same as programming a microproces-
sor. We can program an FPGA by downloading a bitstream into the FPGA’s memory,
just as we program a microprocessor by downloading a software binary. Thus, con-
ceptually, a compiler can perform hardware/software partitioning, creating a software
part executing on a microprocessor and a hardware part executing on an FPGA. Such
compilers do exist, although mostly in the research domain. Unfortunately, while hard-
ware/software partitioning offers the potential for tremendous speedups, automated
partitioning compilers require a significant departure from mainstream software tools.
First, the compiler must determine the critical regions of a software application, which
typically requires profiling. Profiling, while conceptually straightforward, is often not
a standard part of compilation—especially in embedded systems, where executing
an application often involves complicated time-dependent interactions with the appli-
cation’s environment, making setting up simulations difficult. Second, the compiler
must generate a binary for the microprocessor and a binary—or bitstream—for the
FPGA, where the latter is by no means standard. Thus, partitioning compilers lose the
important concept of a standard binary and the associated benefits of portability and
backwards compatibility. Furthermore, such partitioning tools often require extensive
design expertise and significant effort to maximize results.

Recently, researchers showed that by using decompilation techniques, designers
could perform desktop hardware/software partitioning starting from software binaries
rather than from high-level code, with competitive resulting performance and energy
consumption [18]. Binary-level partitioning opens the door to dynamic hardware/soft-
ware partitioning, in which an executing binary is dynamically optimized by moving
software kernels to on-chip configurable logic.

We previously demonstrated the feasibility of dynamic hardware/software partition-
ing, which dynamically and autonomously improves the speed and energy

123

480 Int J Parallel Prog (2008) 36:478–492

consumption of a software binary executing on a microprocessor, a process called
warp processing [19]. A warp processor dynamically detects a software binary’s crit-
ical kernels, re-implements those kernels as a custom hardware circuit in an on-chip
FPGA, and replaces the software kernel by a call to the new hardware implementa-
tion of that kernel, all without any designer effort or knowledge thereof. While not
all applications can be improved using warp processing, many can, with application
speedups of 2X–10X and average energy reductions of 66%, compared to software
only execution on a low-power embedded processor.

While warp processing enables a new computing domain through advances in
embedded processing architectures in which software kernels can be dynamically
and autonomously converted to hardware, previous warp processing work focused
on low-end, low-power embedded processors as the main processor, such as a low-
power ARM processor. Furthermore, the current warp processor architecture utilizes
a mutually exclusive HW/SW execution framework, in which the software execution
and hardware execution after partitioning are executed one after the other, thereby not
leveraging the potential for executing software and hardware in parallel.

In this paper, we perform a thorough analysis of warp processing for several warp
processor implementations, including a low-end AMR7 based warp processor and
high-end XScale based warp processor. We further analyze the scalability of warp
processors across many possible implementations with a processor independent anal-
ysis framework, utilizing ratios to characterize the processor and FPGA within the
warp processor implementation. Finally, we analyze the potential of a parallel warp
processing execution framework, in which the software and hardware execution after
dynamic partitioning can overlap and execute in parallel, thereby achieving greater
application speedups.

2 Warp Processing Overview

Figure 1 provides an overview of a warp processor, highlighting the steps performed
during dynamic hardware/software partitioning. A warp processor consists of a main
processor with instruction and data caches, an efficient on-chip profiler, our warp-
oriented FPGA (W-FPGA), and an on-chip computer-aided design module (OCM).
Initially, a software application executing on a warp processor will execute only on the
main processor. During execution of the application, the profiler monitors the execu-
tion behavior of the application to determine the critical kernels within the application.
After identifying the critical regions, the OCM re-implements the critical software
regions as a custom hardware component within the W-FPGA.

We include a profiler within each warp processor to determine the critical kernels
within the executing application that the warp processor could implement as hard-
ware. This non-intrusive profiler monitors the instruction addresses on the instruction
memory bus and maintains relative execution frequencies of application kernels using
a cache of 16 entries [20]. Through simulations of our warp processor design, we have
found that the profiler can accurately determine the critical regions of an application
within 10 branch frequency register saturations. Using this methodology, the profiler

123

Int J Parallel Prog (2008) 36:478–492 481

5
µP I

D

Warp
Config.

Partitioned application
executes faster and
with lower energy
consumption

Profile application to
determine critical regions

2

Profiler

Initially execute
application in
software only

1

µP
I$

D$

Partition critical
regions to hardware

3

On-chip CAD
Module

Program configurable logic
and update software binary

4

Warp-oriented
FPGA

(W-FPGA)

Fig. 1 Warp processor architecture overview

is able to properly select the correct critical kernels for partitioning for all applications
we considered.

After profiling the application to determine the critical regions, the on-chip CAD
module executes partitioning, synthesis, mapping, placement, and routing tools to
re-implement the critical software kernels in hardware, producing a bitstream for pro-
gramming the W-FPGA. The OCM first analyzes the profiling results for the executing
application and determines which critical region the warp processor should implement
in hardware. After selecting the software region to implement in hardware, the OCM
decompiles the critical region into a control/dataflow graph and synthesizes the critical
kernel to produce an optimized hardware circuit that is then mapped onto our custom
FPGA through technology mapping, placement, and routing. Finally, the OCM con-
figures the configurable logic and updates the executing application’s binary code to
utilize the hardware within the configurable logic fabric.

Currently, we implement the on-chip CAD module as lean software tools exe-
cuting on a separate ARM7 processor including caches and separate instruction and
data memories, which can either be located on-chip or off-chip depending on what is
acceptable for a given warp processor implementation. Alternatively, we could elimi-
nate the need for the OCM by executing the CAD tools as a software task on the main
processor sharing computation and memory resources with the main application.

Significant previous research has been conducted detailing the warp processor
architecture and on-chip CAD tools [19,21,22] and are beyond the scope of this paper.

3 Performance and Energy Benefits of Warp Processing

We first consider two alternative warp processor designs, one incorporating a low-
power ARM7 [23] processor executing at 100 MHz and the other incorporating a high-
performance XScale processor [24] executing at a maximum frequency of 624 MHz.
Both warp processor implementations include a W-FPGA executing at 250 MHz, and
a low-power ARM7 processor executing the on-chip CAD tools.

123

482 Int J Parallel Prog (2008) 36:478–492

Table 1 Embedded benchmark applications

Benchmark Benchmark suite Description

brev Powerstone Bit reversal

g3fax Powerstone Group three fax decode

g721 Powerstone CCITT voice decoding

matmul Powerstone Matrix multiplication

mpeg2 MediaBench MPEG-2 decoder

pktflow EEMBC IP header validation

bitmnp EEMBC Bit manipulation

canrdr EEMBC Controller area network (CAN)

tblook EEMBC Table lookup and interpolation

ttsprk EEMBC Engine spark controller

matrix EEMBC Matrix operations

idct EEMBC Inverse discrete cosine transform

fir EEMBC Finite impulse response filter

url NetBench URL-based switching

rocm Warp Logic minimizer

We simulated the warp processor execution for a number of standard embedded
benchmark applications collected from several different benchmark suites, including
Powerstone [25], EEMBC [26] MediaBench [27], and NetBench [28], in addition to a
lean logic minimization algorithm [21]. Table 1 presents a summary of the embedded
benchmark applications considered. We only considered those applications amenable
to speedup using FPGA, namely applications whose critical kernels do not use float-
ing point arithmetic, dynamic memory allocation, recursion, function pointers, and
regular pointers (other than for array accesses).

For all applications, we simulated the warp processor implementations utilizing
an ARM and XScale port of the SimpleScalar simulator [29] to determine software
execution cycles and gate-level simulations of the W-FPGA to determine hardware
execution cycles for the partitioned critical kernels. All software and hardware execu-
tion times include the communication cycles required to communicate and synchronize
between the processor and FPGA.

We calculated the energy consumed before and after dynamically partitioning the
critical kernels to hardware using the following equations:

ETotal = EProc + EFPGA
EProc = PProc(active)tProc(active) + PProc(idle)tProc(idle)

EFPGA = PFPGA(active)tFPGA(active) + PFPGA(static)tTotal

The total energy consumption (ETotal) is the sum of the energy consumed by the proces-
sor (EProc) and the energy consumed by the FPGA (EFPGA). The energy consumed by
the processor consists of the energy consumed executing the software applications and
the idle energy consumed by the processor when the FPGA is active. The active energy

123

Int J Parallel Prog (2008) 36:478–492 483

0

5

10

15

20

25

30

br
ev

g3
fa

x
g7

21

m
atm

ul

m
pe

g2

pk
tflo

w
bi

tm
np

ca
nr

dr

tb
loo

k

tts
pr

k

m
at

rix idc
t fir ur

l

ro
cm

Ave
ra

ge
:

Benchmark

S
p

ee
d

u
p

0%

20%

40%

60%

80%

100%

br
ev
g3

fax
g7

21

m
at

m
ul

m
pe

g2

pk
tflo

w
bi

tm
np

ca
nr

dr

tb
loo

k

tts
pr

k

m
at

rix id
ct fir ur

l
ro

cm

Ave
ra

ge
:

Benchmark

E
n

er
g

y
R

ed
u

ct
io

n

Fig. 2 Speedup and percentage energy consumption reduction of a 100 MHz ARM7 based warp processor
compared to software execution alone

consumption of the processor is computed as the processor’s active power consump-
tion (PProc(active)) multiplied by the processor’s active execution time (tProc(active)). The
idle energy consumption of the processor is computed as the processor’s idle power
consumption (PProc(idle)) multiplied by processor’s idle time (tProc(idle)). The energy
consumed by the FPGA consists of the active energy consumed while the FPGA is
executing the partitioned hardware kernels and the FPGA’s static power consumption.
The active energy consumption of the FPGA is computed as the FPGA’s active power
consumption (PFPGA(active)) multiplied by the FPGA’s active time (tFPGA(active)). The
static energy consumed by the FPGA is computed as the FPGA’s static power con-
sumption (PFPGA(static)) multiplied by the total execution time (tTotal). While the static
power consumption of the FPGA is consistent across all benchmarks and frequencies,
the active power consumption of the FPGA is calculated for each partitioned criti-
cal kernels and operating frequency using a synthesizable VHDL specification of the
W-FPGA design. We note that the functionality of the W-FPGA design was verified
through post-layout simulation in collaboration with the Intel Research Shuttle.

Figure 2 presents the speedup and energy reduction benefits of a 100 MHz ARM7
based warp processor for several embedded benchmark applications compared to soft-
ware only execution. The warp processor achieves an average application speedup of
8.4X, with applications speedups ranging from 2.3X for g721 to over 25X for brev,
indicating that warp processing is extremely effective in improving embedded system
performance for low-end embedded systems. On average, warp processing provides
the equivalent performance of an 840 MHz ARM processor. In addition, warp process-
ing results in an average energy reduction of 53%, with a maximum reduction of 85%
for brev. However, because the active power consumption of the FPGA is approxi-
mately 3X higher than the active power consumption of the ARM7 processor, several
applications only achieve small reduction in energy consumption. For example, warp
processing only reduces energy consumption by 3.7% for the application g721.

Figure 3 presents the speedup and energy reduction benefits of our alternative high-
performance 624 MHz XScale based warp processor for several embedded benchmark
applications compared to software only execution. The warp processor achieves an
average application speedup of 3.2X over the already high-performance XScale pro-
cessor. Applications speedups range from 1.4X for canrdr to almost 7X for bitmnp,
indicating that warp processing is quite effective in improving embedded system per-
formance, even for high-performance systems. In addition, warp processing results in
an average energy reduction of 75%, with a maximum reduction of 92% for brev.

123

484 Int J Parallel Prog (2008) 36:478–492

0
1
2
3
4
5
6
7
8

br
ev

g3
fa

x
g7

21

m
at

m
ul

m
pe

g2

pk
tflo

w
bi

tm
np

ca
nr

dr

tb
lo

ok

tts
pr

k

m
atr

ix
idc

t fir ur
l

ro
cm

Ave
ra

ge
:

Benchmark

S
p

ee
d

u
p

0%

20%

40%

60%

80%

100%

br
ev
g3

fa
x
g7

21

m
at

m
ul

m
pe

g2

pk
tflo

w
bit

m
np

ca
nr

dr

tb
lo

ok

tts
prk

m
atr

ix
idc

t fir ur
l

ro
cm

Ave
ra

ge
:

Benchmark

E
n

er
g

y
R

ed
u

ct
io

n

Fig. 3 Speedup and percentage energy consumption reduction of a 624 MHz XScale based warp processor
compared to software execution alone

In general, the lower operating frequency of ARM based warp processor implemen-
tation will result in higher application speedups due to warp processing. Considering
a fixed execution frequency for the on-chip FPGA, as the operating frequency of the
main processor is increased, the speedup achieved by warp processing will decrease,
due the higher base software execution of the faster processor. However, for some
applications the performance improvements of warp processing are similar for both
warp processor implementations. For example, the application speedup for g721 is
2.3X and 2.0X for the ARM7 and XScale based warp processor implementations,
respectively. Warp processing is able to partition four critical kernels within the g721
application to hardware within the W-FPGA. However, those four loops comprise
only 52% of the original software execution for both warp processor implementa-
tions. Thus, the maximum possible speedup that can be achieved by warp processing
is 2.3X. Both the ARM7 and XScale based warp processors are able to achieve near
optimal results as the average kernels speedup for the four kernels are 63X and 10X,
respectively. For g721, the performance increase is limited by the size of the FPGA
and number of kernels that can be supported within the FPGA.

On the other hand, the application speedup for brev is 27X and 5X for the ARM7
and XScale based warp processor implementations, respectively. brev performs an
efficient bit reversal algorithm in which 99.5% application execution is within a single
critical kernel. Thus, the reduction in speedup between the two implementations is
related to the difference in original software execution. For brev, the ARM7 based
warp processor is able to improve the performance of the critical kernel by 31X, while
the XScale based warp processor only achieves a kernel speedup of 5X. The reduced
kernel speedup of the XScale based warp processor can be attributed to the 6X faster
software execution achieved by the warp processor, as both implementations result in
the same hardware configuration within the FPGA.

3.1 Scalability

Application speedups and energy reduction of warp processing is dependent on the
underlying processor and FPGA. For performance, this difference is due to the ratio
of processor frequency to FPGA operating frequency, which can vary significantly
across different systems. To analyze the scalability of warp processing across several
possible warp processor implementations, we analyzed the performance and energy
benefits of warp processing for several processor to FPGA frequency ratios.

123

Int J Parallel Prog (2008) 36:478–492 485

Table 2 Ratios of processor to
FPGA execution frequency and
possible representative systems

µP:FPGA ratio Representative systems

(Processor MHz/FPGA MHz)

1:2.50 100 MHz/250 MHz (ARM7 Warp Processor)

1:2.25 85 MHz/200 MHz (MicroBlaze Warp Processor)

1:2.00

1:1.75

1:1.50

1:1.25 200 MHz/250 MHz (ARM9 Warp Processor)

1:1.00 450 MHz/450 MHz (Virtex-4 FX)

1:0.75

1:0.50 624 MHz/250 MHz (XScale Warp Processor)

1:0.25 1 GHz/250 MHz (High-end Embedded System)

Table 2 presents the processor to FPGA frequency ratios considered and possible
representative system for several of those ratios. The ratios range from a low-end
warp processor with a processor to FPGA ratio of 1:2.5, representing the ARM7 warp
processor implementation previously considered, to a high-end warp processor with
a ratio of 1:0.25. The high-end warp processor is representative of an implementation
combining a 1 GHz processor with a 250 MHz FPGA. We note that the ratio of 1:1
is representative of several commercially available single-chip microprocessor/FPGA
devices, such as the Virtex-4 FX device form Xilinx. The Virtex-4 FX FPGA incorpo-
rates a 450 MHz PowerPC and an FPGA capable of executing at a maximum frequency
of 450 MHz—depending on the hardware implemented within the FPGA.

Figure 4 presents the speedup or warp processing for the various ratios of proces-
sor to FPGA frequency of Table 2, highlighting the speedup for several embedded
application and the average speedup across all embedded application of Table 1. The
three applications, brev, g721, and mpeg2, represent applications with the highest,
lowest, and average speedups. Warp processor implementations in which the FPGA
executes at a higher frequency than the processor can achieve extremely high appli-
cations speedups as the increased execution speed and parallelism of the FPGA allow
for greatly improved execution of the critical kernels. Within this range of implemen-
tations, the application speedups range from 2.2X for g721 with a ratio of 1:1.25 to
27X for brev with a ratio of 1:2.5. For mpeg2, the applications speedup ranges from
7.6X to 6.6X across the various warp processor implementations.

Starting with a ratio of 1:1, the performance improvements of warp processing
are achieved primarily through the increased parallelism of the partitioned hardware
implementation executing with the FPGA. If we consider an FPGA with a fixed oper-
ating frequency, the range of processor to FPGA frequency ratios from 1:1 to 1:0.25
corresponds to a 4X increase in the execution frequency of the processor. However, the
increased parallelism of implementing critical kernels within the FPGA still provides
good application speedups starting at 5.5X for a ratio of 1:1 to 2.4X and the high-end.
Even considering a high-end embedded system with a 1 GHz processor and 250 MHz
FPGA, warp processing is able to provide an average equivalent performance of a
2.4 GHz processor.

123

486 Int J Parallel Prog (2008) 36:478–492

0
5

10
15
20

25
30

1:
2.

5

1:
2.

25
1:

2.
0

1:
1.

75
1:

1.
5

1:
1.

25
1:

1.
0

1:
0.

75
1:

0.
5

1:
0.

25

 µP:FPGA Frequency Ratio

S
p

ee
d

u
p

brev g721 mpeg2

0

2

4

6

8

10

1:
2.

5

1:
2.

25
1:

2.
0

1:
1.

75
1:

1.
5

1:
1.

25
1:

1.
0

1:
0.

75
1:

0.
5

1:
0.

25

 µP:FPGA Frequency Ratio

A
ve

ra
g

e
S

p
ee

d
u

p

Fig. 4 Speedup or warp processing for various ratios of processor to FPGA frequency of Table 2, highlight-
ing the speedup for several embedded application and average speedup across all embedded applications
considered

Fig. 5 Average energy
consumption reduction of warp
processing for various
processor:FPGA frequency
ratios

0%

20%

40%

60%

80%

100%

1:
2.5

1:
2.

25
1:

2.
0

1:
1.

75
1:

1.
5

1:1
.2

5
1:

1.
0

1:0
.7

5
1:

0.
5

1:0
.2

5

 µP:FPGA Frequency Ratio

E
n

er
g

y
R

ed
u

ct
io

n

Figure 5 presents the energy consumption benefits of warp processors for the var-
ious ratios of processor to FPGA frequency of Table 2. As the ratio of processor to
FPGA frequencies can correspond to very different warp processor implementations,
we chose to fix the FPGA for all ratios, utilizing a 250 MHz FPGA for all implemen-
tations. Thus, the ratio of processor to FPGA frequency corresponds to an increase
in processor frequency from 100 MHz to a maximum frequency of 1 GHz. The esti-
mated processor power consumption increases linearly from 31 mW, at 100 MHz, to
988 mW, at 1 GHz. At the low-end of processor frequencies, the power consumption
of the FPGA is over 3X higher than the low-power embedded processor, such as the
ARM7. Although the application execution time is significantly reduced, the over-
all energy consumption reduction is only 53%. However, as the processor frequency
increases relative to the FPGA, the energy consumption reduction quickly increases to
a maximum reduction of 81%, achieved by the ratios of 1:1.75 to 1:1, corresponding to
processor frequencies of approximately 150–250 MHz. At the high-end of processor
frequencies the significantly increased power consumption of the processor results
in decreased energy consumption of 71%. However, across the entire range of pro-
cessor to FPGA frequency ratios, warp processing is able to achieve average energy
reductions of at least 50%, ranging from 53% to 81%.

4 Parallel Warp Processing

The current warp processing implementation utilizes a mutually exclusive execution
model, whereby either the main processor or the FPGA is active at any given time.
Using this implementation, the main processor and FPGA can access the same data
cache, thereby avoiding any cache coherency and/or data consistency issues. However,

123

Int J Parallel Prog (2008) 36:478–492 487

Software Execution Dominates

SW Execution (µP)Software Execution

Warp Execution
(Mutually Exclusive)

Warp Execution
(Parallel)

Kernel 1 (K1) Kernel 2 (K2) Kernel 3 (K3)

µP µP µP

HW (K1) HW (K2) HW (K3)

µP µP µP

HW (K1) HW (K2) HW (K3)

µP µP µP

HW (K1) HW (K2) HW (K3)

Hardware Execution Dominates

Fig. 6 Timeline comparing software only execution and warp processing execution, considering both a
mutually exclusive warp processing execution and an ideal parallel warp processing execution (Not to Scale)

the potential for parallel execution in which both the microprocessor and FPGA can
execute at the same time may result in increased application performance. Further-
more, the benefits of parallel warp processing depend both on the application and the
warp processor implementation.

Figure 6 presents timelines illustrating software only execution, a mutually exclu-
sive warp processing execution, and a parallel warp processing execution. A mutually
exclusive execution implementation transitions from executing software on the pro-
cessor to the hardware executing on the FPGA whenever a partitioned critical kernel
is encountered. Alternatively, a parallel execution implementation would initialize the
FPGA to execute the partitioned kernel and continue to execute software in parallel
with the hardware execution. Ideally, the software and hardware execution would be
able to synchronize any data dependencies and resolve any data consistencies between
the hardware and software execution without delaying the execution of hardware or
software, thereby achieving maximum parallelism. For some applications, the syn-
chronization and communication between the software and hardware is minimal or
nonexistent. For example, in the mpeg2 video decoding application, the inverse discrete
cosine transform (IDCT) is performed on a block by block basis and no synchroniza-
tion is required between blocks. As such, parallel software and hardware execution of
the IDCT function can be implemented without any intermediate synchronization, in
which the software and hardware can simultaneously execute the IDCT on independent
blocks within the video stream. For other applications, the software and hardware may
need to communicate and synchronize to ensure proper execution, resulting in reduced
parallel execution. For multitasked systems, however, while the hardware is executing
for a given task, the processor can execute another software task, which would increase
the potential for parallel execution. In this paper, we consider an idealized abstrac-
tion—one in which no communication and synchronization is required—to evaluate
the maximum potential benefits of parallel execution for warp processing.

Within a parallel warp processing execution framework, two possible execution
scenarios exist. The first scenario is hardware dominated execution, in which the
partitioned hardware kernels execute for a longer duration than the remaining un-
partitioned software execution. In this scenario, the application speedup from warp
processing is limited by the hardware execution. The second scenario is software

123

488 Int J Parallel Prog (2008) 36:478–492

31.5

0

5

10

15

20

25

br
ev

g3
fa

x
g7

21

m
at

m
ul

m
pe

g2

pk
tflo

w
bi

tm
np

ca
nr

dr

tb
lo

ok

tts
pr

k

m
at

rix idc
t fir ur

l

ro
cm

Ave
ra

ge
:

Benchmark

S
p

ee
d

u
p

ARM7 (100MHz) XScale (624MHz)

0%

20%

40%

60%

80%

100%

br
ev
g3

fa
x
g7

21

m
atm

ul

m
pe

g2

pk
tfl

ow
bi

tm
np

ca
nr

dr

tb
lo

ok

tts
prk

m
atr

ix
idc

t fir ur
l

ro
cm

Ave
ra

ge
:

Benchmark

E
n

er
g

y
R

ed
u

ct
io

n ARM7 (100MHz) XScale (624MHz)

Fig. 7 Speedup and percentage energy consumption reduction of a parallel warp processing for 100 MHz
ARM7 and 624 MHz XScale based warp processors compared to software execution alone

dominated execution, in which the remaining un-partitioned software executes longer
than the hardware kernel execution. In this scenario, the application speedup is limited
by the software execution, which is directly related to the total percentage of software
execution of the critical kernels.

Figure 7 presents the speedup and energy reduction benefits for the ARM7 and
XScale based warp processor implementations with an ideal parallel execution imple-
mentation. For the ARM7 warp processor implementation, the parallel execution
model increases the average application speedup from 8.4X to 11X. For several appli-
cations, the benefits of parallel warp processing are almost negligible. The increase
in performance from a parallel execution model for g721 is only 0.04X, compared
to the mutually exclusive implementation. g721 is an example of software dominated
execution, in which the high speedups of the partitioned critical kernels, 63X, do not
allow for much parallel execution. After dynamic partitioning, the hardware execution
of the critical kernels is only 2% of the total partitioned application execution, limiting
the potential for parallel execution. On the other hand, matmul and fir are examples
of application that greatly benefit from parallel execution, with increases from 13X
to 21X and 13X to 20X, respectively. For fir, the partitioned hardware execution time
if 63% of the total partitioned execution time, allowing a parallel warp processing
implementation to potentially execute the remaining un-partitioned software in paral-
lel with the hardware execution. The final parallel execution is an example of hardware
dominated execution.

For the XScale based parallel warp processing, the average application speedup is
increased from 3.2X, for a mutually exclusive execution, to 4.8X with parallel execu-
tion. For hardware dominated applications, the increase in performance from parallel
execution is not as pronounced for higher performance processors due to the reduced
software execution time. Faster software execution limits the amount of parallelism
that can be achieved. This difference can be seen in the effects of parallel processing
on the applications matmul and fir. The difference between mutually exclusive warp
processing and parallel warp processing for these applications is less pronounced in
the XScale based warp processor than for the ARM7 warp processor. Parallel execu-
tion results in a performance increase of 4.5X–5.7X and 2.9X–3.2X for matmul and
fir, respectively. For fir, the partitioned hardware execution time is 91% of the total
partitioned execution time, due to the increased execution speed of the remaining un-
partitioned software, limiting the potential benefit of parallel execution. However, the
resulting idle time of the software could be utilized to perform the communication and
synchronization, thus helping to ensure the maximum parallelism can be achieved.

123

Int J Parallel Prog (2008) 36:478–492 489

0

2

4

6

8

10

12

1:
2.

5

1:
2.

25
1:

2.
0

1:
1.

75
1:

1.
5

1:
1.

25
1:

1.
0

1:
0.

75
1:

0.
5

1:
0.

25

 µP:FPGA Frequency Ratio

A
ve

ra
g

e
S

p
ee

d
u

p Mutually Exclusive Parallel

0%

20%

40%

60%

80%

100%

1:
2.

5

1:
2.2

5
1:

2.0

1:1
.7

5
1:

1.
5

1:
1.

25
1:

1.
0

1:
0.

75
1:

0.
5

1:
0.

25

 µP:FPGA Frequency Ratio

A
ve

ra
g

e
E

n
er

g
y

R
ed

u
ct

io
n

Mutually Exclusive Parallel

Fig. 8 Average speedup and percentage energy consumption reduction of a mutually exclusive and parallel
warp processing for various processor:FPGA frequency ratios of Table 2

4.1 Scalability

We further analyze the performance and energy consumption of parallel warp pro-
cessing compared to mutually exclusive warp processing for the processor to FPGA
frequency ratios of Table 2 to further analyze the potential of parallel execution.
Figure 8 presents the average speedup and energy consumption of mutually exclu-
sive warp processing and parallel warp processing for various processor to FPGA
frequency ratios. Figure 9 presents an alternative illustration of the benefits of parallel
warp processing, plotting the average speedup and execution of warp processing with
the ration of processor to frequency ratio for both mutually exclusive and parallel warp
processing.

The absolute performance benefits of parallel execution decreases as the ratio of
processor to FPGA frequency increases. As the software execution speed increases
relative to the hardware execution, the potential for executing software and hardware
in parallel decreases for many applications. From Fig. 9 we can actually see that the
benefits of warp processing from parallel execution compared to mutually exclusive
execution increases from 1.3X increase in performance at the low-end to a maximum
of 1.5X increase at a ratio of 1:0.75 (1.33), visible as the increase in separation of
between the two plots. The benefits of parallel execution then decrease from 1.5X to
1.4X for the high-end warp processor design. While the average benefits of parallel
execution only range from 1.3X to 1.5X, the decrease in performance at the low-end
and high-end imply that parallel warp processing provides the greatest benefit when
the processor and FPGA frequency are close. We note that the highest potential for par-
allel execution is for applications in which the partitioned execution is equally divided
between hardware and software application. We further note that as the processor

0

2

4

6

8

10

12

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

 µP:FPGA Frequency Ratio

A
ve

ra
g

e
S

p
ee

d
u

p Mutually Exclusive Parallel

0%

20%

40%

60%

80%

100%

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

 µP:FPGA Frequency Ratio

A
ve

ra
g

e
E

n
er

g
y

R
ed

u
ct

io
n

Mutually Exclusive Parallel

Fig. 9 Average speedup and energy consumption plotted against processor:FPGA frequency ratio for
mutually exclusive and parallel warp processing

123

490 Int J Parallel Prog (2008) 36:478–492

frequency increase relative to the FPGA, the higher performance of the processor will
lead more applications into the category of being hardware dominated.

The energy consumption of mutually exclusive warp processing and parallel warp
processing is almost identical. While parallel execution may reduce the application
execution, the total energy consumed by the processor and FPGA will not signifi-
cantly change as the active execution for both components is not reduced in a parallel
execution framework.

5 Conclusions

Warp processing provides significant performance and energy benefits over software
only execution by dynamically and transparently partitioning the critical kernels of an
executing software applications to hardware implemented within an on-chip FPGA.
We presented a thorough analysis of warp processing for two simulated warp pro-
cessors, across several possible warp processor implementations, and considering a
parallel execution framework for several embedded benchmark applications. Warp
processing achieves excellent speedups across many different embedded processors,
from low-end, low-power processors to high-performance embedded processors. On
average a warp processing can provide a performance increase of 8.4X over a 100 MHz
ARM7 processor and a 3.2X increase over a 624 MHz XScale processor. These per-
formance benefits translate to an equivalent performance of a processor executing at
840 MHz to 2 GHz. Furthermore, while the benefits of warp processing decrease as
the ratio of processor to FPGA frequency increases, the benefits of warp processing
for high-end, high-performance embedded systems still achieve a 2.4X increase in
performance and a 71% decrease in energy consumption, over a high-performance
1 GHz processor.

The benefits of warp processing can be further improved by enabling a parallel
warp processing implementation in which the software executing on the processor
and hardware executing within the FPGA are allowed to execute in parallel. While
data and cache coherency issues will likely impose limits of the amount of parallelism
that be achieved in practice, the potential for improving performance on average by
1.5X over the mutually exclusive warp processing execution is very promising.

6 Future Work

While warp processors already offer significant performance and energy advantages,
warp processing is still in its infancy. Much research is needed to extend and improve
warp processing, potentially to boarder application domains including desktops and
servers. We are currently pursing further research in area of warp processors, spe-
cifically focusing on low-power, real-time, and desktop systems. We are currently
pursuing research investigating the potential of utilizing voltage scalable processors
and low-power modes to reduce power consumption of warp processing. Additionally,
we are also evaluating the potential for leveraging the benefits of parallel warp pro-
cessing by determining how to efficiently extract parallelism between the software and
hardware components. Future work also include extending our dynamic partitioning

123

Int J Parallel Prog (2008) 36:478–492 491

algorithms, warp processor architecture, and custom FPGA design to extend warp pro-
cessing towards broader computing domains, including desktop, server, and scientific
computing. Support for these domains requires supporting floating point arithmetic,
extensive use of pointers, and dynamic memory allocations and represent three of the
key challenges for future warp processing implementations.

References

1. Balboni, A., Fornaciari, W., Sciuto, D.: Partitioning and exploration in the TOSCA co-design flow.
International Workshop on Hardware/Software Codesign, pp. 62–69 (1996)

2. Berkeley Design Technology, Inc.: http://www.bdti.com/articles/info_eet0207fpga.htm#
DSPEnhanced%20FPGAs (2004)

3. Chen, W., Kosmas, P., Leeser, M., Rappaport, C.: An FPGA implementation of the two-dimensional
finite-difference time-domain (FDTD) algorithm. In: Proceedings of the International Symposium on
Field-Programmable Gate Arrays (FPGA), pp. 97–105 (2004)

4. Eles, P., Peng, Z., Kuchchinski, K., Doboli, A.: System level hardware/software partitioning based
on simulated annealing and Tabu search. Kluwer’s Des. Automat. Embedded Syst. 2(1), 5–32 (1997)

5. Ernst, R., Henkel, J., Benner, T.: Hardware-software cosynthesis for microcontrollers. IEEE Des. Test
Comput. 10, 64–75 (1993)

6. Gajski, D., Vahid, F., Narayan, S., Gong, J.: SpecSyn: an environment supporting the specify-explore-
refine paradigm for hardware/software system design. IEEE Trans. VLSI Syst. 6(1), 84–100 (1998)

7. Guo, Z., Buyukkurt, B., Najjar, W., Vissers, K.: Optimized generation of data-path from C codes. In:
Proceedings of the Design Automation and Test in Europe Conference (DATE), pp. 112–117 (2005)

8. Henkel, J., Ernst, R.: A hardware/software partitioner using a dynamically determined granularity.
In: Design Automation Conference (1997)

9. Keane, J., Bradley, C., Ebeling, C.: A compiled accelerator for biological cell signaling simula-
tions. In: Proceedings of the International Symposium on Field-Programmable Gate Arrays (FPGA),
pp. 233–241 (2004)

10. Stitt, G., Vahid, F., McGregor, G., Einloth, B.: Hardware/software partitioning of software binaries: a
case study of H.264 decode. In: Proceedings of the International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pp. 285–290 (2005)

11. Stitt, G., Vahid, F., Nematbakhsh, S.: Power Savings and speedups from partitioning critical loops to
hardware in embedded systems. ACM Trans. Embedded Comput. Syst. (TECS) 3(1), 218–232 (2004)

12. Böhm, W., Hammes, J., Draper, B., Chawathe, M., Ross, C., Rinker, R., Najjar, W.: Mapping a single
assignment programming language to reconfigurable systems. J. Supercomput. 21, 117–130 (2002)

13. Venkataramani, G., Najjar, W., Kurdahi, F., Bagherzadeh, N., Bohm, W.: A compiler framework for
mapping applications to a coarse-grained reconfigurable computer architecture. In: Conference on
Compiler, Architecture and Synthesis for Embedded Systems (CASES 2001) (2001)

14. Henkel, J.: A low power hardware/software partitioning approach for core-based embedded systems.
In: Design Automation Conference, pp. 122–127 (1999)

15. Henkel, J., Li, Y.: Power-conscious HW/SW-partitioning of embedded systems: a case study on an
MPEG-2 encoder. In: Proceedings of Sixth International Workshop on Hardware/Software Codesign,
pp. 23–27, March 1998

16. Stitt, G., Vahid, F.: The energy advantages of microprocessor platforms with on-chip configurable
logic. IEEE Des. Test Comput. 19(6), 36–43 (2002)

17. Wan, M., Ichikawa, Y., Lidsky, D., Rabaey, L.: An power conscious methodology for early design
space exploration of heterogeneous DSPs. In: Proceedings of the ISSS Custom Integrated Circuits
Conference (CICC) (1998)

18. Stitt, G., Vahid, F.: New decompilation techniques for binary-level co-processor generation. In: Pro-
ceedings of the International Conference on Computer Aided Design (ICCAD) (2005)

19. Lysecky, R., Stitt, G., Vahid, F.: Warp processors. ACM Trans. Des. Automat. Electron. Syst.
(TODAES) 11(3), 659–681 (2006)

20. Gordon-Ross, A., Vahid, F.: Frequent loop detection using efficient non-intrusive on-chip hardware.
In: Proceedings of the Conference on Compilers, Architecture and Synthesis for Embedded Systems
(CASES), pp. 117–124 (2003)

123

http://www.bdti.com/articles/info_eet0207fpga.htm#DSPEnhanced%20FPGAs
http://www.bdti.com/articles/info_eet0207fpga.htm#DSPEnhanced%20FPGAs

492 Int J Parallel Prog (2008) 36:478–492

21. Lysecky, R., Vahid, F.: On-chip logic minimization. In: Proceedings of the Design Automation Con-
ference (DAC), pp. 334–337 (2003)

22. Lysecky, R., Vahid, F., Tan, S.: Dynamic FPGA routing for just-in-time FPGA compilation. In: Pro-
ceedings of the Design Automation Conference (DAC), pp. 954–959 (2004)

23. ARM Ltd.: ARM7 Processor Family. http://www.arm.com/products/CPUs/families/ARM7Family.
html (2006)

24. Intel Crop.: XScale PXA27x Processor Family. http://www.intel.com/design/pca/prodbref/253820.
htm (2006)

25. Malik, A., Moyer, B., Cermak, D.: A low power unified cache architecture providing power and
performance flexibility. In: Proceedings of the International Symposium on Low Power Electronics
and Design (ISLPED), pp. 241–243 (2000)

26. EEMBC.: Embedded Microprocessor Benchmark Consortium. http://www.eembc.org (2005)
27. Lee, C., Potkonjak, M., Mangione-Smith, W.: MediaBench: a tool for evaluating and synthesizing

multimedia and communications systems. In: Proceedings of the International Symposium on Mic-
roarchitecture (MIO), pp. 330–335 (1997)

28. Memik, G., Mangione-Smith, W., Hu, W.: NetBench: a benchmarking suite for network processors.
In: Proceedings of the International Conference on Computer-Aided Design (ICCAD), pp. 39–42
(2001)

29. Burger, D., Austin, T.: The SimpleScalar tool set, version 2.0. SIGARCH Comput. Architect. News
25(3), 13–25 (1997)

123

http://www.arm.com/products/CPUs/families/ARM7Family.html
http://www.arm.com/products/CPUs/families/ARM7Family.html
http://www.intel.com/design/pca/prodbref/253820.htm
http://www.intel.com/design/pca/prodbref/253820.htm
http://www.eembc.org

	Scalability and Parallel Execution of Warp Processing: Dynamic Hardware/Software Partitioning
	Abstract
	1 Introduction
	2 Warp Processing Overview
	3 Performance and Energy Benefits of Warp Processing
	3.1 Scalability

	4 Parallel Warp Processing
	4.1 Scalability

	5 Conclusions
	6 Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

