
Int J Parallel Prog (2008) 36:289–311
DOI 10.1007/s10766-008-0072-7

Supporting OpenMP on Cell

Kevin O’Brien · Kathryn O’Brien · Zehra Sura ·
Tong Chen · Tao Zhang

Received: 31 October 2007 / Accepted: 27 December 2007 / Published online: 25 April 2008
© Springer Science+Business Media, LLC 2008

Abstract The Cell processor is a heterogeneous multi-core processor with one
power processing engine (PPE) core and eight synergistic processing engine (SPE)
cores. There is a significant amount of ongoing research in programming models
and tools that attempts to make it easy to exploit the computation power of the Cell
architecture. In our work, we explore supporting OpenMP on the Cell processor. It is
attractive to support OpenMP because programmers can continue using their familiar
programming model, and existing code can be re-used. We base our work on IBM’s
XL compiler, and developed new components in the XL compiler and a new runtime
library. Three major issues are addressed: (1) synchronization support on heteroge-
neous cores; (2) code generation targeting the different instruction sets; (3) data trans-
fers and implement the OpenMP memory model. We present experimental results for
some SPEC OMP 2001 and NAS benchmarks to demonstrate the effectiveness of this
approach. A visualization tool based on Paraver is also used to provide some insights
into actual thread and synchronization behaviors.

Keywords OpenMP · Heterogeneous architecture · Thread synchronization ·
Data transfer

1 Introduction

The cell broadband engineTM (Cell BE) processor [1] is now commercially avail-
able in both the Sony PS3 game console and the IBM Cell Blade which represents
the first product on the IBM Cell Blade roadmap. The anticipated high volumes
for this non-traditional “commodity” hardware continue to make it interesting in a

K. O’Brien · K. O’Brien · Z. Sura · T. Chen (B) · T. Zhang
IBM T. J. Watson Research, Yorktown Heights, New York, USA
e-mail: chentong@us.ibm.com

123

290 Int J Parallel Prog (2008) 36:289–311

PPE SPE1

PPE: PowerPC Processor Element
SPE: Synergistic Processor Element
MFC: Memory Flow Controller
LS: Local Storeoff-chip global system memory

L1

L2

PPU SPU7

Memory
Interface
Controller

(MIC)

SPE5SPE3

SPE6SPE4SPE2SPE0

LSMFC

SPU

Element Interconnect Bus (EIB)

Fig. 1 Cell architecture

variety of different application spaces, ranging from the obvious multi-media and
gaming domain, through the HPC space (both traditional and commercial), and to the
potential use of Cell as a building block for very high end “supercomputing” systems
[2].

This first generation Cell processor (Fig. 1) provides flexibility and performance
through the inclusion of a 64-bit multi-threaded power processorTM element (PPE)
with two levels of globally-coherent cache and support for multiple operating sys-
tems including Linux. For additional performance, a Cell processor includes eight
synergistic processor elements (SPEs), each consisting of a synergistic processing
unit (SPU), a local memory, and a globally-coherent DMA engine. Computations are
performed by 128-bit wide single instruction multiple data (SIMD) functional units.
An integrated high bandwidth bus, the element interconnect bus (EIB), glues together
the nine processors and their ports to external memory and IO, and allows the SPUs
to be used for streaming applications [3].

Data is transferred between the local memory and the DMA engine [4] in chunks
of 128 bytes. The DMA engine can support up to 16 concurrent requests of up to 16 K
bytes originating either locally or remotely. The DMA engine is part of the globally
coherent memory address space; addresses of local DMA requests are translated by a
memory management unit (MMU) before being sent on the bus. Bandwidth between
the DMA and the EIB bus is 8 bytes per cycle in each direction. Programs interface
with the DMA unit via a channel interface and may initiate blocking as well as non-
blocking requests.

Programming the SPE processor is significantly enhanced by the availability of
an optimizing compiler which supports SIMD intrinsic functions and automatic sim-
dization [5]. However, programming the Cell processor, the coupled PPE and eight
SPE processors, is a much more complex task, requiring partitioning of an applica-
tion to accommodate the limited local memory constraints of the SPE, parallelization

123

Int J Parallel Prog (2008) 36:289–311 291

across the multiple SPEs, orchestration of the data transfer through insertion of DMA
commands, and compiling for two distinct ISAs. Users can directly develop the code
for PPE and SPE, or introduce new the language extension [6].

In this paper, we describe how our compiler manages this complexity while still
enabling the significant performance potential of the machine. Our parallel implemen-
tation currently uses OpenMP APIs to guide parallelization decisions.

The remainder of the paper is laid out as follows: section two gives an overview of
the compiler infrastructure upon which our work is based and presents the particular
challenges of retargeting this to the novel features of the Cell platform. The next three
sections of the paper look in more depth at each of these challenges and how we have
addressed them, and Sect. 6 presents some experimental results to demonstrate the
benefit of our approach. We draw our conclusions in the last section.

2 System Overview

In our system, we use compiler transformations in collaboration with a runtime
library to support OpenMP. The compiler translates OpenMP pragmas in the source
code to intermediate code that implements the corresponding OpenMP construct. This
translated code includes calls to functions in the runtime library. The runtime library
functions provide basic utilities for OpenMP on the Cell processor, including thread
management, work distribution, and synchronization. For each parallel construct, the
compiler outlines the code segment enclosed in the parallel construct into a separate
function. The compiler inserts OpenMP runtime library calls into the parent function
of the outlined function. These runtime library calls will invoke the outlined functions
at runtime and manage their execution.

The compiler is built upon the IBM XL compiler [7,8]. This compiler has front-
ends for C/C++ and Fortran, and shares the same optimization framework across
multiple source languages. The optimization framework has two components: TPO
and TOBEY. Roughly, TPO is responsible for high-level and machine-independent
optimizations while TOBEY is responsible for low-level and machine-specific opti-
mizations. The overview of the IBM XL compiler is shown in Fig. 2. The XL compiler
has a pre-existing OpenMP runtime library and support for OpenMP 2.0 on AIX multi-
processor systems built with Power processors. In our work targeting the Cell platform,
we re-use, modify, or re-write existing code that supports OpenMP as appropriate.

We encountered several issues in our OpenMP implementation that are specific to
features of the Cell processor:

• Threads and synchronization: threads running on the PPE differ in capability and
processing power from threads running on the SPEs. We design our system to use
these heterogeneous threads, and to efficiently synchronize all threads using spe-
cialized hardware support provided in the Cell processor.

• Code generation: the instruction set of the PPE differs from that of the SPE. There-
fore, we perform code generation and optimization for PPE code separate from SPE
code. Furthermore, due to the limited size of SPE local stores, SPE code may need
to be partitioned into multiple overlaid binary sections instead of generating it as a
large monolithic section.

123

292 Int J Parallel Prog (2008) 36:289–311

IIPPAA

OObbjjeeccttss

OOtthheerr

OObbjjeeccttss

SSyysstteemm

LLiinnkkeerr

OOppttiimmiizzee

dd OObbjjeeccttss

Wcode+

EXE

DLL

PPaarrttiittiioonnss

TTOOBBEEYY

TTPPOO

CFE CC++++ FFEE FFOORRTTRRAANN

FFEE

Wcode

LLiibbrraarriieess

PPDDFF iinnffoo

Wcode+

Link Step
Optimization

Instrumented
runs

Wcode Wcode
Wcode

Wcode

Fig. 2 Overview of the IBM XL compiler

• Memory management: each SPE has a small directly accessible local store, but it
needs to use DMA operations to access system memory. Shared data in SPE code
needs to be transferred between system memory and SPE local store, and this is
done using DMA calls explicitly inserted by the compiler, or using a software cach-
ing mechanism that is part of the runtime library. The Cell hardware ensures DMA
transactions are coherent, but it does not provide coherence for data residing in the
SPE local stores. We implement the OpenMP memory model on top of the novel
Cell memory model, and ensure data in system memory is kept coherent as required
by the OpenMP specification.

In the following sections, we describe how we solve these issues in our compiler and
runtime library implementation.

3 Threads and Synchronization

In our system, OpenMP threads execute on both the PPE and the SPEs. The master
thread is always executed on the PPE. The master thread is responsible for creating
threads, distributing and scheduling work, and initializing synchronization operations.
Since there is no operating system support on the SPEs, this thread also handles all

123

Int J Parallel Prog (2008) 36:289–311 293

OS service requests. The functions specific to the master thread align well with the
Cell design of developing the PPE as a processor used to manage the activities of
multiple SPE processors. Also, placing the master thread on the PPE allows smaller
and simpler code for the SPE runtime library, which resides in the space-constrained
SPE local store. Different from the OpenMP standard, if required by users, the PPE
thread will not participate in the work for parallel loops.

Currently, we always assume a single PPE thread and use the OMP_NUM_
THREADS specification to be the number of SPE threads to use. Specifying the
number of PPE and SPE threads separately will need an extension of the OpenMP
standard. The PPE and SPE cores are heterogeneous, and there may be significant
performance mismatch between a PPE thread and an SPE thread that perform the
same work. Ideally, the system can be built to automatically estimate the difference in
PPE and SPE performance for a given work item, and then have the runtime library
appropriately adjust the amount of work assigned to different threads. We do not have
such a mechanism yet, so we allow users to tune performance by specifying whether or
not the PPE thread should participate in executing work items for OpenMP work-share
loops or work-share sections.

We implement thread creation and synchronization using the Cell Software Devel-
opment Kit (SDK) libraries [7]. The master thread on the PPE creates SPE threads
only when a parallel structure is first encountered at runtime. For nested levels of
parallelism, each thread in the outer parallel region sequentially executes the inner
parallel region. The PPE thread schedules tasks for all threads, using simple block
scheduling for work-share loops and sections. The work sections or loop iterations
are divided into as many pieces as the number of available threads, and each thread is
assigned one piece. More sophisticated scheduling is left for future work.

When an SPE thread is created, it performs some initialization, and then loops
waiting for task assignments from the PPE, executing those tasks, and then waiting
for more tasks, until the task is to terminate. A task can be the execution of an outlined
parallel region, loop or section, or performing a cache flush, or participating in barrier
synchronization. Figure 3 depicts the thread creation and job scheduling for PPU and
SPE. There is a task queue in system memory corresponding to each thread. When
the master thread assigns a task to a thread, it writes information about the task to the
corresponding task queue, including details such as the task type, the lower bound and
upper bound for a parallel loop, and the function pointer for an outlined code region
that is to be executed. Once an SPE thread has picked up a task from the queue, it uses
DMA to change the status of the task in the queue, thus informing the master thread
that the queue space can be re-used.

The Cell processor provides special hardware mechanisms for efficient communi-
cation and synchronization between the multiple cores in a Cell system. The memory
flow controller (MFC) for each SPE has two blocking outbound mailbox queues, and
one non-blocking inbound mailbox queue. These mailboxes can be used for efficient
communication of 32-bit values between cores. When the master thread assigns tasks
to an SPE thread, it uses the mailbox to inform the SPE of the number of tasks available
for execution. Each SPE MFC also has an atomic unit that implements atomic DMA
commands and provides four 128-byte cache lines that are maintained cache coherent

123

294 Int J Parallel Prog (2008) 36:289–311

wait for job

initialize

barrier execute a

f i

terminate

end

SPE Threads

#n
#0

PPU Thread

initialize

first parallel

parallel

end

Fig. 3 Thread creation and job scheduling for PPU and SPE

across all processors. We use atomic DMA commands for efficient implementation of
OpenMP locks, barriers1, and cache flush operations.

4 Code Generation

Figure 4 illustrates the code generation process of the Cell OpenMP compiler. The
compiler separates out each code region in the source code that corresponds to an
OpenMP parallel construct (including OpenMP parallel regions, work-share loops or
work-share sections, and single constructs), and outlines it into a separate function.
The outlined function may take additional parameters such as the lower and the upper
bounds of the loop iteration for parallel loops. In the case of parallel loops, the com-
piler further transforms the outlined function so that it only computes from the lower
bound to the upper bound. The compiler inserts an OpenMP runtime library call into
the parent function of the outlined function, and passes a pointer to the outlined func-
tion code into this runtime library function. During execution, the runtime function
will indirectly invoke the outlined function. The compiler also inserts synchronization
operations such as barriers when necessary.

Due to the heterogeneity of the Cell architecture, the outlined functions containing
parallel tasks may execute on both the PPE and the SPEs. In our implementation,
we clone the outlined functions so that there is one copy of the function for the PPE
architecture, and one for the SPE architecture. We perform cloning during TPO link-
time optimization when the global call graph is available, so we can clone the whole

1 We thank Daniel Brokenshire (IBM Austin) for his implementation of barriers on Cell.

123

Int J Parallel Prog (2008) 36:289–311 295

clone

foo1 ();

#pragma omp parallel for
for (i=0; i < N; i++)
 A[i] = x * B[i];

foo2 ();

foo1 ();
Runtime distribution of work:
 invoke foo3, for i=[0,N)
Runtime barrier
foo2 ();

for (i=LB; i < UB;
i++)
 A[i] = x * B[i];
Runtime barrier

foo3(LB,UB)
foo3_SPU (LB,UB)

Runtime barrier
Runtime barrier

for (i=LB; i < UB;
i++)
 A[i] = x * B[i];
Runtime barrier

outline

PU Backend

SPU Backend

Overlay Enabled

Call Graph
Partitioning

SPU Objects

Not enabled

SPU Objects

SPU Linker

SPU OMP
Runtime Lib SPU Binary

PPU-
embedspu

PU Objects

PU Linker PU OMP
Runtime Lib

OMP SPU Binary
Embedded as

PU Object

Final PU Binary

Fig. 4 Code generation process

sub-graph for a call to an outlined function when necessary. We mark the cloned func-
tion copies as PPE and SPE procedures, respectively. In later stages of compilation, we
can apply machine-dependent optimizations to these procedures based on their target
architecture. Auto-simdization is one example. SPE has SIMD units that can execute
operation on 128 byte data with one instruction. After cloning, the code for SPE will
undergo the auto-simdization to transform scalar code into SIMD code for SPE, while
the PPE has totally different SIMD instructions. In other words, we choose to clone
the functions to enable more aggressive optimizations.

When a PPE runtime function in the master thread distributes parallel work to an
SPE thread, it needs to tell the SPE thread what outlined function to execute. The PPE
runtime function knows the function pointer for the PPE code of the outlined function
to execute. However, the SPE thread needs to use the function pointer for the SPE code
of the same outlined function. To enable the SPE runtime library to determine correct
function pointers, the compiler builds a mapping table between corresponding PPE
and SPE outlined function pointers, and the runtime looks up this table to determine
SPE code pointers for parallel tasks assigned by the master thread.

At the end of TPO, procedures for different architectures are separated into differ-
ent compilation units, and these compilation units are processed one at a time by the
TOBEY backend. The PPE compilation units are processed as for other architectures
and need no special consideration. However, if a single large SPE compilation unit is

123

296 Int J Parallel Prog (2008) 36:289–311

generated, it may result in SPE binary code that is too large to fit in the small SPE local
store all at once. In fact, we observe this to be the case for many benchmark programs.
For OpenMP, one way to mitigate this problem is to place all the code corresponding
to a given parallel region in one SPE compilation unit, and generate as many SPE
compilation units as there are parallel regions in the program. Using this approach, we
can generate multiple SPE binaries, one for each SPE compilation unit. We can then
modify the runtime library to create SPE threads using a different SPE binary on entry
to each parallel region. However, there are two drawbacks to using this approach: first,
an individual parallel region may still be too large to fit in SPE local store, and second,
we observe through experiments that the overhead for repeatedly creating SPE threads
is significantly high.

To solve the SPE code size problem, we rely on the technique of call graph partition-
ing and code overlay. We first partition the sub-graph of the call graph corresponding
to SPE procedures into several partitions. Then we create a code overlay for each of
these call graph partitions. Code overlays share address space and do not occupy local
storage at the same time. Thus, the pressure on local storage due to SPE code is greatly
reduced. To partition the call graph, we weight each call graph edge by the frequency
of this edge. The frequency can be obtained by either compiler static analysis or profil-
ing. Then we apply the maximum spanning tree algorithm to the graph. Basically, we
process edges in the order of their weight. If merging the two nodes of the edge does
not exceed a predefined memory limitation, we merge those two nodes, update the
edge weights, and continue. When the algorithm stops, each merged node represents a
call graph partition comprising all the procedures whose nodes were merged into that
node. Thus, the result is a set of call graph partitions. Our algorithm is a simple greedy
algorithm that can be further optimized. After call graph partitions are identified, we
utilize SPU code overlay support introduced in Cell SDK 2.0 and place the procedures
in each call graph partition into a separate code overlay.

After the TOBEY backend generates an SPE binary (either with or without code
overlays), we use a special tool called ppu-embedspu to embed the SPE binary into a
PPE data object. This PPE data object is then linked into the final PPE binary together
with other PPE objects and libraries. During execution, when code running on the PPE
creates SPE threads, it can access the SPE binary image embedded into the PPE data
object, and use this SPE image to initialize the newly created SPE threads.

5 Memory Management

OpenMP specifies a relaxed-consistency, shared-memory model. This model allows
each thread to have its own temporary view of memory. A value written to a variable,
or a value read from a variable, can remain in the thread’s temporary view until it is
forced to share memory by an OpenMP flush operation. We find that such a memory
model can be efficiently implemented on the Cell memory structure.

In the Cell processor, each SPE has just 256 K directly accessible local memory for
code and data. We only allocate private variables accessed in SPE code to reside in the
SPE local store. Shared variables reside in system memory, and SPE code can access
them through DMA operations. We use two mechanisms for DMA transfers: static

123

Int J Parallel Prog (2008) 36:289–311 297

buffering and compiler-controlled software cache. In both mechanisms, the global
data may have a local copy in the SPE local store. The SPE thread may read and write
the local copy. This approach conforms to the OpenMP relaxed memory model and
takes advantage of the flexibility afforded by the model to realize memory system
performance.

When an SPE thread uses DMA to get/put data from/to the system memory, it needs
to know the address of the data to be transferred. However, global data is linked with
the PPE binary and is not directly available in SPE code. The Cell SDK [9] provides
a link-time mechanism called CESOF, which makes available to the SPE binary the
addresses of all PPE global variables once these addresses have been determined. We
also use a facility similar to CESOF when generating SPE code.

Besides global data, an SPE thread may need to know the address of data on the PPE
stack when, in source code, the procedure executing in the SPE thread is nested within
a procedure executing in a PPE thread, and the SPE procedure accesses variables
declared in its parent PPE procedure. Though C and Fortran do not support nested
procedures (C++ and Pascal do), this case can occur when the compiler performs
outlining. For example, in Fig. 1, if the variable “x” were declared in the procedure
that contains the parallel loop, after outlining, the declaration of “x” becomes out of
the scope of the outlined function. To circumvent this problem, the compiler consid-
ers each outlined function to be nested within its parent function. The PPE runtime,
assisted by compiler transformations, ensures that SPE tasks that will access PPE stack
variables are provided with the system memory address of those stack variables.

5.1 Static Buffers

Some references are regular references from the point-of-view of our compiler opti-
mization. These references occur within a loop, the memory addresses that they refer
to can be expressed using affine expressions of loop induction variables, and the loop
that contains them has no loop-carried data dependence (true, output or anti) involving
these references. For such regular reference accesses to shared data, we use a tempo-
rary buffer in the SPE local store. For read references, we initialize this buffer with a
DMA get operation before the loop executes. For write references, we copy the value
from this buffer using a DMA put operation after the loop executes. The compiler stat-
ically generates these DMA get and put operations. The compiler also transforms the
loop structure in the program to generate optimized DMA operations for references
that it recognizes to be regular. Furthermore, DMA operations can be overlapped with
computations by using multiple buffers [10]. Figure 5 illustrates possible code trans-
formations for a simple loop using static buffers. The compiler can choose the proper
buffering scheme and buffer size to optimize execution time and space.

Execution time of a loop blocked for DMA buffering varies with the amount of
DMA overlapped with computation. For a k-buffer scheme, the amount of DMA
overlapped increases both with the value of k, and with the size of the buffers used. In
the SPE, all the buffers occupy space in the local store, which is only 256 KB in size.
This limited local store space is a prime resource, since it is being used for both code
and data, and the available space limits the applicability of optimizations that increase

123

298 Int J Parallel Prog (2008) 36:289–311

for (i=0; i<N; i++) {
 DMA get A[i] to tA;
 tB = tA * S;
 DMA put tB to B[i];
}

/* S, tA, and tB reside in LS */

(b) Naive Buffering

/* A and B are in main memory */
/* S is a scalar residing in LS */

for (i=0; i<N; i++) {
 B[i] = A[i] * S;
}

(a) Example Code

 n = min(ii+bf, N);
 DMA get A[ii:n] to tA;
 for (i=ii; i<n; i++) {
 tB[i] = tA[i] * S;
 }
 DMA put tB to B[ii:n];
}

for (ii=0; ii<N; ii+=bf) {

(c) Single Buffering

n = min(bf, N);

t = (t+1) % 2;

for (ii=0; ii<N; ii+=bf) {
 n = min(ii+bf, N);
 m = min(ii+2*bf, N);
 DMA get A[ii+bf:m] to tA[t], tag=t;
 t = (t+1) % 2;
 DMA wait, tag=t;

 for (i=ii; i<n; i++) {
 tB[t][i] = tA[t][i] * S;
 }

 DMA put tB[t] to B[ii:n], tag=t;
}
DMA wait, tag=t;

t=0;

DMA get A[0:n] to tA[t], tag=t;

/* Uses non−blocking DMA */

(d) Double Buffering

/* Decides buffer 1 or buffer 2 */

Fig. 5 Example to illustrate static DMA buffering

code size or require more space to buffer data. Due to the local store size constraint,
a restricted amount of space is available for DMA buffering.

Given a budget for the amount of space to be used for DMA buffering, we determine
the buffering scheme that will result in the best execution time performance. Since the
total buffer size is fixed, performance of a k-buffer scheme needs to be compared with
the performance of a (k + 1)-buffer scheme that uses individual buffers of a size smaller
than the buffers used in the k-buffer scheme. Once the optimal buffering scheme is
known, it may be the case that all possible DMA overlap is attained using a buffer size
smaller than the maximum buffer size allowed by the total buffer space budget. Note
that there is a limit to how much performance can be improved using DMA overlap
before the application becomes computation-bound. Thus, we want to determine both
the optimal buffering scheme and the smallest buffer size that maximize performance,
when constrained by the total buffer space available.

We find that the performance of DMA buffering depends on several factors, includ-
ing the set-up time for each DMA operation, the DMA transfer time, the amount of
computation in the loop, the number of buffers being used, and the size of each indi-
vidual buffer. We develop a model to relate each of these factors to the execution time,
and use this model to predict the relative merit of using different buffering schemes
and different buffer sizes. Our model applies to the innermost loop in a loop nest,

123

Int J Parallel Prog (2008) 36:289–311 299

S1

S2
D*b2

First DMA

Second DMA

D*b1
Overlap

Fig. 6 Latency of DMA operations

where this loop operates on a number of array data streams, has a large iteration count,
has no loop-carried dependences, and has no conditional branches within the loop
body.

We approximate the latency of one DMA operation with the formula S + D∗b,
where S is the set-up time for one DMA operation, D is the transfer time for one
byte, and b is the number of bytes transferred by this DMA operation. When two
non-blocking DMA operations for b1 and b2 bytes are issued in sequence, the set-up
of the second DMA operation can be overlapped with the data transfer of the first, as
illustrated in Fig. 6. When the set-up of the second DMA operation (S2) is less than or
equal to the set-up of the first DMA operation (S1), it can be completely overlapped. In
this case, the combined latency of the two DMA operations will be S1 + D∗ (b1 + b2).
For different values of S1 and S2, the amount of overlap of set-up time with transfer
time will be different.

In the CELL architecture, the value of S is different for DMA get and put oper-
ations [4]. The DMA get operation has a higher value of S because it includes the
main memory access time to retrieve data, whereas a DMA put can complete before
data is actually written to its main memory location. In general, a sequence of n DMA
transfers will have latency S + D∗ (b1 + · · ·+ bn), where S is a function of S1, …, Sn.

5.1.1 Latency for Single-Buffer

Figure 7 illustrates the execution sequence for the code in Fig. 5c. Ignoring the pro-
logue and epilogue, and clubbing together consecutive DMA operations, each iteration
of the outer blocked loop comprises of a DMA put corresponding to the previous iter-
ation, a DMA get to fetch data for the current iteration, and the computation of one
instance of the entire inner blocked loop. Note that non-blocking DMA operations can
be used, with a DMA wait inserted just before the inner blocked loop. Thus, the latency
of one iteration of the outer blocked loop is the latency of both the DMA transfers
plus the computation latency of the inner blocked loop. Let N be the iteration count of
the original loop, and assume the loop has been blocked using a blocking factor of bf.
Let D1 be the DMA transfer time for one byte, b be the number of bytes transferred
in all DMA operations corresponding to one iteration of the outer blocked loop, and

123

300 Int J Parallel Prog (2008) 36:289–311

DMA getDMA put tup AMDteg AMD

etupmoCetupmoC

Communication

Computation

time

)1+i(noitaretIi noitaretI

Fig. 7 Execution sequence for single-buffer

S be the composite set-up time for the sequence of non-blocking DMA operations
corresponding to one iteration of the outer blocked loop. Also, let C be the compu-
tation time for one iteration of the inner blocked loop. The value for C is expressed
as (Cinner + Couter/bf), where Cinner is the compute time for each iteration of the inner
blocked loop, and Couter is the overhead for issuing DMA requests in an iteration of
the outer blocked loop. This overhead primarily includes the function call and runtime
checking overhead in compiler-generated code for DMA transfer requests, and it gets
amortized over bf iterations of the inner blocked loop. In practice, we expect Couter to
be small, and bf to be large, so that C can be approximated by Cinner. The total latency of
the entire loop is given by: [(S + D1∗b∗bf) + C∗bf]∗ (N/bf) = (S/bf + D1∗b + C)∗N.
For simplicity, let D = D1∗b be the DMA transfer time for all data accessed in one
iteration of the inner blocked loop. Thus, latency for single-buffer is (S/bf + D + C)∗N.

5.1.2 Latency for Double-Buffer

In the following discussion, the terms N, bf, C, S, and D have the same meaning as
in the single-buffer case discussed earlier. For clarity, the following examples refer
to DMA for one pair of buffers. However, the discussion also applies to examples
using a set of double-buffers, with S corresponding to the set-up delay for a composite
sequence of non-blocking DMA operations issued for each set (Fig. 8).

S+D*bf C*bf

2*D*bf

B

A
time

Fig. 8 Execution sequence for DMA-bound double-buffer

123

Int J Parallel Prog (2008) 36:289–311 301

Case 1: DMA-Bound: Error! Reference source not found illustrates the case when
double-buffer is used and the application is DMA-bound. In this case, there is no delay
between any two successive DMA operations. The sequence of DMA operations and
computations alternate between using the first buffer and the second buffer. The first
and second DMA operations are issued successively before any computation begins.
The third DMA operation is issued only after the first computation of the inner blocked
loop finishes. If there is to be no delay between the second and third DMA operations,
then the time to complete the first computation (point B in the figure) must be less
than or equal to the time to complete the first two DMA operations (point A in the
figure). This translates to the condition:

(S + D∗bf + C∗bf) ≤ (2∗D∗bf), or D ≥ (C + S/bf)

When this condition holds, the execution pattern repeats throughout the loop and
the application is DMA-bound. The latency for the entire loop is approximated by the
time taken by all the consecutive DMA operations, i.e. S + D∗N. When N is large,
this can be simplified to D∗N.

Case 2: Computation-Bound Figure 9 illustrates the case when double-buffer is
used and the application is computation-bound. In this case, there is no delay waiting
for DMA to complete between any two successive computations of the inner blocked
loop. The sequence of DMA operations and computations alternate between using the
first buffer and the second buffer. The first and second DMA operations are issued
successively before any computation begins. The third DMA operation is issued only
after the first computation of the inner blocked loop finishes. If there is to be no delay
between the second and third computations, then the time to complete the third DMA
operation (point B in the figure) must be less than or equal to the time to complete the
first two computations (point A in the figure). This translates to the condition:

(S + D∗bf + C∗bf + S + D∗bf) ≤ (S + D∗bf + 2∗C∗bf), or D ≤ (C – S/bf)

When this condition holds, the execution pattern repeats throughout the loop, and
the application is computation-bound. The latency for the entire loop is approximated
by the time taken by all the consecutive computations, i.e. C∗N, when N is large.

time

B
fb*D+Sfb*D+S C*bf

A
2*C*bfS+D*bf

Fig. 9 Execution sequence for computation-bound double-buffer

123

302 Int J Parallel Prog (2008) 36:289–311

time

A C

BA
2*D*bf C*bf

C*bf D*bfD*bfS

S

Fig. 10 Execution sequence for double-buffer when C≤D < (C + S/bf)

Case 3: Incomplete Overlap A loop that is neither DMA-bound nor computation-
bound has incomplete overlap of DMA operations with computation. We analyze
this case by splitting it into two sub-cases: when C≤D < (C + S/bf), and when (C –
S/bf) < D < C. The total latency of the loop in both cases is the same: (S/bf + D + C)∗N/2.

Case A: When C≤D<(C+S/bf) Figure 10 illustrates this case. Here, the set-up
of the third DMA operation is not fully overlapped with the second DMA transfer.
Also, there is a delay between the first and second computation, waiting for the sec-
ond DMA transfer to complete. The second computation finishes at point B in the
figure, and it can only start after the second DMA transfer has completed. From the
beginning (point A in the figure), the latency for the second computation to finish is
S + 2∗D∗bf + C∗bf. From a DMA point of view, the earliest that the fourth DMA
operation can start is after the third DMA transfer reaches point C. The third DMA
transfer can start only after the first computation finishes. The latency from point A in
this case is S + D∗bf + C∗bf + D∗bf. The two latencies from A to B and A to C are
the same, which means that the fourth DMA starts at the same point that the second
computation finishes, and the execution repeats the pattern illustrated in the figure.
The delay between the second and third DMA operations is S + D∗bf + C∗bf–2∗
D∗bf = S + (C – D)∗bf. The total latency of the loop is the latency of all DMA trans-
fers plus the extra delays due to incomplete overlap that occur after every two DMA
operations. This latency is given by:

N ∗ D + (S + (C − D) ∗ bf) ∗ N/bf/2 = (S/bf + D + C) ∗ N/2.

Case B: When (C–S/bf)<D<C Figure 11 illustrates this case. Here, the set-up of
the third DMA operation is not overlapped with the second DMA transfer. Also, there
is no delay between the first and second computation, but there is a delay between
the second and third computation, waiting for the third DMA transfer to complete.
The data for the fourth computation will be ready at point B in the figure, made
available only after the first DMA transfer, the first two computations, and the fourth
DMA transfer have completed. From the beginning (point A in the figure), the latency
for the fourth DMA transfer to complete is S + D∗bf + 2∗C∗bf + S + D∗bf. From a
computation point of view, the third computation will finish at point C in the figure,

123

Int J Parallel Prog (2008) 36:289–311 303

Fig. 11 Execution sequence for double-buffer when (C – S/bf) < D < C

and it can start only after the third DMA transfer completes. The third DMA can
start only after the first computation finishes. The latency from point A in this case is
S + D∗bf + C∗bf + S + D∗bf + C∗bf. The two latencies from A to B and A to C are
the same, which means that the fourth DMA completes at the same point that the third
computation finishes, and the execution repeats the pattern illustrated in the figure.
The delay between the second and third computations is S + D∗bf – C∗ bf = S + (D –
C)∗bf. The total latency of the loop is the latency of all computations plus the extra
delays due to incomplete overlap that occur after every two computations. This latency
is given by:

N ∗ C + (S + (D − C) ∗ bf) ∗ N/bf/2 = (S/bf + D + C) ∗ N/2.

5.1.3 Latency for k-Buffer

Analogous to the case of double-buffer, we can derive the condition for a k-buffered
loop to be DMA-bound of computation-bound. The loop will be DMA-bound when
D≥max[C, (C + S/bf)/(k – 1)], and the latency of the entire loop can be approximated
by D∗N. The loop will be computation-bound when D≤min(C, (k – 1)∗C – S/bf), and
the latency of the entire loop can be approximated by C∗N. The latency of a k-buffered
loop that is neither DMA-bound nor computation-bound will be (S/bf + C + D)∗N/k.
We do not discuss details of this case here.

5.1.4 Compiler Algorithm

The latency formulae derived in this section can be applied to determine the optimal
buffering scheme and buffer size for a loop with limited amount of memory available
for buffer space. The algorithm described here can be used in a compiler to automat-
ically transform and optimize code for DMA buffering. In the following discussion,
we restrict the choice of buffering schemes to single-, double-, or triple-buffer.

Assume that the amount of memory available for buffering is specified in terms
of the largest block factor (say B) that can be used when transforming the loop for a

123

304 Int J Parallel Prog (2008) 36:289–311

Algorithm: bool Choose_Double_Buffer (C, D, S, B) {

float C: the computation per iteration;

float D: the DMA transfer time per iteration;

int B: buffer space constraint in terms of the maximum

if (D > C) {

return TRUE;

Fig. 12 Algorithm to decide whether double-buffer should be used

single-buffer scheme. Then the maximum block factor for double-buffer is B/2, and
for triple-buffer is B/3. The performance of a loop will be optimal if it is computation-
bound or DMA-bound. Therefore, a DMA-bound double-buffered loop (latency D∗N)
or a computation-bound double-buffered loop (latency C∗N) should be better than a
single-buffered loop (latency (S/B + D + C)∗N). When the double-buffered loop has
incomplete overlap, its latency will be (S/B/2 + D + C)∗N/2. In this case, the differ-
ence between the latencies of double-buffer and single-buffer is (D + C)∗N/2 > 0. So
double-buffer should always outperform single-buffer.

The algorithm in Fig. 12 shows how to choose between double-buffer and triple-
buffer. When the same performance can be achieved by different buffering schemes, the
scheme with less number of buffers is preferred. When D > C, the double-buffer scheme
becomes DMA-bound when D≥C + S/B/2, which is the same as S/(D – C)≤B/2. In
this case, we choose the double-buffer scheme since it is DMA-bound and optimal.
Similarly, when D < C, the double-buffer scheme becomes computation-bound for
D≤C – S/B/2, which is the same as S/(C – D)≤B/2, and we choose the double-buffer
scheme. In all other cases, we choose the triple-buffer scheme since it can provide a
greater amount of overlap.

Once the loop becomes DMA-bound or computation-bound, performance will not
improve with increasing buffer sizes. In such cases, memory resources can be saved
by choosing the smallest buffer size that is optimal. The memory space saved can
then be used by other components contending for it, e.g. more local memory can be
assigned to the outer blocked loops to increase data re-use, or the size of code buffers
can be increased to reduce the frequency of swapping code partitions to and from the
SPE local store. Based on the conditions derived in this section for the execution to
be DMA-bound or computation-bound, the block factor for double-buffer need not be
larger than S/abs(D – C). The block factor for DMA-bound triple-buffer need not be
larger than S/(2∗D – C), and for computation-bound triple-buffer need not be larger
than S/(2∗C – D).

5.2 Software Cache

For irregular references to shared memory, we use a compiler-controlled software
cache to read/write the data from/to system memory. The compiler replaces loads and

123

Int J Parallel Prog (2008) 36:289–311 305

stores using these references with instructions that explicitly look up the effective
address in a directory of the software cache. If a cache line for the effective address
is found in the directory (which means a cache hit), the value in the cache is used.
Otherwise, it is a cache miss. For a miss, we allocate a line in the cache either by
using an empty line or by replacing an existing line. Then, for a load, we issue a DMA
get operation to read the data from system memory. For stores, we write the data to
the cache, and maintain dirty bits to record which byte is actually modified. Later, we
write the data back to system memory using a DMA put operation, either when the
cache line is evicted to make space for other data, or when a cache flush is invoked in
the code based on OpenMP semantics.

We configure the software cache based on the characteristics of the Cell processor.
Since 4-way SIMD operations on 32-bit values are supported in the SPE and we cur-
rently use 32-bit memory addresses, we use a 4-way associative cache that performs
the cache lookup in parallel. Also, we use 128-byte cache lines since DMA trans-
fers are optimal when performed in multiples of 128 bytes and aligned on a 128-byte
boundary. The cache structure and the lookup operation with Cell SIMD instructions
are illustrated in Fig. 13. If only some bytes in a cache line are dirty, when the cache
line is evicted or flushed, the data contained in it must be merged with system memory
such that only the dirty bytes overwrite data contained in system memory. One way to
achieve this is to DMA only the dirty bytes and not the entire cache line. However, this
may result in small discontinuous DMA transfers, and exacerbated by the alignment
requirements for DMA transfers, it can result in poor DMA performance. Instead,

0 0 0 0

0 0 0 0

0 0 0 0

00

0 0

0

0 0 0 0
0 0 0 0

Splat& 0x3f80

& 0xffffff
80

& 0x07f+

Equal ?

0 0 0 0

0 00

0 00 0

00000000 00000000 00000000ffffffff

Rotate hit slot
to Preferred slot

+

Load(,0)

Load(,16)

Tag Array

{4-way
tag
entry

Data Array

{
Cache
Line

Load(,0)

Desired Data Quadword

Register Containing Data Address

Don’t Care
Address of Tag Array (High Bits)
Address of Hit Cache Line

} Addresses of other lines
for this tagTag Index

High Tag Bits for Hit

Offset in Line

} High Tag bits of other lines
for this tag

Dirty Bits in Tag entry
Unused space in Tag entry

Register Operation Result
Memory Location for Load
Local Store Pointer

Key

Fig. 13 Software cache structure and lookup operations

123

306 Int J Parallel Prog (2008) 36:289–311

inputs:

t_ea is the effective address for this cache line;

ls_global: a temporary buffer;

ls_local: the cache line

dirty_bits: the dirty bits for this cache line

vector unsigned char vec_zero = spu_splats((unsigned char)0);

vector unsigned char vec_allone = spu_splats((unsigned char)0xFF);

do {

 vector unsigned char* global_ptr = (vector unsigned char*) ls_global;

 vector unsigned char* local_ptr = (vector unsigned char*) ls_local;

 mfc_getllar(ls_global, (uint64_t) t_ea, 0, 0);

 status = mfc_read_atomic_status();

 for(i=0; i<8; i++) {

Fig. 14 Code for cache evict

we use the support for atomic updates of 128-byte lines that is provided in the SPE
hardware to atomically merge data in the cache line with data in the corresponding
system memory, based on recorded dirty bits. The code segment is shown in Fig. 14.

When an OpenMP flush is encountered, the compiler guarantees that all data in the
static buffers in local store has been written back into memory, and that existing data
in the static buffers is not used any further. The flush will also trigger the software
cache to write back all data with dirty bits to system memory, and to invalidate all
lines in the cache.

6 Experimental Results

We compiled and executed some OpenMP test cases on a Cell blade that has both
the PPU and the SPUs running at 3.2 GHz, and has a total of 1 GB main memory. All
our experiments used one Cell chip: one PPE and eight SPEs. The test cases include
several simple streaming applications, as well as the standard NAS [11] and SPEC
OMP 2001 [12] benchmarks. To observe detailed runtime behavior of applications,
we instrumented the OpenMP runtime libraries with Paraver [13], a trace generation
and visualization tool.

Figure 15 shows the PPE and SPE thread behavior for a small test case comprising
of one parallel loop that is repeatedly executed 100 times. The PPE thread is assigned
no loop iterations, and is responsible only for scheduling and synchronization. The
figure shows a high-level view of one complete execution of the parallel loop. The first

123

Int J Parallel Prog (2008) 36:289–311 307

Fig. 15 Execution of PPE and SPE threads

row corresponds to the PPE thread and the remaining rows correspond to SPE threads.
Blue areas represent time spent doing useful computation, yellow areas represent time
spent in scheduling and communication of work items, and red areas represent time
spent in synchronization and waiting for DMA operations to complete. We can clearly
identify the beginning and end of one instance of a parallel loop execution from the
neatly lined up set of red synchronization areas that indicate the implicit barriers being
performed at parallel region boundaries, as specified by the OpenMP standard.

If we zoom into a portion of the SPE useful computation shown in Fig. 15, we can
see in greater detail the time actually spent in computing and the time spent in waiting
for data transfers. Figure 16a shows this detail for a segment of execution when only
the software cache is used for automatic DMA transfers. We see many areas in the
SPE execution that are dominated by waiting for DMA operations to complete (red
areas), and the need to optimize this application is evident. Figure 16b shows a similar
segment of execution for the same application when it has been optimized using static
buffering. We observe the improved ratio for time spent doing actual computation
(blue) versus time spent waiting for DMA operations (red).

To evaluate our approach, we first tried some simple stream benchmarks, comparing
the performance of code generated by our compiler with the performance of manually
written code that was optimized using Cell SDK libraries and SIMD instructions. The
performance comparison is shown in Fig. 17. The speedups shown in this figure are the
ratios of execution time when using eight SPUs and execution time when only using
the PPE. Both SIMD units and multiple cores contribute to the speedups observed.
We observe that our OpenMP compiler can achieve as good a performance (except
for fft) as the highly optimized manual code on these stream applications. fft performs
poorly in comparison because auto-simdization cannot handle different displacements
in array subscript expressions for different steps in the FFT computation. Manual code
performs slightly better on dotproduct and xor because the compiler does not unroll
the loop an optimal number of times.

We also experimented with some applications from the NAS, equake from Spec
OMP 2001 benchmark suites, and l bm from SPEC 2006 benchmark suites. We report
speedups of the whole program normalized to one PPU and one SPU respectively in
Fig. 18.

Compared to the performance of one PPU, many applications show significant
speedup with our compiler on eight SPUs. The performance of some others (such as
CG, LU) seem to have room for further improvement. We analyzed the benchmarks

123

308 Int J Parallel Prog (2008) 36:289–311

Fig. 16 Data transfer with software cache and static buffer

Performance of OpenMP vs. hand-optimization

0

5

10

15

20

25

30

35

40

dotproductS
p

ee
d

u
p

 w
it

h
 8

 S
P

E
s

o
ve

r
 o

n
e

P
P

E

OpenMP+simd Hand-opt

fft stream-add stream-copy stream-scale stream-triad xor

Fig. 17 Performance comparison with manually optimized code

and traced compiler transformations to determine the reasons for the performance
shortfall. We identified two main reasons for it:

1. Software cache is not large enough. CG is dominated by irregular data accesses and
the miss rate can be greatly reduced if the size of our software cache is doubled.
However, larger software cache will cause size problem for some other benchmarks.
A smarter resource allocation method, perhaps with profiling feedback, may help.

123

Int J Parallel Prog (2008) 36:289–311 309

Performance Normalized to One PPU

0

1

2

3

4

5

6

7

8

CG

1SPU 2SPU 4SPU 8SPU

EP FT IS SP MG LU lbm equake swim

Fig. 18 Performance compared to one PPU

0

1

2

3

4

5

6

7

8

UPS8UPS4UPS2UPS1

S
p

ee
d

u
p

CG EP FT IS SP MG LU lbm equake swim

Fig. 19 Performance compared to one SPU

2. Applications have not been optimized for the Cell architecture: LU contains discon-
tinuous data references to main memory. DMA data transfers become the bottleneck
in such cases. It seems to us this is a careless mistake resulted from translating LU
from Fortran to C. However, this problem could be solved if compiler is able to
perform array reshaping automatically.

The performance normalized to one SPU (in Fig. 19) shows the scalability. All of
them, except FT, equake, and IS, show good scalability with speedup more than six on
eight SPUs. The speedup of FT is below four. The reason is that the data accesses in

123

310 Int J Parallel Prog (2008) 36:289–311

FT caused memory bank conflicts. The reason that IS did not scale up well is that IS
contains some computations in either master pragma or critical pragma. Those com-
putations are done sequentially. For equake, some loops are not parallelized due to the
current implementation limitation of compiler. Therefore, its speedup of eight SPUs
is only above five.

7 Conclusions

In this paper, we describe how to support OpenMP on the Cell processor. Our approach
allows users to simply reuse their existing OpenMP applications on the powerful Cell
Blade, or easily develop new applications with the OpenMP API without worrying
about the hardware details of the Cell processor. We support OpenMP by orchestrating
compiler transformations with a runtime library that is tailored to the Cell processor.
We focus on issues related to three topics: thread and synchronization, code genera-
tion, and the memory model. Our compiler is novel in that it generates a single binary
that executes across multiple ISAs and multiple memory spaces.

Experiments with simple test cases demonstrate that our approach can achieve
performance similar to that of manually written and optimized code. We also experi-
mented with some large, complex benchmark codes. Some of these benchmarks show
significant performance gains. Thus, we demonstrate that it is feasible to extract high
performance on a Cell processor using the simple and easy-to-use OpenMP program-
ming model. However, we need to further improve our compiler implementation for
improved performance on a wider set of application programs.

References

1. Pham, D., Asano, S., Bolliger, M., Day, M.N., Hofstee, H.P., Johns, C., Kahle, J., Kameyama, A.,
Keaty, J., Masubuchi, Y., Riley, M., Shippy, D., Stasiak, D., Suzuoki, M., Wang, M., Warnock1, J.,
Weitzel, S., Wendel, D., Yamazaki, T., Yazawa, K.: The design and implementation of a first-gener-
ation CELL processor. In: IEEE International Solid-State Circuits Conference (ISSCC) (2005)

2. Williams, S., Shalf, J., Oliker, L., Kamil, S., Husbands, P., Yelick, K.: The potential of the cell
processor for scientific computing. In: Proceedings of the 3rd Conference on Computing Frontiers
(CF ’06) (Ischia, Italy, May 3–5, 2006). ACM, New York, NY, pp. 9–20 (2006)

3. Gordon, M.I., Thies, W., Amarasinghe, S.: Exploiting coarse-grained task, data, and pipeline paral-
lelism in stream programs. SIGARCH Comput. Archit. News 34(5), 151–162 (2006)

4. Kistler, M., Perrone, M., Petrini, F.: Cell multiprocessor communication network: built for speed. IEEE
Micro. 26(3), 10–23 (2006)

5. Eichenberger, A.E., Wu, P., O’Brien, K., O’Brien, K., O’Brien, K.: Vectorization for SIMD archi-
tectures with alignment constraints. In: Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation (PLDI ’04) (Washington, DC, USA, June 9–11,
2004). ACM, New York, NY, pp. 82–93 (2004)

6. Bellens, P., et al.: CellSc: a programming Model for the cell BE architecture, SC (2006)
7. IBM xl compiler for Cell: http://www.alphaworks.ibm.com/tech/cellcompiler
8. Eichenberger, A.E., O’Brien, K., O’Brien, K., Wu, P., Chen, T., Oden, P.H., Prener, D.A., Shepherd,

J.C., So, B., Sura, Z., Wang, A., Zhang, T., Zhao, P., Gschwind, M.: Optimizing compiler for the
CELL processor. In: Proceedings of the 14th International Conference on Parallel Architectures and
Compilation Techniques (PACT) (September 17–21, 2005). IEEE Computer Society, Washington,
DC, pp. 161–172 (2005)

9. SDK for Cell: http://www-128.ibm.com/developerworks/power/cell/

123

http://www.alphaworks.ibm.com/tech/cellcompiler
http://www-128.ibm.com/developerworks/power/cell/

Int J Parallel Prog (2008) 36:289–311 311

10. Chen, T., Sura, Z., O’Brien, K.M., O’Brien, J.K.: Optimizing the use of static buffers for DMA on a
CELL chip. In: Workshop on Language and Compiler for Parallel Computing (LCPC), pp. 314–329
(2006)

11. NAS parallel benchmarks: http://www.nas.nasa.gov/Resources/Software/npb.html
12. Spec OMP benchmarks: http://www.spec.org/
13. Paraver: http://www.cepba.upc.es/paraver/

123

http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.spec.org/
http://www.cepba.upc.es/paraver/

	Supporting OpenMP on Cell
	Abstract
	Introduction
	System Overview
	Threads and Synchronization
	Code Generation
	Memory Management
	Static Buffers
	Latency for Single-Buffer
	Latency for Double-Buffer
	Latency for k-Buffer
	Compiler Algorithm
	Software Cache
	Experimental Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

