
Int J Parallel Prog (2008) 36:250–266
DOI 10.1007/s10766-007-0068-8

A Run-time System for Efficient Execution of Scientific
Workflows on Distributed Environments

George Teodoro · Tulio Tavares ·
Renato Ferreira · Tahsin Kurc ·
Wagner Meira Jr. · Dorgival Guedes ·
Tony Pan · Joel Saltz

Received: 1 November 2006 / Accepted: 2 April 2007 / Published online: 10 January 2008
© Springer Science+Business Media, LLC 2008

Abstract Scientific workflow systems have been introduced in response to the
demand of researchers from several domains of science who need to process and
analyze increasingly larger datasets. The design of these systems is largely based on
the observation that data analysis applications can be composed as pipelines or net-
works of computations on data. In this work, we present a run-time support system
that is designed to facilitate this type of computation in distributed computing envi-
ronments. Our system is optimized for data-intensive workflows, in which efficient

G. Teodoro (B) · T. Tavares · R. Ferreira · W. Meira Jr. · D. Guedes
Department of Computer Science, Universidade Federal de Minas Gerais, 31270-010 Belo Horizonte,
MG, Brazil
e-mail: george@dcc.ufmg.br

T. Tavares
e-mail: ttavares@dcc.ufmg.br

R. Ferreira
e-mail: renato@dcc.ufmg.br

W. Meira Jr.
e-mail: meira@dcc.ufmg.br

D. Guedes
e-mail: dorgival@dcc.ufmg.br

T. Kurc · T. Pan · J. Saltz
Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA

T. Kurc
e-mail: kurc@bmi.osu.edu

T. Pan
e-mail: tpan@bmi.osu.edu

J. Saltz
e-mail: jsaltz@bmi.osu.edu

123

Int J Parallel Prog (2008) 36:250–266 251

management and retrieval of data, coordination of data processing and data move-
ment, and check-pointing of intermediate results are critical and challenging issues.
Experimental evaluation of our system shows that linear speedups can be achieved
for sophisticated applications, which are implemented as a network of multiple data
processing components.

Keywords Scientific workflows · Parallel computing · Data-analysis

1 Introduction

Data analysis is a significant activity in almost every scientific research project. Chal-
lenges in designing and implementing support for efficient data analysis are many,
mainly due to characteristics of scientific applications that generate and reference
very large datasets. Large datasets are often generated by large scale experiments
or long running simulations. One example is the Large Hadron Collider project at
CERN. Starting this year, this project is expected to generate raw data on a petabyte
scale from four large underground particle detectors every year [1]. Projects like the
Grid Datafarm [2] are being implemented to be able to process these datasets.

To help the researchers in their experiments and analysis, scientific workflow sys-
tems [3–6] have been introduced. In most scientific applications, analysis workflows
are data-centric and can be modeled as dataflow process networks [7]. That is, a data
analysis workflow can be described as a directed graph, in which the nodes represent
application processing components and the directed edges represent the flow of data
exchanged between these components.

Distributed environments, like a PC cluster or collection of PC clusters, provide
viable platforms to efficiently store large datasets and execute data processing opera-
tions. In a scientific workflow system, the user should be able to describe and create
components based on the tasks they want to execute, arrange these components into a
network of operations on data based on the application data processing semantics, and
run the network of components on very large data collections on clusters of storage
and computation nodes. Scientific workflow systems should also support component
reuse. In other words, a component may be part of a specific workflow, but also can
be reused in another application workflow. An example data analysis workflow in an
image analysis application is shown in Fig. 1. This example involves analysis of digital
microscopy slides to study the phenotype changes induced by some genetic manipu-
lations. In the figure, we can see four different tasks (image analysis operations) that
should be applied in sequence to the slides. In summary, some of the challenges in
designing workflow systems that support processing of large datasets are (1) to store,
query and manage large distributed databases, (2) to manage the input and output data
and the scheduling and monitoring of these workflows execution in the distributed
environment, and (3) to optimize the reuse of components in different workflows.

We proposed and developed the Anthill system [8], a system based on the fil-
ter-stream programming model that was originally proposed for Active Disks [9],
to address some of the issues in execution of scientific data-intensive workflows. In
Anthill, filters represent different data processing components of the data analysis

123

252 Int J Parallel Prog (2008) 36:250–266

Fig. 1 Example application workflow

structure and streams are an abstraction for communication between filters. Using this
framework, applications are implemented as a set of filters over the network connected
using streams, creating task parallelism as in a pipeline. During execution, multiple
copies of each filter can be instantiated, allowing every stage of the pipeline to be
replicated, resulting in data parallelism. In an earlier work [8], we demonstrated the
efficacy and efficiency of Anthill for data mining tasks.

In this paper, we report on the results of an effort to extend the functionality of Ant-
hill. These extensions include (1) a program maker component, which builds workflow
executables from dynamically loadable shared libraries and workflow description files,
(2) a persistent storage layer, which provides support for management of meta-data
associated with workflow components, storage and querying of input, intermediate,
and output datasets in workflows, and (3) in-memory storage (cache) layer, which is
designed to improve performance when data is check-pointed or stored in and retrieved
from the persistent storage layer. The persistent storage layer builds on Mobius [10],
which is a framework for distributed and coordinated storage, management, and que-
rying of data element definitions, meta-data, and data instances. Mobius is designed
as a set of loosely coupled services with well-defined protocols. Data elements/objects
are modeled as XML schemas and data instances as XML documents, enabling use
of well-defined protocols for storing and querying data in heterogeneous systems.

The extensions presented in this paper are generic in the sense that they can be
applied in a range of situations, and our experiments have shown that we incur low
overhead during execution.

2 Related Work

The Chimera [11] project has developed a virtual data system, which represents data
derivation procedures and derived data for explicit data provenance. This information
can be used for re-executing an application and regenerating the derived data. Our
approach focuses on storing the partial data results; we do not store a large amount of
information about data derivation, but we are able to efficiently store datasets gener-
ated between each pipeline stage. The Pegasus [12] can create a virtual data system
that saves the information about data derivation procedures and derived data using Chi-
mera. It also maps Chimera’s abstract workflow into a concrete workflow DAG that
the DAGMan [13] meta-scheduler executes. The Kepler [5,6] system provides support
for Web Service based workflows. The authors show the composition of workflows
based on the notion of actor oriented modeling, first presented in PTOLEMY II [14].

123

Int J Parallel Prog (2008) 36:250–266 253

Pegasus and Kepler systems have interesting solutions to the workflow management
problem. However, they do not directly address the problem of integrating workflow
execution with data management and retrieval. Our system is constructed to sup-
port efficient access to data stored in distributed databases and scalable execution of
workflows in an integrated manner. NetSolve [15] provides access to computational
software and hardware resources, distributed across a wide-area network. To support
sharing of software resources available in the network, NetSolve creates an infrastruc-
ture to call shared libraries that implement the available functionalities. The other
features of NetSolve include support for fault-tolerance and load balancing across
computational resources.

3 Extended Anthill Framework

The architecture of the extended Anthill system, as shown in Fig. 2, is composed of
two main parts: the program maker and the run-time environment. The first part allows
users to store and share data processing components in a repository and provides a
toolkit for generating workflows based on shared components from the repository.
The run-time environment is designed to support analysis workflows in data intensive
applications. The run-time environment is further divided into a distributed workflow
meta-data manager, a distributed in-memory data storage, and a persistent storage
system. The workflow meta-data manager (WFMDM) works as a data manager for
the workflow execution. It stores information for datasets read or written by the appli-
cation on the fly. It is also responsible for deciding on demand which portions of the
input data are processed by each filter. Note that the WFMDM can be executed in

Filter Maker

 Runtime Environment

Data-Intensive Workflow Execution Support

XML Data Storage MiddleWare - PSM

Program Maker

Workflow Management System

Application Filters

Shared Library Repository

Get Libraries

In Memory Data Storage

Workflow Meta-data Manager

Program Descriptor

Fig. 2 Framework components

123

254 Int J Parallel Prog (2008) 36:250–266

distributed fashion across multiple machines or as a centralized entity. The in-memory
data storage (IMDS) subsystem works as an intermediary between the application and
the Persistent Storage Management System (PSM). Based on the meta-data provided
by the WFMDM, the IDMS basically reads the necessary data from the PSM and
stores the outputs of each component in the PSM. The PSM uses the Mobius frame-
work [10] to expose and virtualize data resources as XML databases and to allow
for ad hoc instantiation of data stores and federated management of existing, distrib-
uted databases. The system also provides mechanisms for efficiently saving partial
results without introducing synchronization between the application and the run-time
environment.

We now proceed to detailing the implementation of each of these components. They
are designed to achieve scalable and efficient execution in distributed and heteroge-
neous environments.

3.1 Program Maker

This component is a tool for allowing users to incorporate existing program compo-
nents and libraries in the workflow system. To accomplish this task, it creates additional
code in each stage of the workflow pipeline to support execution of program execu-
tables and dynamically loadable shared libraries. The Program Maker is divided into
three parts: Shared Libraries and Executables Repository, Program Descriptor and
Filter Maker.

3.1.1 Shared Libraries and Executables Repository

In our framework data analysis workflows can be created from dynamically loadable
libraries and program executables. We have developed a repository component to
enable management of function libraries and executables so that users can store and
search for application processing components and use them in workflows. To support
efficient management and querying of the repository, we implemented it using Mobius
[10]. The user can interact with the repository via three basic operations: upload, search
for, and download programs and libraries.

The first operation, upload, requires the creation of meta-data that describes the
compiled code being uploaded. This meta-data, which is implemented as an XML
document, contains all the information necessary to identify the type of data the pro-
gram is able to work with, the data structures used by each of its arguments, and
the de-serialization and serialization functions that need to be applied to the input
and output datasets of the program. It also includes additional information about the
system requirements of the particular program or library (e.g., hardware platform
requirements, dependencies on other libraries). The second operation, search, is used
to perform queries to search for stored libraries and program executables and to access
the meta-data related to each stored element. The last operation, download, receives
a reference to a compiled code or library, downloads it from the repository, and stores
it in a local directory.

123

Int J Parallel Prog (2008) 36:250–266 255

3.1.2 Program Descriptor

This is the configuration file (represented as an XML document) of the entire data pro-
cessing pipeline of an application. It is divided into four sections: hostDec, placement,
layout, and compiledFilters.

• hostDec is used to describe all machines available in the environment. It is used
to determine the resources for each of the application components.

• placement is used to declare the components comprising a particular workflow
application, the library in which they are located, and the number of instances that
should be created for each component.

• layout defines the connections between the components, the policies associated
with each connection (e.g., each data buffer exchanged between two components
over the connection can be check-pointed), and the direction of communication.

• compiledFilters is used to provide information that the framework needs to be
able to execute a given component. Information here is used to find out which
library the component code comes from, the number and types of parameters that
should be passed or returned to/from the component, and the data transformation
functions that need to be called to serialize/de-serialize the input and outpur data
of the component.

3.1.3 Filter Maker

This component receives a Program Descriptor configuration file and executes the
workflow described in that file. It generates the source code of the connection filter for
each application component declared in the configuration file, as well as the Makefile
required for compiling and linking the entire application workflow. The user should
define an environment variable pointing to the directory where it is stored so that the
filter maker subsystem can determine the location of the application-specific libraries
to be linked to the workflow. The connection filter wraps the application specific data
processing component so that it can be executed properly. A high level definition
of the connection filter is given in Algorithm 1. It executes a loop that reads data
from the input stream, de-serializes and passes it to the application component code,
which is invoked in the process method. It then proceeds to serializing any output
that is generated by the application component and sending it out the next filter in the
workflow.

3.2 Run-time Environment

The run-time environment, shown in Fig. 2, is divided into three main components: the
Data-Intensive Workflow Execution Support System, which is responsible for instanti-
ating the workflow program, the Workflow Management System, which is responsible
for managing the entire workflow execution, and the Persistent Storage System.

123

256 Int J Parallel Prog (2008) 36:250–266

3.2.1 Data-intensive Workflow Execution Support System

This component is implemented on top of Anthill [8], which is responsible for instan-
tiating the components on distributed platforms and managing the communication
between them. Anthill is based on the filter-stream programming model, which means
that in this environment applications are decomposed into a set of filters that com-
municate through streams. At execution time, multiple instances of each filter can be
spawned on different nodes on a distributed environment, achieving data parallelism
as well as pipelined task parallelism.

We have extended the Anthill run-time to provide transparent communication
between the application and the Workflow Management System (WMS). These mod-
ifications provide support for exchanging information across application components
and the WMS. This information includes, for instance, which filters are available for
data processing, which documents have been processed, and so on.

3.2.2 Workflow Management System

This component is divided into two subcomponents: the Workflow Meta-Data Man-
ager (WFMDM) and the In-Memory Data Storage (IMDS). The WFDMD works as
the data manager of the entire workflow execution. It maintains information about all
the data involved in the application execution, either read or written. When the work-
flow execution is initiated, the WFMDM receives a XPath query [16] that specifies the
input dataset. It then relays the query to all instances of the Persistent Storage Manager
(PSM) and builds a list of all matching documents with the associated meta-data. Each
document of the list goes through three different states as the execution progresses:

Not processed: This state applies to all documents that compose the input dataset
at the beginning of the execution. It means that they are available to be processed.
Being processed: input documents sent to filters are in this status as well as docu-
ments sent across filters, because they have been created and are being processed
by one or more filters.
Processed: a documents is marked processed when it has been processed by a filter
and the result has been stored in the IMDS.

During the workflow execution, the WFMDM is responsible for assigning docu-
ments to filters. This data partitioning is done on demand as each time a filter reads
input data, a request is received by the WFMDM. The goal is to always assign a local
document to the filter.

The IMDS works as an intermediary between application filters and the persistent
storage manager (PSM). It is implemented as a filter, which is instantiated on multiple
machines based on user configuration. The system always tries to have filter requests
for data answered by a local IMDS. When there is no local IMDS for a given filter,
another one is assigned to the filter by the run-time system.

As filters request data during execution, these requests are passed down to the local
IMDS (or to the assigned one). The IMDS acts pretty much as a caching system, only
relaying requests for unavailable data to the WFMDM. Several instances of the IMDS
can be distributed across available machines and work independently, meaning that

123

Int J Parallel Prog (2008) 36:250–266 257

multiple instances can be reading different portions of the data simultaneously. This
is similar to a classic parallel I/O approach, except that it is on top of a distributed
XML database.

The task of saving intermediate results is also executed by the IMDS. It can save all
data sent through the stream. During execution, the IMDS creates, on the fly, distrib-
uted databases for each stream and stores all the data exchanged over a given stream
as documents in Mobius. It behaves like a write-back caching mechanism, releasing
the application code from having to wait for the I/O operation to complete. As in the
case of reads, multiple write operations can be executed in parallel.

3.2.3 Persistent Storage Manager

We use Mobius [10] as our persistent data storage manager. We employ the Mobius
Mako services to store all data used in workflows. The Mobius Mako provides a plat-
form for distributed storage of data as XML documents. Databases of data elements
can be created on-demand. The data is stored and indexed so that it can be queried
efficiently using XPath. Data resources are exposed to the environment as XML data
services with well-defined interfaces. Using these interfaces, clients can access a Mako
instance over the network and carry out data storage, query, and retrieval operations.

3.2.4 Communication Protocol

Application components (implemented as filters) communicate with the rest of the
run-time support transparently. Each application component is just concerned with
receiving its own input data, processing it, and generating its output. In Fig. 3 we
illustrate the internal communication structure across the several components of the
run-time infrastructure. We use a stage in the pipeline of an image processing appli-
cation (described later, see Fig. 7) as an example. As seen in the figure, there are two
filters involved in that stage: color classification and tissue segmentation, both being
fairly standard image analysis algorithms.

In Fig. 3a, we detail the communication within the run-time components for the
case of a read operation (assume the first filter, color classification, is reading its next
image). The process starts with a message from the application’s filter requesting the
next document from the IMDS. This operation will then invoke a request to the local
WFMDM instance for an available document for processing, and will receive an ID
of some document, potentially available locally. With that information, the IMDS can
serve the original requester with the data. It may need to query the PSM, if the data is
not available in the IMDS already.

Figure 3b illustrates the communication protocol for write operations. It is a slightly
more complicated protocol. As the color classification code outputs its data, the filter
has to first create the dependencies (i.e., the documents used to create other documents)
on the local IMDS instance. After that, the data is sent from one filter to the next, using
the streams infrastructure within Anthill. Once the filter on the receiving end gets the
data, it creates a local copy of the data before passing it to the application code. As this
copy of the data is stored locally, the IMDS notifies the local WFMDM instance about
the local data copy and the sender’s WFMDM instance that the data was successfully

123

258 Int J Parallel Prog (2008) 36:250–266

Application Filters
Color

Classif.
Tissue
Seg.

IMDS 1

WFMDM 1

Mobius Mobius

In-Memory Data Storage
 (transparent copies)

Persistent Storage

Workflow Meta-data Manager
 (transparent copies)

WFMDM 2

1. READ_DOC 5. AVAILABEL_DOC

2. RET_FREE_DOC

3. FREE_DOC_ID

4. Retrive doc from Mobius

6. Process document

IMDS 2

(a)

Application Filters Color
Classif.

Tissue
Seg.

IMDS 2IMDS 1

WFMDM 1

Mobius Mobius

In-Memory Data Storage
 (transparent copies)

Persistent Storage

Workflow Meta-data Manager
 (transparent copies)

WFMDM 2

1. GET_DEPS 2. RET_DOC_DEPS
3. WRITE_DOC

4. BEGIN_NEW_DOC_IN_CACHE

5. NEW_DOC_ID

6. DOC_PROCESSED

7. DOC_PROCESSED_ACK

If necessary,
write some documents
to Mobius

(b)

Fig. 3 Communication protocol inside the run-time support components

received. This will prompt a change the change in the state (to processed) of the input
document that generated that particular output document. The IMDS will eventually
move the data from its memory to the PSM. This happens in background so that the
application is not penalized.

3.3 Support for Matlab Filters

In biomedical image analysis studies Matlab is a commonly used system. Through its
scripting capabilities and built-in libraries and functionality, it provides an environ-
ment for researchers to quickly prototype their algorithms and evaluate them. It also
provides compilation functionality by which a Matlab program can be compiled into a
shared library or an executable. We developed support in the framework described in
this paper to facilitate composition and execution of workflows consisting of Matlab

123

Int J Parallel Prog (2008) 36:250–266 259

Fig. 4 A sample group of filters
using Matlab libraries

programs compiled as shared libraries. In this section, we describe how to create an
XML configuration file for applications whose filters are generated using a compiled
Matlab code. The first three sections of the configuration file (hostdec, placement and
layout), are consecutively used to describe the available machines, the filters in the
pipeline and how to connect these filters. For filters, that are automatically generated
from compiled Matlab executables or shared libraries, we add an extra section in the
configuration file; this section is marked as (matLab). In the matLab section, for
each filter metadata such as filtername and libraryname are specified. After analyzing
the matLab section of the configuration file, our system determines which filters cor-
respond to Matlab shared libaries and the inputs and outputs of these filters. At this
point, we can generate the filter’s code to call these functions. Figure 4 shows how the
conf file is translated in filters.

Algorithm 1 Application filter
while there is data to be processed do

read(data)
inputData = de-serialize(data)
outPutData = process(inputData)
if there is any outPutData to be written then

outPut = serialize(outPutData)
write(outPut)

end if
end while

In the configuration file, for each Matlab filter, a <matLabFilter> tag is created.
This tag contains the following two attributes:

• name: Name of the filter that use compiled code
• matlablibname: Name of the shared library where the function that implements

this filter is located.

123

260 Int J Parallel Prog (2008) 36:250–266

The function that will be used by the filter should also be declared. This can be
done using the <function> tag. The attributes of this tag are:

• headername: The header name of the function
• numoutputs: The number of arguments used as output (reference)
• numinputoutputs: The number of arguments used as input and output
• numinputs: Number of arguments that are used just as a function input

Finally, each argument of the function is specified using the <argument> tag. This
tag has the following attributes:

• argType: The type of this argument.
• inputType: Is used to know if this variable is initialized from a user line comand

of from message.
– userargindex: Its similar to the index of argv variable in a C program call
– msgindexin: Identifies the location of input in the received msg

• order: The order of the parameters in the function call
• serializefunction: The output (inputoutput) argument identifies the serialize func-

tion that should be used to pack the data in the output msg
• serializelibname: The name of the library that contains the serialize function.
• deserializefunction: The input (inputoutput) argument most inform what are the

deserialize function that should be used to unpack the data in the in msg before
call the function that implements the filter

• deserializelibname: The name of tha lib that contains the deserialize function.
• msgIndexOut: Identifies the order that the serialize functions must be called

The user can provide serialization and deserialization functions. We also developed
a suite of serialization/deserialization functions for common Matlab data types.

An example configuration file for a workflow composed of Matlab filters is given
in Fig. 5.

4 Application Example

In this section we briefly describe an example application and how it is mapped into
a workflow using the tools available in our framework.

4.1 Application Overview

The example application uses high-resolution digitized microscopic imaging to study
phenotype changes in mouse placenta induced by genetic manipulations. It handles
the segmentation of images that compose the 3D mouse placenta into regions corre-
sponding to the three tissue layers: the labyrinth, spongiotrophoblast, and glycogen,
as described in [17].

We have divided this application into six stages, as seen in Fig. 6, and mapped four
of the most expensive stages as the components of the workflow. The basic description
of each of the four stages are:

123

Int J Parallel Prog (2008) 36:250–266 261

<programDescriptor>
 <hostDec>
 <host name="mymachine.bmi.ohio-state.edu"/>
 </hostDec>
 <placement>
 <filter name="HistogramNomalization" libName="HistogramNormalizationFilter.so" instances="2">
 <filter name="Writer" libName="WriterFilter.so" instances="2">
 <placement/>
 <layout>
 <stream>
 <from filter="HistogramNormalization" port="histOut" policy="roundRobin"/>
 <to filter="Writer" port="writerInput" />
 </stream>
 </layout>
 <compiledFilters>
 <matLabFilter name="HistogramNormalization" matLabLibName="libMyHistogramNormalization.so" firstFiler="yes">
 <function headerName="mflMyHistogramNormalization" numoutputs="2" numinputoutpus="0" numinputs="6">
 <arg argType="mxArray*" inputType="userArg" userArgIndex="1" deserializeFunc="stringToMxArray"
 deserializeLib="libdeserialize.so" order="5"/>
 <arg argType="mxArray*" inputType="userArg" userArgIndex="2" deserializeFunc="stringToMxArray"
 deserializeLib="libdeserialize.so" order="6"/>
 <arg argType="mxArray*" inputType="userArg" userArgIndex="3" deserializeFunc="stringToMxArray"
 deserializeLib="libdeserialize.so" order="7"/>
 <arg argType="mxArray*" inputType="userArg" userArgIndex="4" deserializeFunc="stringToMxArray"
 deserializeLib="libdeserialize.so" order="8"/>
 <arg argType="mxArray*" inputType="msg" msgIndex="1" deserializeFunc="uint8MatrixMToMxArray"
 deserializeLib="libdeserialize.so" order="3"/>
 <arg argType="mxArray*" inputType="msg" msgIndex="2" deserializeFunc="uint8MatrixMToMxArray"
 deserializeLib="libdeserialize.so" order="4"/>
 <arg argType="mxArray**" serializeFunc="mxArrayToDCBuffer" serializeLib="libserialize.so" order="1"
 msgIndexOut="1"/>
 <arg argType="mxArray**" serializeFunc="mxArrayToDCBuffer" serializeLib="libserialize.so" order="2"
 msgIndexOut="2"/>
 </function>
 </matLabFilter>
 </compiledFilters>

</programDescriptor>

Fig. 5 A sample configuration file for a workflow consisting of Matlab filters

Foreground/Background Separation (FG/BG): Images are converted from the RGB
color space to the CMYK color space and a combination of the color channels are
thresholded to get the foreground tissue.

Histogram Normalization: Images are corrected for color variations. This process
consists of three sub-operations: computing the average colors for the images; select-
ing one image as the color normalization target; and generating a histogram for each
of the red, blue and green channels.

Color Classification: Pixels in an image are classified using a Bayesian classifier.
The classification of a pixel puts it in one of eight different categories: dark nuclei,
medium intensity nuclei, light nuclei, extra light nuclei, red blood cell, light cytoplasm,
dark cytoplasm, and background.

Tissue Segmentation: In this step, using a Bayesian classifier, each tissue is classified
into one of the three tissue types: Labyrinth, Spongiotrophoblast, and Glycogen.

In the rest of this section we describe how a developer can implement this applica-
tion using our system.

123

262 Int J Parallel Prog (2008) 36:250–266

FG/BG
ITK

Placenta
PNG

Mask
PNG

Histogram
Normalization

MatLab
Color Test

MatLab

(R, G, B)
CSV

Reference
 Image

Reference
Image

Color
Corrected

PNG

Color Classification
ITK

Mapped
Image
PNG

Tissue
Segmentation

MatLab

Seg. Map
PNG

Bayes
Classfication

ITK

Human
Interaction

Training
Information

PNG

Training Phase

Stage 1

Stage 3

Stage 4

Stage 5

Stage 6

Human
Interaction

Stage 2

Fig. 6 Mouse placenta application

4.2 Application Filters

The main work to integrate an application into our system consists in constructing the
compiledFilter section of the Program Descriptor configuration file, describing the
entire data analysis pipeline of the application (see Sect. 3.1.2). In the compiledFilter
section, the user describes details about each filter that perform application specific
data processing functions. Due to space limitations, we do not elaborate on the for-
mat of the configuration file other than to say that it is a XML document containing
a detailed description of each of the application components (filters), with all the
information required for automatically generating filters.

4.3 Application Workflow

In the workflow composition phase, the user needs to specify what filters are in the
workflow and the connection between them. This information is part of the placement
and layout sections of the Program Descriptor file. After this information is specified,

123

Int J Parallel Prog (2008) 36:250–266 263

FG/BG
ITK

Histogram
Normalization

MatLab

Workflow Management and Storage System

Color Classification
ITK

Tissue
Segmentation

MatLab

FG/BG

.

..

Workflow Management and Storage Sytem

Histogram
Normalization

... .
..

.

..

Color
Classification

Writer

Tissue
Segmentation

Writers

. . .

Stage 3 Stage 4 Stage 6

Fig. 7 Mouse placenta application workflow

the user can call a script with the program parameters and a XML query that identi-
fies the data elements, which are stored in and managed by the PSM, that should be
processed.

In the example application, inputs needed by stage 3 are the outputs of stage 2,
so we have a clear data dependency between them. During the execution of stage 2,
our framework creates new data collections on the fly across available machines and
stores the output data elements and the related meta-data to be used as stage 3 input.
Once stages 2 and 3 have completed execution, stage 4 can be executed. Again the the
framework takes care of storing the output from this stage. Stage 6 has a data stream
between two application filters. Figure 7 shows this stream and a dotted arrow from
it to the WMS. This arrow represents an optional efficient stream storage mechanism.
This feature allows storage of partial results during execution. This check-pointing
facility can be used to re-start the execution from the last set of stored partial results.

123

264 Int J Parallel Prog (2008) 36:250–266

5 Experimental Results

In this section we evaluate the implementation of the example image analysis appli-
cation developed using the framework described in this paper. The experiments were
run on a cluster of 20 PCs, which are connected using a Fast Ethernet Switch. Each
node has a AMD Athlon(tm) Processor 3200+ and 2 GB main memory and runs Linux
2.6 as the operating system.

To evaluate our implementation, we used a dataset of 866 images that have been
created by digitizing sections from a mouse placenta, as described in [17]. The size
of the whole dataset is 23.49 GB. The dataset has been stored in the PSM; we ran one
Mobius Mako service instance on each storage node and distributed the images in the
dataset across multiple Mako nodes in round-robin fashion. During the experiments,
we instantiated one IMDS on each machine and one WFMDM instance on one of the
machines.

Figure 8 shows an experimental evaluation of the Foreground/Background Separa-
tion (FG/BG) stage. The numbers illustrate the good scalability of our system, which
achieves almost linear speed-up as seen in Fig. 8b. In Fig. 8a, the details of the exe-
cution time are shown. The results show that the execution time is dominated by the
time spent in the process function.

Figure 9a shows the speed-up results of the Histogram Normalization stage. This
stage uses images and associated image masks as input. The execution time using
two machines is about 7,000 s and the speed-up is almost linear. Figure 9b shows the
speed-up of the last and most expensive stage, the “Color Classification” and “Tissue
Segmentation”. For this stage, the execution time using two machines is about 60,000 s
and the speed-up is almost linear.

Figure 10 shows the performance of the system when partial results from a stage is
saved in the system. In the figure, the execution time of the last stage of the application
is shown, when the partial results from the Color Classification filter are saved or not
saved in the system. As is seen from the figure, the overhead is very small and less
than 5% on average.

0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 20 16 12842

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Number of Nodes

Execution Time x Number of Nodes
(FGBG - 866 images)

Test Time
deviation

Processing Function
deviation

Read Documents
deviation

Write to Stream
deviation

(a)

5

 10

 15

 20

 20 16 12842

V
al

ue

Number of Nodes

Remove Background (FGBG − 866 images)

Speed−up
Linear Speed−up

(b)

Fig. 8 (a) The dissection of the execution time of the FB/BG stage (b) The speed-up values

123

Int J Parallel Prog (2008) 36:250–266 265

5

 10

 15

 20

 20 16 12842

V
al

ue

Number of Nodes

Histogram Normalization (866 images)(a)

Speed−up
Linear Speed−up

5

 10

 15

 20

 20 16 12842

V
al

ue

Number of Nodes

Color Classification and Tissue
Segmentation (866 images)(b)

Speed−up
Linear Speed−up

Fig. 9 Speed-up: histogram and color classification stages

0

 10000

 20000

 30000

 40000

 50000

 60000

 20 16 12842

E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of Nodes

Execution Time − Color Classification and Tissue
Segmentation (866 images)

Saving intermediate state
Not saving intermediate state

Fig. 10 Color classification and tissue segmentation test: doing and not doing checkpoint

6 Conclusion and Future Work

In this paper we have presented extensions to a run-time system, Anthill, for efficient
execution of scientific workflows on distributed environments. The new components
can create a stub Anthill filter (also called the connection filter) automatically from
a high level description of a given application component. These filters can run user
code with a simple interface.

In order to provide data management with low overhead, we use the Mobius infra-
structure. The modules of the run-time support are also built as a set of Anthill filters
which communicate among themselves and with Mobius transparently to the user
code. Our experiments have shown that our implementation can be used to execute
sophisticated applications, with multiple components, with almost linear speedups.
This means that our system imposes very little overhead.

Our next step is to work toward building a robust, dependable workflow system.
Fault tolerance is important in any environment with a large number of machines and
processes running for non-trivial periods of time. We plan to use the efficient data

123

266 Int J Parallel Prog (2008) 36:250–266

management mechanisms presented in this paper to store data checkpoints and allow
applications to resume execution from check-pointed data.

Acknowledgements This research was supported in part by the National Science Foundation under
Grants #ACI-0203846, #ACI-0130437, #ANI-0330612, #ACI-9982087, #CCF-0342615, #CNS-0406386,
#CNS-0403342, #CNS-0426241, NIH NIBIB BISTI #P20EB000591, Ohio Board of Regents BRTTC
#BRTT02-0003. This work is also partially supported by CNPq, Capes, Fapemig, and FINEP.

References

1. CERN: Large hadron collider (lhc)-http://www.interactions.org/lhc/
2. Tatebe, O., Morita, Y., Matsuoka, S., Soda, N., Sekiguchi, S.: Grid datafarm architecture for petascale

data intensive computing. In: 2nd IEEE/ACM International Symposium on Cluster Computing and
the Grid (CCGrid) (2002)

3. Kola, G., Kosar, T., Frey, J., Livny, M., Brunner, R.J., Remijan, M.: Disc: a system for distributed
data intensive scientific computing. In: Proceeding of the First Workshop on Real, Large Distributed
Systems (WORLDS’04). San Francisco, CA (2004)

4. Hastings, S., Ribeiro, M., Langella, S., Oster, S., Catalyurek, U., Pan, T., Huang, K., Ferreira, R.,
Saltz, J., Kurc, T.: Xml database support for distributed execution of data-intensive scientific work-
flows. SIGMOD Record 34, 2005

5. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludscher, B., Mock, S.: Kepler: An extensible system
for design and execution of scientific workflows. In: The 16th International Conference on Scientific
and Statistical Database Management(SSDBM). Santorini Island, Greece (2004)

6. Ludascher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E., Tao, J., Zhao,
Y.: Scientific workflow management and the kepler system. Concurrency and Computation: Practice
& Experience, Special Issue on Scientific Workflows (2005)

7. Lee, E.A., Parks, T.M.: Dataflow process networks. In: Proceedings of the IEEE, pp. 773–799 (1995)
8. Ferreira, R., Meira, W. Jr., Guedes, D., Drummond, L., Coutinho, B., Teodoro, G., Tavares, T., Araujo,

R., Ferreira, G.: Anthill: A scalable run-time environment for data mining applications. In: Symposium
on Computer Architecture and High-Performance Computing (SBAC-PAD) (2005)

9. Acharya, A., Uysal, M., Saltz, J.: Active disks: Programming model, algorithms and evaluation. In:
Eighth International Conference on Architectural Support for Programming Languages and Operations
Systems (ASPLOS VIII), pp. 81–91 (1998)

10. Hastings, S., Langella, S., Oster, S., Saltz, J.: Distributed data management and integration framework:
The mobius project. In: Global Grid Forum 11 (GGF11) Semantic Grid Applications Workshop, pp.
20–38. IEEE Computer Society (2004)

11. Foster, I., Voeckler, J., Wilde, M., Zhao, Y.: Chimera: A virtual data system for representing, querying,
and automating data derivation. In: The 14th International Conference on Scientific and Statistical
Database Management (SSDBM’02) (2002)

12. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Lazzarini, A., Arbree, A., Cava-
naugh, R., Koranda, S.: Mapping abstract complex workflows onto grid environments. J. Grid Comput.
25–39 (2003)

13. Frey, J., Tannenbaum, T., Foster, I., Livny, M., Tuecke, S. Condor-G: A computation management
agent for multi-institutional grids. In: Proceedings of the Tenth IEEE Symposium on High Perfor-
mance Distributed Computing (HPDC10). IEEE Press (2001)

14. PTOLEMYII project, Department of EECS, US Berkeley http://ptolemy.eecs.berkeley.edu/ptolemyII/
(2004)

15. Casanova, H., Dongarra, J.: Netsolve: A network enabled server for solving computational science
problems. In: International Journal of Supercomputer, pp. 212–223 (1997)

16. Berglund, A., Boag, S., Chamberlim, D., Fernández, M.F., Kay, M., Robie, J., Siméon, J.: Xml path
language (xpath). In: World Wide Web Consortium (W3C) (2003)

17. Pan, T.C., Huang, K.: Virtual mouse placenta: Tissue layer segmentation. In: Proceedings of the
27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC2005) (2005)

123

http://www.interactions.org/lhc/
http://ptolemy.eecs.berkeley.edu/ptolemyII/

	A Run-time System for Efficient Execution of Scientific Workflows on Distributed Environments
	Abstract
	Introduction
	Related Work
	Extended Anthill Framework
	Program Maker
	Shared Libraries and Executables Repository
	Program Descriptor
	Filter Maker
	Run-time Environment
	Data-intensive Workflow Execution Support System
	Workflow Management System
	Persistent Storage Manager
	Communication Protocol
	Support for Matlab Filters
	Application Example
	Application Overview
	Application Filters
	Application Workflow
	Experimental Results
	Conclusion and Future Work
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

