
Int J Parallel Prog (2008) 36:184–205
DOI 10.1007/s10766-007-0062-1

Dynamic Instruction Scheduling in a Trace-based
Multi-threaded Architecture

Peter A. Rounce · Alberto F. De Souza

Received: 1 November 2006 / Accepted: 2 April 2007 / Published online: 24 January 2008
© Springer Science+Business Media, LLC 2008

Abstract Simulation results are presented using the hardware-implemented,
trace-based dynamic instruction scheduler of our single process DTSVLIW archi-
tecture to schedule instructions from several processes into multiple streams of VLIW
instructions for execution by a wide-issue, simultaneous multi-threading (SMT) exe-
cution engine. The scheduling process involves single instruction execution of each
process, dynamically scheduling executed instructions into blocks of VLIW instruc-
tions cached for subsequent SMT execution: SMT provides a mechanism to reduce
the impact of horizontal and vertical waste, and variable memory latencies, seen in
the DTSVLIW. Preliminary experiments explore this extended model. Results achieve
PE utilization of up to 87% on a 4-thread, 1-scalar, 8 PE design, with speed-ups of
up to 6.3 that of a single processor. Noticeably it only needs a single scalar process
to be scheduled at any time, with main memory fetches being 1–4% that of a single
processor.

Keywords Simultaneous multi-threading · Dynamic instruction scheduling ·
Wide issue architectures · VLIW

1 Introduction

A key issue for wide issue processors, such as superscalar and very Long Instruction
word (VLIW) architectures, is keeping their many processing elements (PEs) fully

P. A. Rounce (B)
Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
e-mail: p.rounce@cs.ucl.ac.uk

A. F. De Souza
Departamento de Informática, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514,
Vitoria 29075-910, ES, Brazil
e-mail: albertodesouza@gmail.com

123

Int J Parallel Prog (2008) 36:184–205 185

supplied with instructions to execute. Superscalar architectures have been very suc-
cessful, but have required complex speculation and branch prediction hardware to
use any significant proportion of their PEs. A superscalar processor parallelizes the
code on route from the fetch logic to the processing elements. This offers benefits
in that it allows for adjustment of the execution sequence to immediate execution-
time effects (long latency operations, resource constraints), but makes the fetch-issue
logic very complex. The achievement of good performance despite frequent condi-
tional branches, that would otherwise stall the fetch-issue logic and reduce parallelism,
requires speculative execution across these branches with complex branch prediction
to reduce the impact of branch miss-predictions. The last seriously impacts on perfor-
mance through vertical wastage (processor cycles where no instructions can be issued)
from the long fetch-issue pipeline. Thus, the simultaneous multithreading of super-
scalars is no longer seriously considered because of their complexity [1], although they
are of interest as single-threaded processors within Chip Multiprocessors [2] (CMPs).
In pure VLIW systems, the compiler has complete responsibility for creating a pack-
age of operations that can be simultaneously issued to the VLIWs many PEs. Their
processors do not dynamically make any decisions about multiple operation issue, and
thus they are simple and fast. Much work has been done on compiler technology so as
to try and generate highly parallel code that will keep the PEs of a pure VLIW busy.
Even so, it is very difficult to prevent horizontal wastage, i.e. empty slots in the VLIW
long instruction provided to the PEs. These architectures are also unable to adjust
to variable latencies in instruction execution that differ from those presumed by the
compiler, e.g. misses in their D-caches, leading to processor stalls (vertical wastage).
Unlike superscalars, pure VLIW architectures also suffer from the VLIW object-code
compatibility problem: code generated for a 4-functional unit VLIW processor cannot
run on a 3-functional unit VLIW processor without recompilation.

A range of modified VLIW architectures have been developed to deal with the
different problems of VLIW architectures. The EPIC architecture [3] is a more elab-
orate form of VLIW architecture where, although the responsibility of detecting and
extracting the ILP lies with the compiler, improvements to the hardware enable bet-
ter exploitation of the available ILP. In EPIC systems, the compiler essentially uses
a model of unlimited parallelism that builds groups of instructions with an unlim-
ited number of instructions that can be executed in parallel. The instructions of these
groups are allocated into bundles with a fixed number of instructions: a bundle may
contain instructions from more than one group and has extra bits that identify the
boundaries between concurrently executable instructions. The EPIC processor reads
bundles sequentially from memory and uses the boundary information to identify
instructions that can be issued concurrently. The bundling and unbundling process
allows the compilation width and the instruction fetch width to be decoupled from
the VLIW processing engine width, so different hardware can use the same program
code without recompilation. The Weld architectural model [4,5] is a modified VLIW
model that executes statically compiled code (compiler created), but code in which the
compiler has identified sub-threads that can be speculatively executed by the proces-
sor in parallel to the main thread. When the hardware identifies that such a sub-thread
can be executed, a thread is spawned off to execute concurrently. This sub-thread
is merged back into the main thread, if the main thread reaches the address of the

123

186 Int J Parallel Prog (2008) 36:184–205

sub-thread otherwise the results are quashed. The Weld model is attempting to use
more of the available PEs by providing multiple threads to supply more instructions
to the processor engine. Weld is a single process, simultaneous multi-threading archi-
tecture (SMT) [6,7] with each thread having its own register file, that aims to reduce
the process’s execution time. The results presented in the Weld Papers [4,5] indicate
that in many cases most of the performance increase is achieved with just 2 threads,
and having more threads is not cost effective: the 2001 paper [4] gives an average
speedup of 27% over a single-threaded VLIW architecture. Weld dynamically adjusts
the instruction execution sequence supplied to the PEs depending on the program
execution sequence, but using statically defined code sequences. The DSVLIW [8]
(named the dynamically scheduled VLIW by Rau) also executed statically compiled
code, but split instructions into two parts with the first part generating the result value
placed in a renaming register, that is later copied into the target destination by the 2nd
part. Both parts are issued to reservations stations so that out-of-order execution can
occur and the architecture adjust to variable latencies.

A number of architectures perform dynamic code scheduling of the input code
stream to identify concurrent code sequences, as “a schedule created at run-time
is often better than one created at compile time”[9]. Thus DIF [10], DTSVLIW
[11–16], and rePLay [9] architectures are all single threaded ones that do dynamic
code scheduling on a single process. The DIF and DTSVLIW architectures both
schedule a scalar instruction stream into VLIW long words using essentially the
same concept, while rePLay uses a static scheduler to produce the source binary
code, which is then optimized by a scheduler during code execution. We believe
the DTSVLIW architecture to be simpler than that of DIF and easier to implement.
Work on the DIF appears to have ceased, while it is not clear how rePLay could
be extended to multi-threading: the rePLay paper [9] states that the scheduler can
be hardware or software based, and the hardware scheduler takes 10 clock cycles
for each instruction scheduled, which indicates that the scheduler does not lie in the
main execution path. In the DTSVLIW, scheduling occurs in a scalar mode of exe-
cution with the scheduler designed to process 1 instruction per cycle, although this
may not be achieved consistently because of delays in the arrival of instructions at
the scheduler due to latency issues elsewhere. In the rest of the paper we concentrate
on the DTSVLIW architecture and its multi-threading extension, the mDTSVLIW
[8].

The mDTSVLIW extension to the DTSVLIW architecture uses the scheduling
logic to schedule instructions from several processes to produce parallelized code for
several threads, and the code of these threads is later combined to produce a single
simultaneous multithreaded instruction stream for a wide issue processor. A key feature
of the design is that it does not depend on a large instruction bandwidth from the main
memory.

In the mDTSVLIW and the rest of this paper, the execution engine is VLIW, but
the instruction stream scheduling logic is not bound to VLIW architectures: it could
as well provide a parallel instruction stream to the issue logic and execution engine of
a superscalar.

123

Int J Parallel Prog (2008) 36:184–205 187

2 Single-threaded DTSVLIW Architecture

The idea behind the DTSVLIW architecture is to execute programs in two phases:
one sequential, the other parallel. The first phase occurs when a fragment of code
is first seen during execution, the second when the same fragment of code needs to
be re-executed. In the sequential phase, instructions are fetched from the instruction
cache and executed by a simple pipelined processor. Concurrently, they are scheduled
into VLIW long instructions and saved in blocks in a VLIW instruction cache. In the
parallel phase, the scheduled VLIW instructions are fetched from this VLIW cache
and executed by a VLIW processor.

Figure 1 shows a block diagram of the DTSVLIW architecture. The Primary Proces-
sor is a simple pipelined processor, which fetches and executes instructions from the
I-Cache to produce the trace for the Scheduler Unit. This schedules the trace into blocks
of long instructions, which are stored in the VLIW Cache. On each execute cycle the
address of the instruction to be executed is used to look-up the VLIW cache. On a hit,
the block hit is executed by the VLIW engine. At the end of a block, or on a branch out
of the block, further hits may occur on the VLIW cache, so that control may stay within
the VLIW Engine. At this time, the primary processor is unused and no accesses are
made to the I-Cache. The Scheduling Unit essentially performs superblock scheduling
[17,18]. In the DTSVLIW, the Scheduler Engine provides object-code compatibility,
and the VLIW Engine provides VLIW performance and simplicity. To execute code
in two distinct modes, one sequential and one parallel, results in four positive char-
acteristics. First, it gives code compatibility between different machine generations.
Second, complex instructions can be dealt with in sequential mode by the Primary
Engine or it is possible to decompose them into several simpler operations and to
schedule them into VLIW code. Third, the task of finding parallelism is simplified
as the Scheduler Unit receives no more than one instruction per cycle and, therefore,
can have a simple and fast hardware implementation. Fourth, instruction exceptions
can be dealt with in sequential mode: on an exception during parallel execution, a
DTSVLIW machine switches to sequential mode to deal with it. However, to take

Instruction
Cache

VLIW
Cache

Primary
Processor

Data
Cache

Fetch Unit

VLIW
EngineScheduler

Unit

From
Memory

Scheduling
List

Scheduler
Engine

To/From
Memory

Fig. 1 The Dynamically Trace Scheduled VLIW (DTSVLIW) architecture

123

188 Int J Parallel Prog (2008) 36:184–205

advantage of these characteristics, a DTSVLIW machine has to reuse the blocks of
VLIW instructions saved in the VLIW Cache many times.

3 Research Motivation

Previous simulation work by the authors and others have demonstrated that the
DTSVLIW can provide parallel performance similar to other enhanced VLIW archi-
tectures and superscalar architectures. Figure 2 shows results presented in our 2000
paper [12] of the effect of varying the number of instructions per long instruction
and the number of long instructions per cache block on the DTSVLIW performance,
measured as the average number of instructions executed per cycle for programs from
the SPEC95 benchmark suite (www.spec.org). The VLIW cache size is held constant.
In the legend of Fig. 2, “4 8” means 4 instructions per VLIW instruction and 8 long
instructions per block. The research presented in the 2000 paper, besides demon-
strating that the DTSVLIW works, also shows a common problem of processors that
exploit ILP, both VLIW-derived and superscalar-derived ones, that inefficient use is
made of the available parallelism. The average ILP found across the benchmarks in
Fig. 2 varies from about two, with four processing elements (PEs), to 4.5, with 16
PEs. Only one benchmark approaches an average 50% utilization of the PEs on the
16 PE-wide architecture.

As discussed earlier, VLIW architectures can be badly affected by horizontal and
vertical wastage. The DTSVLIW is no different in this respect, as the scheduler unit
determines instruction scheduling prior to storage in the cache. The only response
to an increase in latency during VLIW-mode execution is to stall the VLIW Engine.
Superscalar architectures are more resilient to changes in latency, as their instruction
scheduling is done at the execution unit. Another critical issue for the DTSVLIW is
the size of the VLIW cache, which has to be large enough to hold sufficient VLIW
instructions to keep the VLIW Engine busy and not require too many returns to the
Primary Processor.

0

1

2

3

4

5

6

7

8

compress
Benchmark

In
st

ru
ct

io
n

s
p

er
 C

yc
le

4 4 4 8 8 4 4 16 8 8 16 4 8 16 16 8 16 16

gcc go ijpeg m88ksim perl vortex xlisp

Fig. 2 Variation of parallelism with the block size and geometry

123

www.spec.org

Int J Parallel Prog (2008) 36:184–205 189

Making more use of the available parallelism, reducing the impact of memory
latency variations, and reducing the on-chip size of the VLIW cache are the moti-
vations of our work. The first two of these are well known reasons for moving to a
simultaneous multi-threaded architecture [7], and this paper presents work on these
issues. With simultaneous multi-threading (SMT), instructions from several threads
are issued for execution on each cycle, reducing both vertical waste (if a thread is stalled
due to memory access latencies, instructions from other threads may be available for
execution) and horizontal waste (unused PEs due to a lack of available parallelism in
the thread being executed) [7].

4 Rationale

The idea for the multi-threaded design arose from consideration of why we get
improved performance from the DTSVLIW when the Primary Processor only reads
one instruction at a time from the program memory: execution occurs mainly in the
VLIW Engine, leaving the Primary Processor and I-Cache unused. Figure 3 demon-
strates this: the upper bound of the trace shows when the VLIW Engine is executing;
the lower bound when the primary processor is executing. Excursions between these
bounds mark the transitions from one to the other. The simulator in this instance
implements the SPARC architecture [19] and most of the many short transitions to
the primary are to execute complex operations: mostly SPARC “save” and “restore”
instructions. The longer period in the primary engine at 600 cycles is a period of VLIW
block building by the scheduler: the snapshot is early in the execution of the vortex
benchmark with a 16-PE VLIW Engine. The small amount of block building activity
shows that the VLIW Cache has a working set of blocks. Typically, a DTSVLIW
process will spend only 5–10% of its cycles in primary mode operation.

The primary processor is an under-used resource as is the I-Cache. Its increased
utilization would seem to offer a route to making more use of the available PEs by
using them to schedule blocks for other processes, and extending the VLIW Engine
to SMT operation. This last requires that the issuing logic issue instructions from
available long instructions of different threads into the VLIW Engine on each cycle:
these instructions can be executed in parallel because they are either from the same
long instruction or from different threads. There is of course a need for multiple register
sets. SMT increases the utilization of the PEs but with some increase in run-time of
individual threads: there is competition between threads for the PEs, and a process no
longer has full use of the resources. This differs from the Weld architecture [4] where

Fig. 3 Snapshot of 1200 clock cycles of DTSVLIW activity during execution of a single process

123

190 Int J Parallel Prog (2008) 36:184–205

the single-threaded design reduces the execution time of an individual process: our
SMT design overlaps the execution of processes to improve total process throughput.
SMT also provides a mechanism by which the VLIW Engine can keep on processing
when a memory access for a particular process fails to complete in the predicted time:
instruction issue for this process is stalled, but the issuing logic can select and issue
instructions from other processes. Of course, there are negative impacts to this multi-
threading. One is the potential increase in memory traffic from the multi-threading.
Another is the potential for issuing stalls when there are insufficient specialized PEs for
the instructions requesting them, e.g. for load/store operations. This is a problem with
all ILP architectures, both statically (compiled-based) and dynamically scheduled,
but it is exacerbated by the multi-threading. All these are well-known advantages and
disadvantages of multi-threading, as has been well documented elsewhere [2,6,7].
A second area of concern is the increase in the number of VLIW blocks that need to
be stored and thus a pressure for an increase in the capacity of this cache. A solution
to this VLIW cache size problem might seem to be to move the bulk of this off-chip.
However, results from these experiments indicate that increasing the D-cache capacity
might be a better approach to deal with both concerns: reducing D-cache misses has
the positive side-effect of reducing the VLIW cache requirement for a similar level of
performance.

A further possible benefit of multi-threading is that it allows the width of the schedul-
ing unit logic to be decoupled from the width of the VLIW Engine, as is the case with
EPIC architectures. In the standard DTSVLIW, these widths are the same, but now the
scheduler width can be increased to allow the possibility for more parallelism. This
will increase the number of empty slots in the long instructions created (the number of
instructions per long instruction does not increase as rapidly as the number of instruc-
tion slots), but these can be discarded: a mechanism inspired by the bundle mechanism
of EPIC architectures [3] has been proposed previously for the standard DTSVLIW
[14]. In the event that the number of available instructions in a long instruction is
greater than the number of PEs in the VLIW Engine, the extra instructions can be
delayed one cycle and executed with instructions from other processes. This cannot
be done in the standard VLIW architecture as the delayed instructions would execute
on their own with low utilization of the PEs.

5 Multi-threaded Architectural Model

To implement a multithreaded DTSVLIW the changes to the standard DTSVLIW
architecture are rather small in complexity, with the major changes being:

(a) multiple sets of registers with one register set for each thread,
(b) a new logic block for the issuing logic,
(c) a modified VLIW cache logic that allows a cache lookup on each thread in

parallel,
(d) multiple sets of scheduling logic as required.

Increasing the instruction width of the scheduler list is not a change as such from
the standard DTSVLIW, although the decoupling of the width from the width of the
VLIW engine is, and the stripping of the empty slots from the long instructions has

123

Int J Parallel Prog (2008) 36:184–205 191

been proposed before for the DTSVLIW [14], again to increase the effective utilization
of the DTSVLIW cache.

There are a number of essentially minor changes to the standard DTSVLIW due
to the need to identify which register set to use for each instruction executed, and to
identify the VLIW blocks from different threads in the VLIW cache. Thus an identifier
per thread is needed for both these purposes: the identifier would be used as part of
the VLIW cache tag along with the address. This identifier is retrieved with each long
instruction from the VLIW cache and issued with each sub-instruction to the PEs: the
PEs concatenate the identifier with the register references in the instructions to identify
the correct set and registers. A process ID is also used along with the thread ID for
cache lookup to avoid the need to flush read caches on thread switches and process
changes.

5.1 Issuing Logic

The issuing logic adds extra complexity to the VLIW fetch-execution path. It selects
instructions from the available (one at most) long instruction for each thread, and it
has to allocate the selected instructions across the PEs of the VLIW Engine. In a pure
VLIW, the compiler schedules instructions into particular slots in a long instruction
and a particular slot feeds a particular PE in the VLIW processor; thus, the compiler
allocates instructions to PEs and there is no allocation required from the hardware.
Thus, the standard DTSVLIW, which has a standard VLIW engine at its core, does not
need an allocation process, as the scheduler performs this operation as its builds the
long instructions in a block. However, it is something that EPIC architectures must do
[3]: their unbundled long instructions can have more instructions than available PEs
and can have more specialized instructions than PEs to process them.

The new issuing logic now has the role of allocating instructions to PEs. The issuing
logic essentially holds blocks of VLIW instructions, one per thread, but pre-fetching
of following blocks is feasible, since a VLIW block holds the address of the following
block. Long instructions from a VLIW block are accessed sequentially, and the issuing
logic selects from active long instructions of threads executing in VLIW mode to fill
the available slots and resources in the VLIW Engine. Execution of a long instruction
for a thread only completes when all its instructions have completed and their results
have been committed to registers, i.e. execution and memory access latencies have
elapsed. The issuing logic is thus similar to that of superscalars, but less complex
since instruction ordering and renaming has already been done by the scheduler(s)
and the instructions available to it are executable concurrently.

6 mDTSVLIW Architecture

The basic mDTSVLIW architecture tested is shown in Fig. 4. There is one set of PEs
of which a sub-set operates as primary engines when needed, otherwise operating as
part of the VLIW engine. Thus the “width” of the VLIW Engine is variable. Each
primary processor has its own scheduler, its own I-Cache, fetch and decode units.
When a thread needs executing in primary mode, the VLIW Engine width is reduced

123

192 Int J Parallel Prog (2008) 36:184–205

Issue Logic

i-cache

primary 1

Main memory

VLIW Cache

thread n

Scheduler
primary 1

Reg Set d-cache

thread n

Reg Set d-cache

thread 1

PE PE PE PE VLIW Engine

VLIW Cache

thread 1

Scheduler
primary m

i-cache

primary m

Fig. 4 mDTSVLIW architecture

by one and the PE released is allocated as the Primary Processor for this thread. It
should be possible to move this PE on a per cycle basis between primary mode and
VLIW mode use, but this has not been attempted in these experiments. Thus, PEs used
as primary processors are stalled during I-cache misses.

There are multiple register sets, one per thread, each holding the registers of
the modeled ISA, the SPARC ISA for this work, and a set of renaming registers.
There is a separate L1 D-cache and associated aliasing unit [12] for each thread:
this removed the need to implement, at this stage, a more complex single D-cache
and aliasing unit, and allowed existing implementations from the DTSVLIW simu-
lator to be re-used. A shared D-cache allows greater sharing of cache capacity [7].
Similarly, there are separate private L1 I-caches: one per primary unit. The process
identifier is used as part of the address tag, so that switching the thread being exe-
cuted by the primary processor does not require caches to be flushed. Logically,
there is a single L2 cache, which is assumed to be large enough to hold all active
process code. Access to this is sequential, so misses at the L1 caches are queued to
access it. There is no address translation, but there is no code or data sharing between
processes.

The PEs and the register sets operate as in the DTSVLIW, except that the target reg-
ister set for a PE depends on the thread from which the executing instruction is taken,
and can change on each cycle. The mode of writing to the registers during VLIW-mode
execution had to be changed. A DTSVLIW long instruction is constructed so that its
instructions execute in parallel and commit all their results at the same time, allow-
ing the results of its instructions to write the sources of other instructions within the
long instruction. Executing the instructions of a single long instruction across multi-
ple cycles and committing their results as they complete breaks this model. To correct
this, the results of these instructions are temporarily stored between the PEs and the
registers sets, and are only committed into the main registers at the end of the cycle

123

Int J Parallel Prog (2008) 36:184–205 193

Table 1 Cache sizes and latencies

Unit D-Cache I-Cache VLIW cache

Quantity 1/Thread 1/Primary processor 1/Thread
L1 total capacity 64 or 128 kB shared

between threads 256 kB
in some cases

16 or 64 kB shared
between primaries

384, 768 or 1534 kB
shared between
threads

Access time 1 cycle 1 cycle
Miss penalty Selectable: 7, 11, 15 cycles

used with 49 cycles used
in a small number of
cases

Thread moves to
primary on miss

in which the last remaining instructions from a long instruction are executed, and any
load or stores to D-cache have completed.

In the baseline architecture of Fig. 4, the VLIW cache is wholly internal to the
processor, and is just an L1 cache. There is a VLIW cache per thread for the same
reasons as for the D-cache. This allows parallel lookup by threads of their associated
VLIW caches. However, although possible, this doesn’t occur on every cycle: the
DTSVLIW model is to cache a VLIW block of long instructions as a single cache
element, so a cache lookup is only performed by a thread when a new block has to
be fetched. With multiple long instructions per block and multiple cycles per long
instruction, the incidence of all threads making concurrent VLIW cache lookups is
reduced.

The access times to the L1 and L2 caches are variable, but the same for both L1-D
and L1-I caches. The total L1 cache capacities are variable and the sizes detailed
in Table 1 were used in the experiments. These total capacities are shared between
the cache instances. There are no constraints on the number of accesses made by a
thread to its L1 D-cache. There is no miss penalty as such for the VLIW cache, but a
miss in this cache stops the process from executing in the VLIW Engine and moves
it to the primary processor queue. As for the other caches, the VLIW cache capacity
(see Table 1) is shared between threads: a capacity of 384 kB is 1 kB blocks with 8
long instructions per block with 8 instructions per long instruction, although the full
capacity is never used as not all long instructions are full. A scheduling list is twice
the maximum VLIW block size (blocks may have as few as 1 long instruction); up
to two blocks can be held in the scheduling list for output to the VLIW cache whilst
continuing to construct a further block. Each of these blocks can be from a different
thread.

There are no constraints on the PEs: each can execute any instruction with no limit
on the number of load and stores executed by the VLIW Engine in a cycle. There are
32 renaming registers per thread.

7 Experimental System

The mDTSVLIW architecture was implemented in a C++ simulator. This allowed the
concept to be proved and much of an existing C++ DTSVLIW simulation software

123

194 Int J Parallel Prog (2008) 36:184–205

system to be re-used and for elements to be easily replicated. The simulator emulates
the architecture at the instruction and pipeline level, and endeavours to replicate the
clocking structure of a feasible hardware implementation. The simulation loads the
benchmark programs into the simulator and executes them instruction by instruction:
system calls are not executed, but are serviced by the underlying operating system.
Program traces are not used in the experiments reported here.

8 Results of Experiments on Baseline Architecture

The experiments presented here have been performed as proofs-of-concept, and not
to give definitive answers on performance. Thus, all experiments execute the same
set of eight processes, each a different SPECInt95 program: compress, ijpeg, gcc, go,
lisp, m668sim, perl and vortex (www.spec.org). All experiments have an 8 × 8 × 8
configuration: 8 instructions per long instruction 8 long instructions per VLIW block,
and 8 PEs. There is no change in the number of instructions per long instruction
between the scheduler, the VLIW cache and execution engine, postulated as a possible
means of extracting increased parallelism. All caches are 4-way set associative. The
majority of experiments have been with a 4-thread architecture, but there are results
for 2-thread and 8-thread architectures.

Figure 5 plots the execution activity as the 8 SPEC95 processes execute on a 4
thread, 2 primary 8 × 8 × 8 mDTSVLIW, with I and D-cache miss penalties of 7:
the first 4 threads all start at time 0. The x-axis is cycle count and the vertical access
is either instructions executed per cycle or process count per cycle depending on the
curve. The two smooth curves that run between six and seven are the running aver-
ages from cycle 0 of the number of VLIW instructions executed per cycle and of all
instructions executed per cycle (VLIW instructions and primary instructions). The
small difference between them is the average number of instructions executed by the
primary processors, showing that most processing is being done by the VLIW Engine.
The jagged curve behind these two curves show the average number of VLIW instruc-
tions per cycle calculated over 10,000 cycle periods. The variability in this reflects the
underlying variability in the VLIW mode instructions executed each cycle from 0 to
8. The vertical lines mark new processes being loaded as earlier ones complete.

The middle plot, oscillating just below 4, is the number of threads running in
VLIW mode per cycle averaged over 10,000 cycle periods. The corresponding plot

0
1
2
3
4
5
6
7
8
9

0 10000000 20000000 30000000 40000000 50000000 60000000 70000000 80000000 90000000100000000

Fig. 5 Activity plot for a 4 thread, 2 primary mDTSVLIW

123

www.spec.org

Int J Parallel Prog (2008) 36:184–205 195

for threads being executed in primary mode is the upper of the two jagged plots (in
grey) at the bottom of the figure: this generally stays below one. The bottom (black) plot
is the average number of threads per cycle queued waiting for a primary processor
to become free, again averaged over 10,000 cycle periods. The under-usage of the
primary processors led to the VLIW Engine PEs being used in this role. Much of the
time a dedicated primary processor has nothing to do. When primary mode is active,
the VLIW Engine has a lower load and does not much miss a PE being allocated to
primary mode.

The remaining plot that runs fairly consistently around one is the running average
from cycle 0 of the number of copy operations executed per cycle. These are addi-
tional instructions to the original process code arising from moving instructions across
conditional branch boundaries: copy instructions are left behind to move results from
renaming registers into the target destinations (register or memory locations) [11].
These copy instructions are included in the running instruction averages at the top of
the graph. Although increasing the ILP, they can add to the execution time and use
resources: in the experimental architecture, these copy instructions are allocated to
any functional unit despite the fact that the copy instruction functional requirements
are rather small—just moving one or two values from renaming registers to designated
units. On the right, the curves drop away as processes complete: the “threads in VLIW
mode” plot shows this clearly.

Table 2 shows the results for a number of experimental runs on an 8 × 8 × 8
architecture with a range of configurations, shown in the “config” column as “threads×
primaries×miss penalty”, e.g., 4 × 1 × 7. The speedup compares the time for a
single scalar processor (SSP) operating to execute the same workload to the time the
mDTSVLIW took: these times run to the completion of the last process even though
the mDTSVLIW has a reducing numbers of threads running near the end as seen in
Fig. 5. [The SSP has the same total cache resources for I and D Caches, but it has single
instances of these: the SSP is just a single thread, single primary mDTSVLIW with the
VLIW Engine and Scheduler switched off.] The ILP values are calculated by dividing
the total number of instructions executed by the SSP by the number of mDTSVLIW
clock cycles for the same work load, and doesn’t take account of SSP memory or other
latencies, which accounts for the lower performance by this measure. The instruction
averages are per cycle calculated from time 0 until the number of active threads drops
below 4, when this value start to drop away as the mDTSVLIW in under-utilized.
The “All” column is the average of all instructions both VLIW and primary executed

Table 2 Results with different thread, primaries and cache latency combinations for the test set

Config Speedup ILP Instruction averages In primary
(%)

iC, dC, vC
sizes (kB)

iC_acc/hit
rate (%)

dC_acc/hit
rate (%)

All VLIW Copy

4 × 1 × 7 6.3 5.9 7.0 6.9 1.1 12 16/128/1536 1/93 86/98
4 × 1 × 7 6.1 5.8 6.9 6.6 1.1 28 64/128/384 4/98 86/98
4 × 2 × 7 6.0 5.8 6.9 6.6 1.1 34 64/128/384 4/96 86/98
4 × 1 × 11 5.8 5.5 6.6 6.3 1.0 31 64/128/384 4/98 86/98
4 × 1 × 15 5.5 5.1 6.2 6.0 1.0 35 64/128/384 4/98 86/98

123

196 Int J Parallel Prog (2008) 36:184–205

per cycle, while the “VLIW” column does not count in the instructions executed in
primary mode. The “Copy” column shows the average number of Copy instructions per
cycle. These three columns show that the PEs can be kept more fully active, with most
activity in VLIW-mode, but that copy instructions are using resources not required in
primary-mode (but see above). The “In primary” column is calculated by adding one
to a counter for every PE active in primary mode in a cycle, and shows the percentage
of 1 PE used in primary mode: this value increases as the VLIW Cache size decreases
and its miss rate increases, and also with increasing memory latency when primary
mode PEs are stalled.

The last two columns show the I- and D-cache access totals as percentages of those
of the SSP and their hit rates. The mDTSVLIW makes very few I-cache accesses (1–
4%) compared to the SSP, but its hit rate is marginally worse: the SSP’s is ∼99% for a
64 k I-cache. But, the much lower number of I-cache accesses means that its miss total
is much less than that of the SSP. The mDTSVLIW makes fewer D-cache accesses than
the SSP, with the missing accesses being translated into renaming registers accesses.

The primary result for examining the performance of the mDTSVLIW is the
speedup: the time to completion of execution of all the processes in the workload
compared to the time for the SSP to do the same. Also of interest is the utilization of
its PEs shown by the instruction execution average (the instructions per cycle aver-
age, the IPC) at the last time that all threads are active. The variation of these figures
against the different cache sizes and miss latencies are shown in the plots of Figs.
6–15: both I and D caches have identical miss latencies in the L1 caches. There are
speed up and IPC figures for 5 thread and primary configurations: 4 × 1, 4 × 2, 4 × 4,
2 × 1 and 8 × 1—the first value is the number of threads, the second the number
of primaries. The results are grouped by miss penalty, and each member of a group
is for a specific configuration of caches: 16/128/384 indicates total cache capacities

IPC for 4x1 architecture

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

miss penalty 7

16/64/192

16/64/384

64/64/384

16/128/384

64/128/384

16/64/768

64/64/768

16/128/768

64/128/768

16/64/1536

64/64/1536

16/128/1536

64/128/1536

64/256/192

64/256/384

64/256/768miss penalty 11 miss penalty 15 miss penalty 49

Fig. 6 IPC averages for 4 × 1 architecture

123

Int J Parallel Prog (2008) 36:184–205 197

IPC Average for 4x2 architecture

0

1

2

3

4

5

6

7

8

miss penalty 7

16/64/384

64/64/384

16/128/384

64/128/384

16/64/768

64/64/768

16/128/768

64/128/768

16/64/1536

64/64/1536

16/128/1536

64/128/1536

 miss penalty 11 miss penalty 15 miss penalty 49

Fig. 7 IPC averages for 4 × 2 architecture

IPC average for 4x4 architecture

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

miss penalty 7

16/64/384

64/64/384

16/128/384

64/128/384

16/64/768

64/64/768

16/128/768

64/128/768

16/64/1536

64/64/1536

16/128/1536

64/128/1536

miss penalty 11 miss penalty 15 miss penalty 49

Fig. 8 IPC averages for 4 × 4 architecture

as 16 kB for the primary mode I-caches, 128 kB for the thread D-caches, 384 kB for
the thread VLIW L1 caches. Note that the 4 × 1 plots have an extra configuration
16/64/192 (a VLIW cache capacity of 512 blocks in total or just 128 blocks per thread
with 4 threads—64 blocks with 8 threads) to demonstrate the drop off in performance
with a small VLIW cache, and also three extra configurations with a larger D-cache
(64/256/192, 64/256/384, 64/256/768). The 4 thread plots also have results for a miss
penalty of 49 to give an idea of performance with very long external memory access
delays.

123

198 Int J Parallel Prog (2008) 36:184–205

Speedup for 4x1 architecture

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

miss penalty 7

16/64/192

16/64/384

64/64/384

16/128/384

64/128/384

16/64/768

64/64/768

16/128/768

64/128/768

16/64/1536

64/64/1536

16/128/1536

64/128/1536

64/256/192

64/256/384

64/256/768miss penalty 11 miss penalty 15 miss penalty 49

Fig. 9 Speedups for 4 × 1 architecture

Speedup Average for 4x2 architecture

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

miss penalty 7

16/64/384

64/64/384

16/128/384

64/128/384

16/64/768

64/64/768

16/128/768

64/128/768

16/64/1536

64/64/1536

16/128/1536

64/128/1536

miss penalty 11 miss penalty 15 miss penalty 49

Fig. 10 Speedups for 4 × 2 architecture

Examining the IPC plots for the 4-thread architectures, Figs. 6–8, it can be seen
that PE utilization is very good with miss penalties of 7 and 11, and that there is only
a small variation with VLIW cache size within a group: the increased incidence of
primary mode execution from the extra misses in the VLIW cache with smaller size
does not impact too heavily because of the low miss penalty on the I-caches. The
miss penalty does of course impact as can be seen in the general decrease in IPC
with increasing miss penalty. One feature of the IPC results that stands out is the

123

Int J Parallel Prog (2008) 36:184–205 199

Speedup average for 4x4 architecture

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

miss penalty 7

16/64/384

64/64/384

16/128/384

64/128/384

16/64/768

64/64/768

16/128/768

64/128/768

16/64/1536

64/64/1536

16/128/1536

64/128/1536

miss penalty 11 miss penalty 15 miss penalty 49

Fig. 11 Speedups for 4 × 4 architecture

IPC average for 2x1 architecture

0

1

2

3

4

5

6
64/256/192

16/64/384

16/128/384

64/64/384

64/128/384

64/256/384

16/64/378

16/128/768

64/64/768

64/128/768

64/256/768

16/64/1536

16/128/1536

64/64/1536

64/128/1536
miss penalty 7 miss penalty 11 miss penalty 15

Fig. 12 IPC averages for 2 × 1 architecture

impact of the D-cache size at greater miss penalties. Within a group of four results
for the same total VLIW cache size for all but some of the 384 kB results, the IPC
increases with total D-cache capacity with the total I-cache size playing a lesser role.
This reflects the use of these caches by the mDTSVLIW: the I-cache has a much lower
utilization than in a conventional processor designs as pointed out earlier, but there is
no such reduction in the utilization of the D-Cache. The per-cycle utilization of the
D-Cache is much increased over that of a single-threaded processor because of the
multi-threading. Of course, because of the low I-cache utilization and the reduction
in total misses, there is much easier access to the external memories for data misses

123

200 Int J Parallel Prog (2008) 36:184–205

Speedup for 2x1 architecture

0

1

2

3

4

5

6
64/256/192

16/64/384

16/128/384

64/64/384

64/128/384

64/256/384

16/64/768

16/128/768

64/64/768

64/128/768

64/256/768

16/64/1536

16/128/1536

64/64/1536

64/128/1536
miss penalty 7 miss penalty 11 miss penalty 15

Fig. 13 Speedups for 2 × 1 architecture

IPC for 8x1 architecture

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

16/64/192

16/128/192

16/256/192

64/64/192

64/128/192

64/256/192

16/64/384

16/128/384

16/256/384

64/64/384

64/128/384

64/256/384

16/64/768

16/128/768

16/256/768

64/64/768

64/128/768

64/256/768

16/64/1536

16/128/1536

16/256/1536

64/64/1536

64/128/1536

64/256/1536

miss penalty 7 miss penalty 11 miss penalty 15

Fig. 14 IPC averages for 8×1 architecture

than would be the case with other wide issue designs, that also use a von Neumann
main memory architecture.

The IPC figures also demonstrate that using more than one scheduler, i.e. having
more than one process in primary mode execution, does not improve the performance:
for the 4×4 configuration the performance is slightly worse than the 4×1 configuration,
while for 4 × 2, the performance is essentially identical. Having more than 1 thread in

123

Int J Parallel Prog (2008) 36:184–205 201

Speedup for 8x1 architecture

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

16/64/192

16/128/192

16/256/192

64/64/192

64/128/192

64/256/192

16/64/384

16/128/384

16/256/384

64/64/384

64/128/384

64/256/384

16/64/768

16/128/768

16/256/768

64/64/768

64/128/768

64/256/768

16/64/1536

16/128/1536

16/256/1536

64/64/1536

64/128/1536

64/256/1536

miss penalty 7 miss penalty 11 miss penalty 15

Fig. 15 Speedups for 8 × 1 architecture

primary mode increases the contention on the bus to the L2 I-cache, and reduces the
resources available to the VLIW engine.

From consideration of the results for 64 and 128 kB total D-cache capacity, a small
number of experiments have been run with 256 kB total D-cache capacity using the
4 × 1 configuration and with 192, 384 and 768 kB total VLIW cache capacity. The
IPC results for these experiments are shown in Fig. 6 as the last three results of each
group. With the extra D-cache resources, 64 kB per thread, the IPC results are at least
equivalent to an architecture with twice the VLIW cache resources, i.e. the 64/256/768
result are very similar to the 64/128/1536, the 64/256/192 to the 64/256/384. The
relative improvement in IPC increases with miss penalty, so that with a miss penalty
of 49 the 64/256/192 architecture has nearly as good an IPC average as the 64/128/1536
architecture for the same miss penalty. The 64/256/192 architecture results are less than
10% different from the best achieved for lower D-cache, but higher VLIW cache, sizes
for the same miss penalty. This improvement in the 192 kB VLIW cache performance
is startling: going from configuration 16/64/192 to 64/256/192 almost doubles the
average IPC for miss penalties 15 and 49, and gives a 33% improvement for miss
penalty 7. With the 192 kB total VLIW cache capacity (48 kB per thread), there is
an increased use of primary mode and thus extra fetches to the L2 memory, which
suffer extra delays over the defined miss penalty because of conflicts with the D-cache
miss traffic. The increased total D-cache capacity reduces the D-cache bus traffic, and
as a side effect reduces conflict delays on the L2 instruction fetches, so that VLIW

123

202 Int J Parallel Prog (2008) 36:184–205

blocks are built more rapidly reducing the times that threads stay in primary mode,
and increasing the VLIW mode activity.

The speedup results for the 4-thread architectures in Figs. 9–11 are much more
consistent within a group and decrease more slowly with miss penalty. This is because
the speedup is the ratio of the SSP execution time for the test suite to that of the
mDTSVLIW for the same total I-cache and total D-cache capacities and miss penalties.
Thus as the mDTSVLIW performance changes with changed cache capacities and miss
penalties, so does the SSP’s performance. Within the figures it can be seen that the
16 kB I-cache results are generally better than those for the 64 kB I-cache (opposite to
the IPC results), which indicates that the SSP is suffering increased fetch misses from
the small I-cache.

The IPC results for the 2 × 1 architecture (Fig. 12) results are very flat with slight
increases related to increasing cache totals: the results demonstrate that IPC is not
resource limited but is limited by the available number of instructions for issue. The
speedup results in Fig. 13 tell the same story: the increased variation arising mostly
from the variation in the SSP performance with different configurations. The 2 × 1
architecture would benefit from increases in the density of instructions in the blocks
perhaps from increasing the scheduling width to get more parallelism.

Figures 14 and 15 show the results for an 8 × 1 configuration. To get results with
a reasonable period with eight processes active, the group of eight processes used in
other experiments have been run twice so that 16 processes are executed to completion,
although making comparison with the 2×1 and 4×1 experiments less valid. The IPC
average is measured when the process load becomes less than 8, once nine processes
have completed, while the speedup is the time to execute all 16 processes by the SSP
divided by the time taken to execute them by the mDTSVLIW. The experiments show
a marked increase in both IPC and speedup as more resources are available showing
that for smaller caches sizes the active processes are competing for limited resources.
As more resources are made available, the available parallelism begins to have an
impact. This last is clearly seen in the IPC results with a miss penalty of 7, where
there is little performance improvement moving from the 64/256/384 configuration
(average IPC of 7.16) to the larger VLIW cache sizes. Again as noted previously, the
total D-cache size has a major impact upon performance along with the VLIW cache
size: with a miss penalty of 7, the IPC average for the 64/64/768 configuration of 6.99
is worse than that of the 64/256/384 one, while that for the 64/64/1536 configuration
of 7.19 is essentially the same. The IPC results for miss penalty 11 are similar to
those of miss penalty 7, except that with 8 processes a 64 kB total D-cache is a major
constraint. Performance with such a D-cache size is reduced by 15% or more over an
identical configuration but with a 256 kB D-cache: the 64/64/384 IPC for miss penalty
11 is 25% less than that of the 64/256/384 result. Unlike the miss penalty 7 results,
there is continued improvement as the total VLIW cache size increases above 384 kB,
although not above 768 kB, but this improvement is negated if the D-cache is too
small. The IPC results for miss penalty 15 again demonstrate the impact of too small
a D-cache which overwhelms the impact of the VLIW cache size at larger sizes. The
speed-up results of Fig. 15 tell the same story, but indicate that there is only marginal
value going beyond a total VLIW cache size of 768 kB, while a 384 kB size gives
useful results.

123

Int J Parallel Prog (2008) 36:184–205 203

Table 3 Comparison of some average IPC results from the 4 × 1 and 8 × 1 experiments

Cache sizes Average IPC for 8 × 1 experiments Average IPC for 4 × 1 experiments

Miss
penalty
7

Miss
penalty
11

Miss
penalty
15

Miss
penalty
7

Miss
penalty
11

Miss
penalty
15

64/256/768 7.4 7.2 6.9 7.1 6.9 6.6
64/256/384 7.2 6.7 6.0 7.0 6.7 6.5
64/256/192 5.8 4.9 4.2 6.7 6.4 6.1

Table 3 compares average IPC result for 3 cache configurations for the 4×1 and 8×1
experiments, and shows that having 8 processes available gives only a small increase
in IPC for the larger VLIW caches: thus the 64/256/768 configuration IPC averages
are better for 8 × 1, but for smaller sizes this is not so, particularly for the 64/256/192
configurations where performance drops by 16% or more. With eight processes there
is much more competition for cache space and yet there is only a small increase in the
utilisation of the available processing power: 4% for the 64/256/768 configurations.
There are too many processes competing for too few cache and processor resources.

The speedup results demonstrate the same result. The 2 × 1 experiments show a
speed-up of just below five across all configurations with little restrictions apparent.
The 4 × 1 configurations give increased performance with a speed-up of 6 with miss
penalty 7 across the same configurations of the 2 × 1 experiments, with resource
constraints becoming apparent at larger miss penalties. For the 8 × 1, cache size
constraints have a major impact and speed-ups greater than that attained by the 4 × 1
experiments are only achieved for the larger cache configurations.

9 Conclusions and Further Work

It is possible with a single scheduling unit working on only one scalar process at a time
and with sufficient D-cache and VLIW cache capacity, to provide enough instructions
to keep the PEs of a SMT architecture busy, provided there are sufficient threads
and processes available. The increase in PE activity does not heavily impact upon
the instruction fetch rate from primary memory and I-cache as do other SMT designs.
There are indications that increasing the D-cache size can offset the need for very large
VLIW caches: the results for the 4 thread, single primary architecture with 64 kB of
D-cache per thread, 48 kB of VLIW cache per thread, and just one 64 kB I-cache
gave results within at most 10% of the best results with much larger VLIW caches
(384, 768 and 1536 kB caches) for the same miss penalty. Results also suggest that it
may be counter-productive to have too many processes active at any time as this may
reduce performance by putting too much pressure on the available cache resources,
particularly with the smaller cache sizes. It should be noted that the architecture does
not depend on speculative execution or branch prediction logic for its performance.

In the context of the mDTSVLIW architecture, the number of VLIW instructions
executed per cycle average shows that wastage (horizontal and vertical) and stalls due

123

204 Int J Parallel Prog (2008) 36:184–205

to memory access latencies can be greatly reduced by having a small number of threads
(as other studies have shown), but without a large increase in the instruction fetch rate
from I-cache and main memory. There is an increase in complexity in going from
the DTSVLIW to the mDTSVLIW in terms of the separate register sets, and separate
data and VLIW caches. The last two can be merged into single larger data and VLIW
caches, which would probably improve utilization [7], but the need for separate resister
sets will limit the number of threads, so that improvements to the design to improve the
block instruction densities are warranted, particularly as the VLIW cache utilization
is only around 60%. Our experiments indicate that further work is well warranted to
more fully develop and investigate this architecture. In particular to examine: a wider
range of benchmarks and benchmark sets, in particular moving to the SPECint 2006
test suite; variations to the VLIW cache; and decoupling the scheduling width from
the width of the VLIW engine.

References

1. Olukotun, K., Hammond, L.: The Future of Microprocessors. ACM Queue, pp. 27–34, September
2005

2. Ungerer, T., Robic, B., Silc, J.: Multithreaded processors. Comput. J. 45(3), 320–348 (2002)
3. Schlansker, M., Rau, B.: EPIC: Explicitly parallel instruction processing. IEEE Computer 33, 37–45

(2000)
4. Ozer, E., Conte, M.: High-performance and low-cost dual-thread VLIW processor using weld archi-

tectural paradigm. IEEE Trans. Parallel Distribut. Syst. 16(12), 1132–1142 (2005)
5. Özer, E., Conte, T.M., Sharma, S.: Weld: a multithreading technique towards latency-tolerant VLIW

processors. In: Proceedings of the 8th International Conference on High Performance Computing–
HiPC 2001, Lecture Notes in Computer Science 2228, pp. 192–203, December 2001

6. Tullsen, D.M., Eggers, S.J., Levy, H.M.: Simultaneous multithreading: maximizing on-chip paral-
lelism. In: Proceedings of the 22nd Annual International Symposium on Computer Architecture,
Assoc. Comput. Mach., pp. 392–403 (1995)

7. Eggers, S.J., Emer, J.S., Levy, H.M., Lo, J.L., Stamm, R.L., Tullsen, D.M.: Simultaneous multithread-
ing: a platform for next-generation processors. IEEE Micro. 17(5), 12–19 (1997)

8. Rau, B.R.: Dynamically scheduled VLIW processors. In: Proceedings of the 26th Annual International
Symposium on Microarchitecture, pp. 80–92. Austin, Texas (1993)

9. Spadini, F., Fahs, B., Patel, S., Lumetta, S.S.: Improving quasi-dynamic schedules through region
slip. In: Proceedings of the international symposium on Code generation and optimization: feedback-
directed and runtime optimization. ACM International Conference Proceeding Series, vol. 37, pp. 149–
158. San Francisco, California (2003)

10. Nair, R., Hopkins, M.E.: Exploiting instruction level parallelism in processors by caching scheduled
groups. In: Proceedings of the 24th Annual International Symposium on Computer Architecture,
pp. 13–25 (1997)

11. De Souza, A.F., Rounce, P.A.: Dynamically trace scheduled VLIW architectures. In: Proceedings
of the High-performance Computing and Networking 1998–HPCN’98, Lecture Notes in Computer
Science 1401, pp. 993–995, April 1998

12. De Souza, A.F.: Integer performance evaluation of the dynamically trace scheduled VLIW archi-
tecture. Ph.D. thesis, Department of Computer Science, University College London, University of
London (1999)

13. De Souza, A.F.: Dynamically scheduling VLIW instructions. J. Parallel Distribut.
Comput. 60(12), 1480–1511 (2000)

14. De Souza, A.F.: Integer performance via block Compaction. In: Proceedings of the 13th Symposium
on Computer Architecture and High Performance Computing, pp. 98–105 (2001)

15. Santana, S.C., De Souza, A.F., Rounce, P.A.: A comparative analysis between EPIC static instruction
scheduling and DTSVLIW dynamic instruction scheduling. In: Proceedings of the ICS 03 Workshop

123

Int J Parallel Prog (2008) 36:184–205 205

on Exploring the Trace Space for Dynamic Optimization Techniques, International Conference on
Supercomputing, San Francisco, ACM SIGARCH, June 22–26, 2003

16. Rounce, P.A., De Souza, A.F.: The mDTSVLIW: a multi-threaded trace-based VLIW architecture,
sbac-pad. In: 18th International Symposium on Computer Architecture and High Performance Com-
puting (SBAC-PAD’06), pp. 63–72 (2006)

17. Fisher, J.A.: The VLIW machine: a multiprocessor for compiling scientific code. IEEE Computer
17(7), 45–53 (1984)

18. Hwu, W.W., Mahlke, S.A., Chen, W.Y., Chang, P.P., Warter, N.J., Bringmann, R.A., Ouellette, R.G.,
Hank, R.E., Kiyohara, T., Haab, G.E., Holm, J.G., Lavery, D.M.: The superblock: an effective tech-
nique for VLIW and superscalar compilation. J. Supercomput. 7, 229–248 (1993)

19. Sun Microsystems: The Sparc Architecture Manual—Version 7. Sun Microsystems, Inc. (1987)

123

	Dynamic Instruction Scheduling in a Trace-based Multi-threaded Architecture
	Abstract
	Introduction
	Single-threaded DTSVLIW Architecture
	Research Motivation
	Rationale
	Multi-threaded Architectural Model
	Issuing Logic
	mDTSVLIW Architecture
	Experimental System
	Results of Experiments on Baseline Architecture
	Conclusions and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

