
Int J Parallel Prog (2008) 36:386–411
DOI 10.1007/s10766-007-0061-2

On the Design and Implementation of a Shared Memory
Dispatcher for Partially Clairvoyant Schedulers

K. Subramani · Kiran Yellajyosula

Received: 25 April 2006 / Accepted: 7 December 2007 / Published online: 29 December 2007
© Springer Science+Business Media, LLC 2007

Abstract With the onset of distributed computing in hard real-time applications,
the problem of assigning to, scheduling in, and executing jobs on processors, has
received a lot of attention. Usually, real-time systems are embedded in closed loop
reactive environments with uncertain behaviors and such systems take varying times
to respond to such stimuli. One of the fundamental features of such systems is the pres-
ence of complex timing constraints between pairs of jobs. A secondary feature is the
non-constant nature of the execution times of jobs. Real-time operating systems such
as MARUTI can measure the interval within which the execution time varies (Mosse
et al. In: Second IEEE Workshop on Experimental Distributed System, pp. 29–34.,
IEEE, 1990; Levi et al. 1989, ACM Special Interest Group Operat Syst 23(3):90–106).
Partially clairvoyant scheduling was introduced in (Saksena, Parametric Scheduling
in Hard Real-Time Systems. PhD thesis, University of Maryland, College Park, June
1994) to schedule jobs with varying execution times and non-trivial timing constraints.
The schedulability of the job set is determined offline and a set of dispatch functions
are produced from the given set of constraints if the job set is schedulable. The dispatch
functions bind the start time of a job J to an interval that depends on the start and
execution times of jobs sequenced before J . The online dispatcher of the system reads
these dispatch functions and computes the interval within which a job can start without
violating the constraints imposed on the system. In certain situations, the dispatcher
fails to dispatch a job as the time to compute the dispatch functions associated with
a job is greater than the interval within which the job needs to be dispatched. This

K. Subramani (B)
LCSEE, West Virginia University, Morgantown, WV, USA
e-mail: ksmani@csee.wvu.edu

K. Yellajyosula
CSE, University of Minnesota, Minneapolis, MN, USA
e-mail: kiran@cs.umn.edu

123

Int J Parallel Prog (2008) 36:386–411 387

phenomenon is called Loss of Dispatchability (Subramani, Duality in the Parametric
Polytope and its Applications to a Scheduling Problem. PhD thesis, University of
Maryland, College Park, August 2000). In this paper, we propose and implement a
partially clairvoyant dispatching algorithm on a shared memory cluster with Concur-
rent Read Exclusive Write (CREW) architecture and contrast it with the sequential
approach. For a preset number of processors, our approach has O(1) dispatch com-
plexity while using a total of O(n2) space, while the sequential approach requires
�(n) time. The detailed implementation profile obtained clearly demonstrates the
superiority of the multiprocessor approach to dispatching. We also address the issue
of scalability of the dispatcher for increasing number of processors and show that job
sets of different sizes require different number of processors. Finally, we demonstrate
the effect of execution time on the dispatchability of schedules.

Keywords Partially clairvoyant dispatcher · Shared-memory ·
Real-time scheduling · Loss of dispatchability · Safety interval

1 Introduction

Real-time systems are gaining importance in a number of applications ranging from
safety-critical systems such as nuclear reactors and automotive controllers, to enter-
tainment systems such as games and animations. In hard real-time systems, the results
need to be computed within their deadlines. Additionally, there exist complex timing
constraints between pairs of jobs. Traditional strategies schedule jobs using the worst
case execution times based on some a priori knowledge of the arrival times or the
frequencies of the jobs [12,15,20]. However, assuming that a job will always take
the worst case time to complete could lead to catastrophic constraint violations at run
time.

Consider the following applications where the systems need to respond within a
small interval of time:

(i) Sound and video synchronization are essential for a person playing video games.
Video games such as PlayStation, Dreamcast, GameCube, and N64; have mul-
tiple embedded processors to record, display and react to the changes made by
the player in a very interval of time. These controllers perform multiple tasks
such as controlling different components, computing the response to the player
and so on. Computing a response to a move requires the controller to evaluate
various complex scenarios which are being modeled by the game.

(ii) Mission-oriented robots are equipped with multiple sensors and actuators to
achieve a goal in hostile environments; typical goals include surveying the
landscape and searching for survivors [17]. The Mars Pathfinder was designed
to explore the surface of Mars and transmit information about the surface and
topology of the planet. Such robots need to perform multiple tasks concurrently
such as monitoring their components and the environment, collecting informa-
tion, transmitting information and moving from one place to another [4].

(iii) Automobiles such as BMW 7-series and Mercedes S-class contain over sixty
microprocessors. All these embedded microprocessors communicate and work

123

388 Int J Parallel Prog (2008) 36:386–411

with each other for improving the comfort and safety of passengers. Jaguars
and Volvos, use the PowerPC 505 to control the engine and calculate time-
angle ratios, which is vital for valve and ignition timing. Some car radios have
noise compensation algorithms written into them which can reduce the noise
or increase the audio volume according to the road noise.
New cars have adaptive shifting algorithms to modify the shift points based
on the road conditions, weather, or the driver’s individual habits. The cruise
control system varies the acceleration according to the exact speed of the car
provided by the anti-braking system (ABS).

(iv) The internet has grown to be the center of various business applications for
marketing and auctioning products. This increasing demand requires the web
servers to provide reliable service in a dynamic environment. Abdelraker et al.
[2] discusses how an Apache web server is modeled using real-time scheduling.
Auctioning on the internet is an example where the server requires heavy com-
puting power. The server needs to handle new bids over time, send the current
bid amount to the bidders and also decide whether to close an auction or con-
tinue with new bids [6,9]. In the above applications, a centralized server reduces
the complexity of implementing the system but may become a bottleneck in
case of increasing load.

The execution time of a job can vary due to different factors such as input dependent
loops, caching and compiler-architecture mapping of the machine [24]. Non-constant
execution times cause difficulties in scheduling and dispatching, especially in hard
real-time environments. Secondly, modeling the execution time of a job as a number
decreases reliability; on the other hand, modeling the execution time as an interval
enhances reliability. Thirdly, some job-sets will be declared unschedulable, if worst-
case assumptions are made regarding the execution times of jobs [25].

Example (1): Consider the two job system J = {J1, J2}, with start times {s1, s2},
execution times in the set {(e1 ∈)[2, 4] × (e2 ∈)[4, 5]} and the following set of con-
straints:

• Job J1 must finish before job J2 commences; i.e. s1 + e1 ≤ s2;
• Job J2 must commence within 1 unit of J1 finishing; i.e. s2 ≤ s1 + e1 + 1.

Assuming that e1 = 2 or that e1 = 4 results in infeasible constraint sets. However,
s1 = 0, s2 = s1 + e1 is a valid schedule; such a schedule is called a partially clair-
voyant schedule, since the start time of job J2 is dependent upon the execution time
of job J1.

Another factor affecting the execution time is the variable processor speed of power
aware processors. Power aware processors are being used to prolong the battery life of
various embedded applications. Transmeta’s LongRun, AMD’s PowerNow and Intel’s
SpeedStep technologies vary the processor voltage or clock frequency to decrease the
power consumed by the processors. In these embedded machines, the optimal pro-
cessor speed is computed and adjusted according to the system load. Building or
interfacing real-time systems with such processors further complicates the situation.
[1] proposes to decrease energy consumption for real-time systems by readjusting

123

Int J Parallel Prog (2008) 36:386–411 389

processor speed and reusing the unused processor cycles mustered when a job finishes
before the worst case execution time.

It is important to note that determining the schedulability of a constrained job-set
is only part of the problem. The task of the dispatcher is to ensure that the schedulable
jobs are commenced at the appropriate point on the time line. If the start times of
jobs are constants, then the task of dispatching them is trivial [23]. However, in case
of partially clairvoyant schedules, the start time of a job is a function of the execu-
tion times of jobs that are scheduled before it and hence dispatching is a non-trivial
task. Gerber et al. [5] and Choi et al. [3] present dispatching strategies for partially
clairvoyant schedules based on evaluating functions. These dispatch strategies have a
complexity of �(n) and may result in Loss of Dispatchability (See Sect. 2). Subramani
[22] proposes a parallel algorithm with O(1) dispatch time to eliminate Loss of Dis-
patchability. For a job set of size n, the algorithm requires n processors and uses O(n)

space on each processor. This strategy provides a tradeoff between the computing
time and resources required, i.e., the constraints are met by increasing the resources to
compute the interval during which the job can be dispatched. In this paper, we extend
the algorithm proposed in [22] to parallel machines with shared memory architecture
and a fixed number of processors; the number of processors is much smaller than the
number of jobs. This approach powers up controllers in real-time systems and ensures
that various deadlines are met, this is vital in hard real-time systems require reliabil-
ity of the system at any cost [19,21]. We explore the dispatchability of job sets with
different timing constraints and show that for certain job sets, the dispatcher requires
multiple processors to successfully dispatch the job set.

The principal contributions in this paper are as follows:

(a) Evaluating partially clairvoyant dispatchers in CREW-shared memory environ-
ments.

(b) Evaluating the scalability of the algorithm with respect to the number of proces-
sors.

(c) Studying the effect of execution time on the dispatcher.
(d) Studying the effect of spacing time on the dispatcher.

The rest of this paper is organized as follows: Section 2 describes the partially clair-
voyant scheduling and dispatching problems; it is important to note that the thrust of
this paper is in the dispatching problem and not in the scheduling problem. Section 3
describes the motivation for our work and the related work in the literature. Section 4
presents the architecture and our dispatching algorithm. Section 5 describes the results
of the experiments performed. We summarize our contributions in Sect. 6, providing
pointers for future research.

2 Problem Statement

Consider a set of hard real-time jobs J = {J1, J2, . . . , Jn}. These jobs are ordered,
non-preemptive and occur once in each scheduling window; the scheduling window
refers to the time interval between the commencement of J1 and the conclusion of Jn .
We use �s = [s1, s2, . . ., sn]T to denote the start time vector of the jobs and �e = [e1,
e2, . . ., en]T to denote the execution time vector of the jobs. The execution time of the

123

390 Int J Parallel Prog (2008) 36:386–411

job Ji is known to vary in the interval [li , ui]. The jobs are constrained by complex
timing constraints; these constraints are represented by the system:

A · [�s �e]T ≤ �b, (1)

where,

• A is an m × 2 · n rational matrix; we assume the set of constraints imposed on the
jobs to be strict difference constraints.

• �b is an m-vector of rationals.

A typical constraint will be of the form: J1 should finish before J2 starts; that would
result in the linear constraint: s1 + e1 ≤ s2.

Definition 2.1 A partially clairvoyant schedule of an ordered set of jobs is a vector
�s = [s1, s2, . . ., sn]T , where si , 1 ≤ i ≤ n, is a function of the execution times of jobs
that are sequenced before Ji .

Accordingly, the partially clairvoyant query is as follows:

∃s1 ∀e1 ∈ [l1, u1] ∃s2 ∀e2 ∈ [l2, u2], . . . ∃sn ∀en ∈ [ln, un] A · [�s �e]T ≤ �b? (2)

The algorithm in [25] converts the above query into a constraint network and either
declares that the system is infeasible, owing to the existence of a negative cost partially
clairvoyant cycle, or it determines the dispatch functions for each job Ji . It is important
to note that the start time si is a function of {e1, e2, . . . , ei−1}.

Consider a simple example of a robot trying to move an object from one place to
another. The speed of the robot depends on the mass of the object and the surface on
which the robot is moving and the time the robot takes to change direction depends
on the angle it has to turn. Consider the following algorithm followed in a simple
motion controller. A robot finds its speed (J1) by sensing the environment and var-
ies its speed (J2) according to the requirement, after which the robot finds (J3) and
adjusts (J4) its direction. Suppose this happens once in every forty units of time with
the additional constraints that the robot should start finding the direction of motion
between five to ten units of finding its speed. Assume that the robot takes around three
to seven units of time to find the speed, five to six units of time to adjust its speed, two
to seven units of time to find the direction in which it is moving and eight to twelve
units of time to adjust the direction. Assume the constraints imposed on the system
are as follows:

• J1 finishes at least 2 units before J2 starts.
s1 + e1 + 2 ≤ s2

• J3 starts after the completion of J2.
s2 + e2 ≤ s3

• J3 starts after 5 units ad before 10 units of the completion of J1.
s3 ≤ s1 + e1 + 10
s1 + e1 + 5 ≤ s3

123

Int J Parallel Prog (2008) 36:386–411 391

• J3 finishes at least 5 units before J4 starts.
s3 + e3 + 5 ≤ s4

• J4 completes within 40 units of time.
s4 + e4 ≤ 40

• e1 ∈ [3, 7]
• e2 ∈ [5, 6]
• e3 ∈ [2, 7]
• e4 ∈ [8, 12].

The partially clairvoyant schedule for the example is derived in the Appendix A
and is as follows:

1. 0 ≤ s1 ≤ 1
2. s1 + e1 + 2 ≤ s2 ≤ 10
3. max(s1 + e1 + 5, s2 + e2) ≤ s3 ≤ min(s1 + e1 + 10, 16)

4. s3 + e3 + 5 ≤ s4 ≤ 28.

Definition 2.2 A feasible partially clairvoyant schedule is said to be dispatchable on
a machine M, if for every job Ji , machine M can start executing Ji such that none of
the constraints are violated.

Definition 2.3 A safety interval for a job is the time interval during which the job can
be started without violating any of the constraints imposed on it.

From the example above, assuming that s1 = 0 and e1 = 6, the safety interval for
s2 is [8,10].

In general, the dispatch functions produced have the following form:

max(f1, f2, . . . , fi−1) ≤ si ≤ min(f ′
1, f ′

2, . . . , f ′
i−1).

where f j and f ′
j are linear functions depending on the start and execution times of

job J j (j < i). Machine M computes the dispatch functions and obtains the safety
interval during which the job can be dispatched without violating the constraints. The
job Ji is not dispatchable when the computation time exceeds the safety interval. This
phenomenon is referred to as Loss of Dispatchability.

For the example above, assume the first two jobs take the worst case time and that
the first job starts at time t = 0, then the third job has the safety interval [15,16].
If the dispatcher takes more than one unit of time to compute the safety interval, then
the third job cannot be dispatched.

In this paper, we are concerned with the dispatching problem, i.e., how to compute
the safety intervals of the jobs, such that the jobs can be dispatched safely within
the proper time intervals, assuming that a partially clairvoyant schedule was obtained
from the Query (2). We use a shared memory cluster to compute the safety intervals
and attempt to prevent Loss of Dispatchability.

3 Related Work

Subramani [26] proposes the E-T-C framework to formalize problems in real-time
systems which takes into account the variability of execution time, complex

123

392 Int J Parallel Prog (2008) 36:386–411

relationships between jobs and clairvoyance of the system. In [26] various types of
constraints and execution time domains capturing the constraints imposed on real-time
systems are explored. The problems are formalized and schedulability guarantees for
systems with different degrees of clairvoyance are explored.

Saksena [18] introduced partially clairvoyant scheduling to reduce the inflexibility
of static scheduling in hard real-time systems. The authors proposed a matrix column
elimination method based on Fourier–Motzkin elimination to decide the schedula-
bility of the real-time system and evaluated the performance of the system. Partially
clairvoyant scheduling is explained in detail in [5,22,25]. Subramani [25] presents a
dual approach to decide the schedulability of a partially clairvoyant system. The author
constructs a constraint graph from the given set of constraints and decides the sched-
ulability by contracting vertices and searching for a negative cycle in the resulting
constraint graph.

Gerber et al. [5] proposes a sequential online dispatching algorithm. The algorithm
stores lists of dispatch functions and has dispatch time linear in the number of jobs. The
computation cost of the online dispatcher can cause constraint violation, i.e., the time
after computing the safety interval (lb, rb) exceeds rb. This phenomenon by which a
job cannot be dispatched is called Loss of Dispatchability. Subramani [22] proposes a
parallel online algorithm for eliminating Loss of Dispatchability for partially clairvoy-
ant schedules. The original algorithm proposed in [22] assumes that there are as many
processors as the number of jobs n. The jobs are executed on a central processor which
writes the values of the start and execution time of the job completed into the shared
memory. Each supporting processor reads the start and execution time and computes
the safety interval by relaxing the 4 constraints between the job completed and the
job assigned to it. After the job assigned to them is executed, the processors idle. This
algorithm has O(1) dispatch time per job and uses O(n) space per processor.

The motion controller of a robot requires complex modeling and has to consider
various kinematics equations which require different computing times [17,30]. Yang
et al. [30] proposes to use neural networks for path planning of a robot in a real-time
non stationary environment. Embedded designers are conservative and use 8, 16 or
32-bit processors in most of their applications, which do not have the sophisticated
architecture and instruction set support available in modern processors. NASA still
uses the reliable IBM RISC6000 chips in some of its projects.

Traffic Alert and Collision Avoidance system (TCAS) is used in commercial air-
crafts to avoid collisions. Hull et al. [7] uses imprecise computation techniques to meet
the necessary deadlines. Each job is broken into a mandatory job and an optional job;
the mandatory jobs are to meet strict end to end deadlines while the optional jobs are
scheduled in between with intermediatory deadlines. In such situations, our algorithm
of using a parallel dispatcher of jobs is helpful for ensuring that all deadlines are met.
The current model can be modified to support parallel execution of jobs on different
processors.

Marti et al. [15] proposes a flexible sampling and timing intervals in the control
problems. The job modeling strategy used by the authors is similar to our approach, in
that, they allow the start time to vary according to the controller but they use the worst
case execution times to decide if a schedule exists. There are constraint sets which
do not have a schedule in case the worst case execution time is assumed as shown

123

Int J Parallel Prog (2008) 36:386–411 393

in [25]. In case the number of parameters of the system increase, the efficiency of
the controller decreases due to the heavy computation required. Our algorithm would
reduce the load on the controller and would ensure that the controller functions with
high efficiency.

Tsigas and Zhang [29] proposes a non-blocking protocol that allows real-time tasks
to share data in a multiprocessor system. The protocol is optimal with respect to space
requirement and has a lower overhead compared to lock based protocols. The protocol
describes a procedure that can be used by concurrent real-time tasks to read and write
shared data and the procedure allows multiple write and multiple read operations to
be executed concurrently. Tsigas and Zhang [28,29] investigates to determine how the
performance and speedup of applications would be affected by using non-blocking
rather than blocking synchronization in parallel systems. These papers propose a set
of efficient and simple translations that show how typical blocking operations found
in parallel applications, such as simple locks, queues and lock trees can be trans-
lated into non-blocking equivalents that use hardware primitives common in modern
multiprocessor systems.

Traditional scheduling models such as Earliest Deadline First, Rate Monotonic
Analysis [12], Priority Ceil Protocol [20] schedule preemptive jobs assuming worst
case execution times to determine if a schedule exists. Mok et al. [16] models real-
time constraints using an interval as the start time and the worst case execution time.
They decide the schedulability of such a system by extending the All-pairs shortest
path algorithm for interval timestamps. They also explore situations in distributed
applications where the global clock and the local clocks are not synchronized with
each other. Kweon and Shin [10] proposes to make real-time communication on the
ethernet more predictable by limiting the packet-arrival rate allowed into the Medium
Access Control (MAC) layer. The authors analyze the Ethernet MAC protocol using
a semi-Markov model and derive a network wide input limit for achieving the desired
transmission throughput.

4 Architecture and Algorithm

The Concurrent Read Exclusive Write (CREW) shared memory architecture is dis-
cussed in detail in [8]. Each processor has a separate memory in addition to the common
shared memory and maintains a copy of the data it requires in its local memory. Any
changes to the shared data are made in its local memory and the data is flushed for
memory coherence. Memory Coherence depends on the protocol followed [11], i.e.,
the shared data variable is marked invalid or updated in the other memories as soon as a
local copy is changed or a explicit flush command needs to be executed by the processor
to achieve memory coherence. A read from the local memory has less memory latency
than a remote read (Non-Uniform Memory Access machine). While reading a shared
variable, the value resulting from the most recent write is loaded into the local memory.

4.1 Architecture

In the dispatcher, the processors share data with each other through the shared memory
as indicated in Fig. 1 and (si , ei) and (lbi+1, rbi+1) are shared variables. The central

123

394 Int J Parallel Prog (2008) 36:386–411

Shared Memory

Central
Processor

S1 S2 Si Sk

(si,ei)
(l
i+1
b ,r

i+1
b)

(si,ei) (si,ei) (si,ei)(si,ei)

(l
i+1
b ,r

i+1
b) (l

k+1
b ,r

k+1
b)(l

3
b,r

3
b)(l

2
b,r

2
b)

Fig. 1 Shared memory dispatcher architecture

processor C executes a Job Ji and stores (si , ei) into the memory. After which C
updates a flag f lag1 and waits on another flag f lag2. Each satellite processor S j

updates and reports the safety intervals for a class of jobs C j . The satellite processor
Sm which has Ji+1 ∈ Cm writes the safety interval (lbi+1, rbi+1) in the memory and
updates the flag f lag2. On updating the safety intervals of all the remaining jobs in
their class, the satellite processors wait for flag f lag1 to be updated by C .

In this implementation, there are no communication costs as compared to a network
distributed model but there is a cost for achieving memory coherence. In the current
implementation, the processors are required to flush the start and execution times and
the safety intervals for every job, which is an extra overhead. In the current implemen-
tation, we assume the jobs are statically distributed among the processors in a cyclic
fashion. In the algorithm, we assume that the satellite processors are waiting on the
flag at the instant the central processor completes executing a job.

4.2 Algorithms

The sequential dispatcher executes a job and then updates the safety intervals of all
the jobs having dispatch functions depending on the start and execution time of the
completed job. The load on the sequential dispatcher is maximum at the start of the
dispatching as in the worst case it has to update the safety intervals of the remaining
jobs. The performance of the sequential dispatcher depends on the number of jobs and
the minimum duration between the completion of a job and the start of the next job.

In Algorithm (1), the time to update all the safety intervals depending on (si , ei)

is linear in the number of jobs. Hence Algorithm (1) have a dispatch complexity of
�(n). It is important to note that the constrained jobs are provided to the dispatching
algorithms as a constraint network G=<V, E>, where vertex vi represents job Ji and
there is an edge from vi to v j with weight f (ei , e j), if there is a constraint of the form
si − s j ≤ f (ei , e j), in the input constraint set. Additional details of the constraint
network can be obtained from [25].

123

Int J Parallel Prog (2008) 36:386–411 395

Algorithm 1 Sequential dispatcher for partially clairvoyant schedules

Function Sequential-Online-Dispatcher (G =< V, E >)

1: Let [lbi , rbi], (lbi < rbi) denote the current safety interval of Ji .
2: set current time to 0.
3: for (i = 1 to n) do
4: if (current-time < lbi) then
5: Sleep (lbi -current-time)
6: end if
7: if (current-time ∈ [lbi , rbi]) then
8: Execute job Ji
9: Update all safety intervals depending on (si , ei)

10: Read (lbi+1 , rbi+1) from memory
11: else
12: Return (Schedule is not dispatchable)
13: end if
14: end for

The shared dispatcher executes a job and then updates the safety intervals of the
remaining jobs in parallel. The central processor executes a job and writes the values
of the start and execution time to memory. The central processor then waits for the
safety interval of the next job to be executed by busy waiting on a flag. The satellite
or supporting processors update the safety intervals of the set of jobs assigned to them
and write the safety interval of a job to memory when the job is to be executed.

In the shared memory algorithm, after the central processor completes executing a
job Ji , the constraints which need to be computed, if they exist, before determining
the safety interval [lbi+1, rbi+1] of Ji+1 are as follows:

1. si + c1 ≤ si+1
2. si + ei + c2 ≤ si+1
3. si+1 ≤ si + c3
4. si+1 ≤ si + ei + c4

where c1, c2, c3 and c4 are real numbers.
Since there are at most 4 constraints between job Ji and Ji+1, Algorithm (2) takes

at most O(1) time, for each job sequenced before it. As stated in [22], relaxing 4 con-
straints takes at most 4 additions and comparisons, i.e., 4 · (Tadd + Tcomp), where Tadd

and Tcomp are the times taken to perform an addition and a comparison, respectively.
Let w1 be the cost of writing a floating point number to the shared memory. C

requires to flush the present values of (si , ei , f1) to the memory. Sk will have to write
(lbi+1, rbi+1 , f2) in the memory.

The time required to compute the safety interval is 4 · (Tadd + Tcomp) + 6 · w1.

Remark 4.1 The algorithm uses a preset number of processors in contrast to the algo-
rithm proposed in [22], which required n processors.

The Algorithm (2) updates the dispatch functions in parallel to the execution of
the next job. Let k be the number of processors. In such a case, each processor has to
update constraints between the completed job and a fraction (= 1

k) of the remaining
jobs. In case n is very large, the time required to update the constraints is larger than

123

396 Int J Parallel Prog (2008) 36:386–411

Algorithm 2 Shared dispatcher for partially clairvoyant schedules

Function Shared-Online-Dispatcher (G =< V, E >)

1: Let [lbi , rbi], (lbi < rbi) denote the current safety interval of Ji .
2: Let P denote the number of satellite processors.
3: for (i = 1 to n) in parallel do
4: if (central processor) then
5: if (current-time < lbi) then
6: Sleep (lbi -current-time)
7: end if
8: if (current-time ∈ [lbi , rbi]) then
9: Execute job Ji
10: Save (si , ei) to memory
11: Update f lag1 and save to memory
12: Wait till f lag2 is updated
13: Read (lbi+1 , rbi+1) from memory
14: else
15: Return (Schedule is not dispatchable)
16: end if
17: end if
18: if (satellite processor Sm) then
19: Compute Sk , the satellite processor required to report the safety interval
20: Wait till f lag1 is updated
21: Read (si , ei)

22: if Sk = Sm then
23: Update-constraints(i, i + 1)
24: Write safety interval to memory
25: Update f lag2 and write to memory
26: Update-constraints(i, q) ∀Jobs Jq ∈ Ck
27: else
28: Update-constraints(i, q) ∀Jobs Jq ∈ Cm
29: end if
30: end if
31: if (i = n) then
32: Return (schedule is dispatchable)
33: end if
34: end for

Algorithm 3 Update function of shared dispatcher

Function Update-constraints(i, q) (si , ei)

1: Relax constraints between Ji and Jq into absolute constraints of Jq .
2: Compare each absolute constraint with the existing safety interval for Jq
3: if (new constraint is not redundant) then
4: Update Safety Interval ([lbq , rbq])
5: else
6: Leave the Safety Interval unchanged
7: end if

the execution time of the current job and would cause the next job to lose dispatch-
ability. Increasing the number of processors would help dispatchability if the memory
coherence cost is not great.

123

Int J Parallel Prog (2008) 36:386–411 397

5 Empirical Analysis

5.1 Machine Description

Our experiments were conducted on a SGI Origin 2000 in a shared environment with
load sharing. The dispatcher sets the number of threads that run in parallel. In the best
case, one thread will run on one processor; however, in most cases multiple threads
are scheduled on a single processor.

The hardware specification of the machine and environment are listed in Tables 1
and 2, respectively. The jobs were submitted in the batch queue.

5.2 Generation of Partially Clairvoyant Schedules

A test-case is a set of jobs with execution time belonging to a certain time period and
several constraints between the jobs. The duration between two adjoint jobs is capped
by creating constraints depending on the start and execution times of the first job. We
create test-cases by varying the number of jobs or the execution time period or the
threshold value of the cap. The dual algorithm [25] generates partially clairvoyant
schedules from these test-cases. For the purpose of testing the dispatchers, we create
constraints which will ensure that a schedule exists.

A detailed description of the parameters required for the schedule generation are
described in Sect. 5.2.1. The procedure followed by the schedule generating algorithm
G A is described in the Sect. 5.2.2.

Table 1 Machine specifications
of SGI Origin2000 of NCSA

Component Description

Architecture Distributed shared memory
Processors MIPS R10000
Available number of processors 64 (or 128)
Clock speed 250 MHz or 195 MHz
Instruction cache size 32 Kbytes
Data cache size 32 Kbytes
User virtual address space 4 GB
Interconnect between machines Gigabit Ethernet

Table 2 Software
Component Description

Operating system Irix 6.5
Compiler C
Programming models OpenMP
Floating point format IEEE
Batch system Load sharing batch system

123

398 Int J Parallel Prog (2008) 36:386–411

5.2.1 Parameters

The parameters required by the generation algorithm are as follows:

• Number of jobs n: The number of jobs in the schedule.
• Execution time [l, u]: The lower and upper limit of the execution time of the jobs.
• Spacing time [p, q]: This is used to create constraints which would ensure that

the next job would begin between [p, q] seconds after the completion of a job.
The value p prevents constraints which force the two jobs to be very close to each
other while q prevents a large interval between the two jobs. The upper bound is
necessary to force jobs close together and test the response time of the dispatcher.
The lower bound is necessary to prevent constraints which would require jobs to
be separated by time shorter than a fewer microseconds.
If p = 2 and q = 6, we would create constraints which would force jobs to be
separated by at least 2 units of time and by at most 6 units of time.

• Number of constraints E : The number of standard constraints between jobs.

where l, u, p and q are real numbers.

5.2.2 Constraint Generation

We specify the number of jobs n, the number of constraints E , the execution time
[l, u] and the spacing time [p, q]. We also specify a random seed for generating the
constraints. The generating algorithm G A does as follows:

• For each job, G A generates and prints two numbers between l and u (l < u),
which bound the execution time of the job.

• Between every job Ji and Ji+1(1 ≤ i ≤ n −1), G A generates standard constraints
of the form si + ei ≤ si+1 and si+1 ≤ si + ei + c where c is a random number
between the p and q. For any test-case, there are least 2 · n constraints generated.

• If E > 2 · n then (E − 2 · n) constraints between the finish times of two randomly
chosen jobs (say Jx and Jy , 1 ≤ x, y ≤ n) are generated such that a partially clair-
voyant schedule would exist. If x < y then a small negative real number c1 < l is
generated such that sx + ex ≤ sy + ey + c1 is true; and if x > y then a very large
real number c2 is generated such that sx + ex ≤ sy + ey + c2 is trivially true.

We increase the time to update safety intervals on the satellite processors by choos-
ing a large value of E .

5.2.3 Schedule Generation

A constraint graph can be constructed from a test-case [25], as the constraints imposed
on the system are strict difference constraints. The dual algorithm in [25] was used to
decide the schedulability of the system and produce the dispatch functions.

5.2.4 Schedule Execution

The dispatcher takes as input the number of jobs, execution time periods, a random
seed and the dispatch functions. The dispatch functions are stored in a two-dimensional

123

Int J Parallel Prog (2008) 36:386–411 399

triangular array. Arrays are maintained to store the start time, execution time and exe-
cution time periods of the jobs.

For each job Ji , a random number t ′ between the execution time bounds [li , ui] is
generated. A job is executed by the central processor C only if the time at the start of
the job is between the safety interval of the job. The central processor C simulates the
execution of a job by a busy wait for time t ′. The central processor C then updates
the flag f lag1 and writes the triplet (si , ei , f1) to the memory. Following which, the
central processor C waits for flag f lag2 to be updated before reading the safety inter-
val of the next job. We use the function gettimeofday() to find the time Tbef before
writing (si , ei , f1) into the shared memory and the time Ta f t after reading the safety
interval (lbi+1, rbi+1) from the memory. The time difference Ta f t − Tbef gives the time
required to update and report the safety interval to C . In our simulation, time starts
at time t = 0 and proceeds by adding si + ei + Ta f t − Tbef to obtain the time at the
instant C is ready to execute the job Ji+1.

5.3 Runtime Approximations

The time required to write the start time, execution time and the flag in the memory
depends on various factors like the load on the processors, the system bus, processors
accessing the shared data, etc., The time the central processor C waits to read the
safety interval depends on the time, the concerned satellite processor takes to read the
updated flag f lag1, compute the dispatch functions and update flag f lag2.

With the execution of jobs, the number of constraints to be updated decreases
and the update times should decrease. We measured the update time required by the
dispatcher using different number of processors and plotted histograms showing
the frequency of the update times in certain regions. Figure 2 shows the frequency
of the observed update times in various intervals while dispatching a job set of 5,000
jobs on 16 processors. We observed that the update times are heavily concentrated
in a certain time interval and that a few discrepancies are located far away from this

Fig. 2 Observed update time frequency for 5,000 jobs on 16 processors

123

400 Int J Parallel Prog (2008) 36:386–411

interval. These discrepancies occur due to external factors such as the load on the
batch system and the scheduling policy of the Iris operating system.

We performed many experiments and observed that the maximum difference
between the frequent update times is four times the mean update time. We neglect
these large update times by checking if the current update time is greater than 4 times
the previous update time and neglect these extreme values. In our results, we neglect
the large update times by taking the previous update time for at most five consecutive
overshoots. After five consecutive overshoots, we do not consider the observed
update time to be due to external factors. These overshoots were neglected as real-time
systems require and use dedicated machines.

5.4 Results

We set the maximum number of threads to run in parallel in our experiments. The
optimal condition for the dispatcher would be for one thread to execute on one pro-
cessor alone, equivalent to setting the desired number of processors. In all other cases,
there are multiple threads running on a processor or there are fewer threads running
in parallel. The outcome in such cases is increase in the reliability of the dispatcher.

The dispatcher stores the dispatch functions as constraints in two triangular arrays.
We created constraints to ensure that the duration between the finish time of a job and
the start time of the next job is in [p, q]. The update time of the sequential dispatcher
increases linearly with the number of jobs. While dispatching a certain number of jobs
N1, the update time is greater than the spacing time and the job set would no longer
be dispatchable.

We conducted experiments to measure the update time of the sequential and the
shared memory dispatchers. The sequential dispatcher can either update all the exist-
ing constraints depending on the start and execution time of the completed job or
follow a lazy approach for computing the safety intervals. In either case, the number
of constraints that are required to be updated will be linear in the number of jobs.

For the sequential dispatcher, the difference between Tbef (the time after complet-
ing a job) and Ta f t (the time after completing the update of all the dispatch functions)
gives the update time. While in the case of the shared dispatcher, Tbef is the time
before writing the start and execution time of a completed job to memory and Ta f t

is the time after reading the safety interval of the next job. The shared dispatcher
takes around the same update time for any number of jobs as it includes the time
required to read (si , ei , f1) and update 4 constraints between Ji and Ji+1 and write
back (lbi+1, rbi+1 , f2). The satellite processors of the shared dispatcher update the
remaining constraints in parallel while the central processor is executing job Ji+1.

Figures 3 and 4 plot the update time in seconds versus the number of jobs in
the schedule. Figure 3 compares the update time of the sequential dispatcher and the
shared dispatcher with two processors. Figure 3 shows that the update time of
the sequential dispatcher increases with the number of jobs while that of the shared
dispatcher with two processors is almost constant with the number of jobs and takes
at most 2.5 × 10−5 s to find the safety interval of the next job.

123

Int J Parallel Prog (2008) 36:386–411 401

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8

9
x 10−3 Update time for 1 processor and 2 processor

number of jobs

1
2

U
pd

at
e

T
im

e

Fig. 3 Update time of sequential dispatcher and a 2 processor dispatcher for schedules

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1.5

2

2.5

3

3.5

4

4.5

5
x 10−5

number of jobs

U
pd

at
e

T
im

e

 Update time with increasing processors

2
3
4
8
16
32

Fig. 4 Update time taken by shared dispatcher using different number of processors

Using best fit, we calculated the equation of line passing through the single pro-
cessor update times. We obtained a = 1.52 × 10−6, b = −2.214 × 10−4 for the line
y = a · x +b. Using the above line and the maximum update time of the two processor
shared dispatcher, we numerically estimated that after 163 jobs the shared memory
dispatcher with two processors is superior to the sequential dispatcher.

Figure 4 plots the update time taken by the shared memory dispatcher for job sets of
different size with varying number of processors. We observe that the update time of

123

402 Int J Parallel Prog (2008) 36:386–411

Table 3 Results of dispatching schedules of different size by the sequential and shared dispatcher

Processors Number of jobs

250 500 750 1,000 2,000 3,000 4,000 5,000

1
√ √ √ √ × × × ×

2
√ √ √ √ √ √ √ √

3
√ √ √ √ √ √ √ √

4
√ √ √ √ √ √ √ √

√
is when the schedule was successfully dispatched and × was not. [l, u] = [1 ms, 5 ms]; [p, q] =

[1 ms, 5 ms]

the shared dispatcher is almost constant and in the range of 10−5 s. These figures show
that the shared memory dispatcher has a much smaller update time than the sequential
dispatcher.

Figure 4 shows that the update time of the shared dispatcher increases with the num-
ber of processors. This can be accounted to the increased contention to obtain a lock on
the shared data as processors are augmented. In case the number of jobs increase, the
number of safety intervals to be updated increase and the satellite processors would
have an update time linearly increasing with the jobs as the sequential dispatcher in
Fig. 3. The increase in the update time would make our assumption in Sect. 4.1 void as
the satellite processors would be updating safety intervals when the central processor
C updates flag f lag1 after completing a job. Following which, the dispatcher would
not be able to dispatch the next job if the concerned satellite processor was delayed. On
increasing the number of satellite processors, the average number of safety intervals
to update per processor decreases and hence the update time; thereby maintaining our
assumption in Sect. 4.1. We should increase the number of processors till the time to
achieve memory coherence is less that the spacing time, after which the assumption
will not be valid.

In Fig. 3 time is represented in 10−3 s, whereas in Fig. 4 time is represented in 10−5 s;
this explains why the update time when there are two processors appears negligible in
Fig. 3 and tangible in Fig. 4.

We tested the shared and sequential dispatcher with job sets of different sizes. These
experiments were repeated three times with different random seeds. Table 3 summa-
rizes the results of the experiments performed. Similar results were observed in the
three cases, i.e., the schedules were dispatchable or not dispatchable. In all the three
cases, the sequential dispatcher broke at different jobs as it took longer to update the
safety intervals of all the jobs. While in the case of the shared dispatcher, the update
times were small and the jobs were dispatched in their safety intervals.

5.4.1 Scalability

In this section, we intend to show the effect of increasing the number of processors on
the dispatchability of job sets. We generated partially clairvoyant schedules of jobs,
with the number of jobs increasing from 1,000 up to 9,750. The jobs in the schedules

123

Int J Parallel Prog (2008) 36:386–411 403

Table 4 Scalability of the
shared dispatcher

Processors Maximum size of job set dispatched

1 100
2 2,500
3 3,500
4 4,250
5 5,500
6 6,500
7 8,750
8 8,500
9 9,250
10 9,750

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2 4 6 8 10 12 14 16

nu
m

be
r

of
 jo

bs

number of processors

Scalability of Shared Memory Dispatcher

"scalability"

Fig. 5 The number of jobs that can be successfully dispatched by a given number of processors, where the
job execution time was between 1 and 5 ms and the spacing time was between 0.1 and 0.5 ms

have execution time periods varying between one to five milliseconds and the spacing
time between two adjacent jobs to be between one-tenth to one-half a millisecond.

In our experiments, we varied the number of processors to be used by the dispatcher
and find the largest job set successfully dispatched by the dispatcher. Table 4 summa-
rizes the results of the experiments conducted and shows the largest job set up to which
all the schedules were dispatched with a certain number of processors. We observed
that the dispatcher with fewer processors failed as the size of the job set increased.
An increase in the size of the job set causes the update time on the satellite processors
to increase which in turn delays the satellite processors from reading the start and
execution time of the next job as soon as it is stored in the memory by the central
processor. Figure 5 plots the largest job set dispatched by a given set of processors
and shows the scalability of the shared memory algorithm. In our experiments, the
largest test-case created had 9,750 jobs and with 10 processors all the schedules were
dispatched successfully.

123

404 Int J Parallel Prog (2008) 36:386–411

In Fig. 5, we observe that the slope of the curve decreases for schedules of larger
size even when the number of processors are increased. While updating the safety
intervals, the satellite processors need to access different locations of the array caus-
ing frequent cache misses and page faults. As the size of the schedule increases, the
satellite processors need to access memory locations in the main memory for every
constraint they relax. The number of read and write operations to the main memory
increase and slow down the updating process. After a certain number of jobs, the
time to relax the constraints takes longer and causes the concerned satellite processor
to be significantly delayed in reading the start and execution time of the completed
job. This shows that the memory to processor bus latency would form a bottleneck in
this architecture and that increasing the processors would not help when the memory
latency and the spacing time are of the same order. Another reason for the increase in
latency is the increasing number of read/write requests from all the processors. There
is limited bandwidth between the shared memory and the processors which would
prevent all the processors from accessing and updating the memory at the same time.
This shows the requirement of high speed connections and high memory bandwidth
for the dispatchability of the schedules.

Experiments were also conducted using 32 processors and observed that they fail
for job sets dispatched by 7 processors. The update time for 32 processors as observed
in Fig. 4 is comparable to the spacing time of the test cases and here, the memory
coherence time is significant.

5.4.2 Effect of Execution Time

An increase in the execution time of the jobs would give the satellite processors more
time to update the safety intervals making it easier to uphold our assumption in Sect.
4.1. A decrease in the execution time reduces the parallel update time making it harder
to uphold our assumption in Sect. 4.1. Hence longer the job execution time, larger is
the size of the schedule that can be dispatched.

In the test cases we created, the spacing time between two adjacent jobs was set
between one-tenth to one-half of a millisecond and execution time was varied to be
[0.1 ms, 0.5 ms], [0.5 ms, 1 ms], [1 ms, 5 ms] and [5 ms, 10 ms]. The number of jobs
in the schedule were increased from 250 to 5, 000. Experiments were conducted by
setting the number of processors to be used by the dispatcher and finding the size of
the largest schedule successfully dispatched. Each entry in Table 5 indicates the maxi-
mum number of jobs that were dispatched successfully with the number of processors,
when the execution time of jobs is in the given range. The sequential dispatcher was
not able to dispatch any job set used in these experiments.

The observed results are listed in Table 5 and are in excellent co-ordination with
the expected behavior. A table entry of 5,000 implies that the dispatcher dispatched
all the schedules created and can dispatch larger schedules.

Figure 6 plots the largest job sets dispatched with a given number of processors
for four different intervals of job execution time. Clearly, schedules with higher job
execution time intervals got dispatched with lesser number of processors. From the
Fig. 6, we conclude that greater the execution time, greater is the number of jobs that
can be dispatched by the shared dispatcher.

123

Int J Parallel Prog (2008) 36:386–411 405

Table 5 Spacing versus execution time of jobs on the shared dispatcher assuming a spacing time interval
[0.1 ms, 0.5 ms]
Execution
time (ms)

Processors

2 3 4 5 6 7 8 9 12 16 20 24

5–10 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000
1–5 2,500 3,500 4,250 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000
0.5–1 750 1,750 2,250 2,750 3,250 3,750 4,000 4,750 5,000 5,000 5,000 5,000
0.1–0.5 750 750 1,000 1,000 1,500 1,500 1,750 1,750 2,750 3,500 3,500 4,750

0

1000

2000

3000

4000

5000

5 10 15 20 25 30

nu
m

be
r

of
 jo

bs

number of processors

 Effect of varying execution time for the
 Shared Memory Dispatcher

5-10 ms
1-5 ms

0.5-1 ms
0.1-0.5 ms

Fig. 6 For a fixed execution time, increasing the number of processors causes larger job-sets to be
dispatched

5.4.3 Effect of Spacing Time

On decreasing the spacing time, the allowed time between the finish time of a job and
the start time of the next job is decreased. The satellite processors need to compute
the safety interval of the next job within this time as soon as it is written by the cen-
tral processor making the assumption in Sect. 4.1 a necessity to uphold. The satellite
processors need to complete updating all the safety intervals by the time the central
processor completes executing the next job.

We generated partially clairvoyant schedules with spacing times of [0.1 ms, 0.5 ms],
[0.5 ms, 1 ms] and [1 ms, 5 ms]. For each spacing time, we generated schedules with
the number of jobs increasing from 250 to 5, 000 and execution times of [0.1ms,
0.5 ms], [0.5 ms, 1 ms], [1 ms, 5 ms] and [5 ms, 10 ms]. We fixed the number of pro-
cessors to be used by the dispatcher and empirically determined the size largest sched-
ule successfully dispatched by the dispatcher. Table 6 summarizes the results of the
experiments conducted.

123

406 Int J Parallel Prog (2008) 36:386–411

Table 6 Effect of varying the spacing time and execution time on the shared dispatcher

Processors Spacing time Execution time

5–10 ms 1–5 ms 0.5–1 ms 0.1–0.5 ms

2 0.1–0.5 5,000 2,500 750 750
0.5–1 5,000 3,000 1,000 750
1–5 5,000 2,000 1,500 1,500

3 0.1–0.5 5,000 3,500 1,750 750
0.5–1 5,000 4,000 1,500 1,250
1–5 5,000 4,000 2,750 1,750

4 0.1–0.5 5,000 4,250 2,250 1,000
0.5–1 5,000 4,000 2,750 1,500
1–5 5,000 5,000 3,000 2,000

5 0.1–0.5 5,000 5,000 2,750 1,000
0.5–1 5,000 5,000 3,500 2,000
1–5 5,000 4,000 4,000 2,250

6 0.1–0.5 5,000 5,000 3,250 1,500
0.5–1 5,000 5,000 4,250 2,000
1–5 5000 5,000 5,000 2,750

7 0.1–0.5 5,000 5,000 3,750 1,500
0.5–1 5,000 5,000 4,750 2,750
1–5 5,000 5,000 5,000 3,250

8 0.1–0.5 5,000 5,000 4,000 1,750
0.5–1 5,000 5,000 5,000 3,000
1–5 5,000 5,000 5,000 3,250

10 0.1–0.5 5,000 5,000 4,750 1,750
0.5–1 5,000 5,000 5,000 4,000
1–5 5,000 5,000 5,000 4,750

12 0.1–0.5 5,000 5,000 5,000 2,750
0.5–1 5,000 5,000 5,000 4,500
1–5 5,000 5,000 5,000 4,750

16 0.1–0.5 5,000 5,000 5,000 3,500
0.5–1 5,000 5,000 5,000 5,000
1–5 5,000 5,000 5,000 5,000

We plotted the largest job set that could be dispatched for different values of spacing
time versus the number of processors in Fig. 7. Figure 7 shows that the size of the
job set dispatched increases with increasing the spacing time. We wanted to show the
effect of execution time of jobs with spacing time. The non-crossed lines show job sets
with higher execution time of [0.5 ms, 1 ms] while the crossed lines have execution
time of [0.1 ms, 0.5 ms]. Table 6 and Fig. 7 show that increasing the spacing time will
allow schedules of larger size to be dispatched using the same number of processors
and also that increasing the execution times of the jobs increases the number of jobs
dispatched for a given value of the spacing time.

6 Conclusion

In this paper, we implemented a partially clairvoyant dispatcher using a limited num-
ber of processors and demonstrated that the shared memory dispatcher performs better

123

Int J Parallel Prog (2008) 36:386–411 407

0

1000

2000

3000

4000

5000

5 10 15 20 25 30

nu
m

be
r

of
 jo

bs

number of processors

 Effect of varying Spacing time on the dispatchability

0.5-1 ms
0.5-1 ms
0.5-1 ms

0.1-0.5 ms
0.1-0.5 ms
0.1-0.5 ms

of job-sets with different execution times

1(a)

1(b)

1(c)

2(a)

2(b)

2(c)

 Execution time : (1) 0.5 -1 ms (2) 0.1-0.5 ms
Spacing time : (a) 1-5 ms (b) 0.5-1 ms (c) 0.1-0.5 ms

Fig. 7 Increasing the spacing time between jobs causes larger job-sets to be dispatched, with the same
number of processors

than the sequential dispatcher in situations where the computation time is greater than
or comparable to the memory flush time (time to achieve memory coherence) of the
processors. On the whole, our approach is targeted to power up the controller by
providing it with more processing power.

The constraints on the available computing time between the end of a job and the
beginning of the next one can cause Loss of Dispatchability. When the available com-
puting time between two jobs is less, the shared memory dispatcher is better for large
job sets. In case the shared memory dispatcher cannot dispatch the schedule while
updating constraints, the sequential algorithm would definitely fail.

The sequential dispatcher is not affected by schedules containing jobs having small
execution time. The performance of the sequential dispatcher depends only on the
time required to compute the safety intervals. However, the shared memory dispatch-
ers suffer as the available parallel computing time decreases. In this case, the sequential
dispatcher is a better choice for small job sets.

We demonstrated the scalability of the dispatcher showing that larger job sets can
be dispatched by increasing the number of processors provided we have sufficient
memory bandwidth.

In the future, we intend to study the effects of using non-blocking reads and writes
while accessing the memory as proposed in [27]. We shall look at constructing a
hybrid model using the constraint sets in [16] and variable execution time and also at
constructing a theoretical model using the job set, constraints to predict the number
of processors required to successfully dispatch the job set off line.

Acknowledgements K. Subramani research was supported in part by the Air-Force Office of Scien-
tific Research under Grant FA9550-06-1-0050. K. Yellajyosula work was partially supported by National
Computational Science Alliance under [ASC30006N] and utilized the account [kirany].

123

408 Int J Parallel Prog (2008) 36:386–411

Appendix A: Obtaining Dispatch Functions

In the following section, we show how the set of dispatch functions are obtained from a
given set of constraints using the Dual algorithm described in [25]. We use the example
in Sect. 2 as a working example.

• J1 finishes at least 2 units before J2 starts.
s1 + e1 + 2 ≤ s2

• J3 starts after the completion of J2.
s2 + e2 ≤ s3

• J3 starts after 5 units ad before 10 units of the completion of J1.
s3 ≤ s1 + e1 + 10
s1 + e1 + 5 ≤ s3

• J3 finishes at least 5 units before J4 starts.
s3 + e3 + 5 ≤ s4

• J4 completes within 40 units of time.
s4 + e4 ≤ 40

The formulation proceeds as follows:

• J = {J1, J2, J3, J4}.
• – e1 ∈ [3, 7]

– e2 ∈ [5, 6]
– e3 ∈ [2, 7]
– e4 ∈ [8, 12]

• 1. s1 ≥ 0
2. s1 + e1 + 2 ≤ s2
3. s2 + e2 ≤ s3
4. s3 ≤ s1 + e1 + 10
5. s1 + e1 + 5 ≤ s3
6. s3 + e3 + 5 ≤ s4
7. s4 + e4 ≤ 40

• Iteration 1:
– Elimination of e4: After substituting e4 in the constraints, the set of constraints

are:
1. s1 ≥ 0
2. s1 + e1 + 2 ≤ s2
3. s2 + e2 ≤ s3
4. s3 ≤ s1 + e1 + 10
5. s1 + e1 + 5 ≤ s3
6. s3 + e3 + 5 ≤ s4
7. s4 ≤ 28

– Dispatch functions for J4:
∗ s3 + e3 + 5 ≤ s4 ≤ 28

– Elimination of s4: The set of constraints after eliminating s4 are as follows:
1. s1 ≥ 0
2. s1 + e1 + 2 ≤ s2

123

Int J Parallel Prog (2008) 36:386–411 409

3. s2 + e2 ≤ s3
4. s3 ≤ s1 + e1 + 10
5. s1 + e1 + 5 ≤ s3
6. s3 + e3 + 5 ≤ 28

• Iteration 2:
– Elimination of e3:

1. s1 ≥ 0
2. s1 + e1 + 2 ≤ s2
3. s2 + e2 ≤ s3
4. s3 ≤ s1 + e1 + 10
5. s1 + e1 + 5 ≤ s3
6. s3 ≤ 16

– Dispatch functions for J3:
∗ s1 + e1 + 5 ≤ s3 ≤ 16

– Elimination of s3:
1. s1 ≥ 0
2. s1 + e1 + 2 ≤ s2
3. s2 + e2 ≤ s1 + e1 + 10
4. s1 + e1 + 5 ≤ s1 + e1 + 10
5. s1 + e1 ≤ 11
6. s2 + e2 ≤ 16

The constraint s1 + e1 + 5 ≤ s1 + e1 + 10 is redundant and is eliminated as it is
trivially true.

• Iteration 3:
– Elimination of e2:

1. s1 ≥ 0
2. s1 + e1 + 2 ≤ s2
3. s2 ≤ s1 + e1 + 4
4. s1 + e1 ≤ 11
5. s2 ≤ 10

– Dispatch functions for J2:
∗ s1 + e1 + 2 ≤ s2 ≤ min(10, s1 + e1 + 4)

– Elimination of s2:
1. s1 ≥ 0
2. s1 + e1 + 2 ≤ s1 + e1 + 4
3. s1 + e1 + 2 ≤ 10
4. s1 + e1 ≤ 11

• Iteration 0:
– Elimination of e1:

1. s1 ≥ 0
2. s1 ≤ 1
3. s1 ≤ 4

– Dispatch functions for J1:
∗ 0 ≤ s1 ≤ min(1, 4)

123

410 Int J Parallel Prog (2008) 36:386–411

References

1. Aydin, H., Melhem, R., Mossé, D., Mejía-Alvarez, P.: Dynamic and aggressive scheduling techniques
for power-aware real-time systems. In: The 22nd IEEE Real-Time Systems Symposium (RTSS ’01),
pp 95–105. IEEE, Washington, Brussels, Tokyo (December 2001)

2. Abdelzaher, T.F., Shin, K.G., Bhatti, N.: Performance guarantees for Web server end-systems: a con-
trol-theoretical approach. IEEE Trans. Parallel Distri. Syst. 13(1), 80–96 (2002)

3. Choi, S., Agrawala, A.K.: Dynamic dispatching of cyclic real-time tasks with relative timing con-
straints. Real-Time Systems 19(1), 5–40 (2000)

4. Chodrow, S.E., Jahanian, F., Donner, M.: Run-time monitoring of real-time systems. In: R. Werner
(ed.) Proceedings of the Real-Time Systems Symposium — 1991, pp. 74–83. IEEE Computer Society
Press, San Antonio, Texas, USA (December 1991)

5. Gerber, R., Pugh, W., Saksena, M.: Parametric dispatching of hard real-time tasks. IEEE Trans.
Comput. 44(3), 471–479 (1995)

6. Guo, X.: An optimal strategy for sellers in an online auction. ACM Trans. Internet Technol.
(TOIT) 2(1), 1–13 (2002)

7. Hull, D.L., Feng, W., Liu, J.W.-S.: Enhancing the performance and dependability of real-time systems.
In: Proceedings of International Computer Performance and Dependability Symposium (IPDS’95),
pp. 174–182. IEEE Computer Society (April 1995)

8. Ja’Ja’, J.: An introduction to parallel algorithms (contents). SIGACTN: SIGACT News (ACM Special
Interest Group on Automata and Computability Theory) 23 (1992)

9. Konana, P., Mok, A.K., Lee, C.-G., Woo, H., Liu, G.: Implementation and performance evaluation
of a real-time E-brokerage system. In: Proceedings of the 21st Symposium on Real-Time Systems
(RSS-00), p 13. IEEE Computer Society, Los Alamitos, CA, (November 27–30, 2000)

10. Kweon, S.-K., Shin, K.G.: Statistical real-time communication over ethernet for manufacturing auto-
mation systems. IEEE Trans. Parallel and Distri. Comput. 14(3), 322–335 (2003)

11. Li, K., Hudak, P.: Memory coherence in shared virtual memory systems. ACM Trans. Comput.
Syst. 7(4), 321–359 (1989)

12. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in hard real-time environment.
J. ACM, 20 (1973)

13. Levi, S.T., Tripathi, S.K., Carson, S.D., Agrawala, A.K.: The Maruti hard real-time operating sys-
tem. ACM Special Interest Group Operat. Syst. 23(3), 90–106 (1989)

14. Mosse, D., Agrawala, A.K., Tripathi, S.K.: Maruti a hard real-time operating system. In: Second IEEE
Workshop on Experimental Distributed Systems, pp. 29–34. IEEE (1990)

15. Marti, P., Fuertes, J.M., Fohler, G., Ramamritham, K.: Improving quality-of-control using flexible tim-
ing constraints: metric and scheduling issues. In: Proceedings of the 23rd IEEE Real-Time Systems
Symposium (RTSS’02), pp. 91–100. IEEE Computer Society Press (2002)

16. Mok, A.K., Lee, C.-G., Woo, H., Konana, P.: The monitoring of timing constraints on time intervals.
In: Proceedings of the 23rd IEEE Real-Time Systems Symposium (RTSS’02), pp. 191–200. IEEE
Computer Society Press (2002)

17. Rybski, P.E., Gini, M., Hougen, D.F., Stoeter, S.A., Papanikolopoulos, N.: A distributed surveillance
task using miniature robots. In: Gini, M., Ishida, T., Castelfranchi, C., Lewis J.W., (eds.) Proceed-
ings of the First International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS’02), pp. 1393–1394. ACM Press (July 2002)

18. Saksena, M.: Parametric Scheduling in Hard Real-Time Systems. PhD thesis, University of Maryland,
College Park (June 1994)

19. Schiebe, M., Pferrer, S. (eds.): Real-Time Systems Engineering and Applications, vol. 1. Kluwer
Academic Publishers (1992)

20. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: an approach to real-time syn-
chronization. IEEE Trans. Comput. 39(9), 1175–1185 (1990)

21. Stankovic, J.A., Spuri, M., Ramamritham, K., Buttazzo G.C. (eds.): Deadline Scheduling for Real-
Time Systems. Kluwer Academic Publishers (1998)

22. Subramani, K.: Duality in the Parametric Polytope and its Applications to a Scheduling Problem. PhD
thesis, University of Maryland, College Park (August 2000)

23. Subramani, K.: An analysis of zero-clairvoyant scheduling. In: Katoen, J.-P., Stevens, P. (eds.) Pro-
ceedings of the 8th International Conference on Tools and Algorithms for the construction of Systems
(TACAS), vol. 2280 of Lecture Notes in Computer Science, pp. 98–112. Springer-Verlag (April 2002)

123

Int J Parallel Prog (2008) 36:386–411 411

24. Subramani, K.: A specification framework for real-time scheduling. In: Grosky, W.I., Plasil, F. (eds.)
Proceedings of the 29th Annual Conference on Current Trends in Theory and Practice of Informatics
(SOFSEM), vol. 2540 of Lecture Notes in Computer Science, pp. 195–207. Springer-Verlag (November
2002)

25. Subramani, K.: An analysis of partially clairvoyant scheduling. J. Math. Model. Algorithms 2(2),
97–119 (2003)

26. Subramani, K.: A comprehensive framework for specifying clairvoyance, constraints and periodicty
in real-time scheduling. Comput. J. 48(3), 259–272 (2005)

27. Tsigas, P., Zhang, Y.: Non-blocking data sharing in multiprocessor real-time systems. In: Proceedings
of the Sixth International Conference on Real-Time Computing Systems and Applications, p. 247.
IEEE Computer Society (1999)

28. Tsigas, P., Zhang, Y.: A simple, fast and scalable non-blocking concurrent FIFO queue for shared
memory multiprocessor systems. In: Proceedings of the 13th Annual ACM Symposium on Parallel
Algorithms and Architectures, pp. 134–143. SIGACT/SIGARCH and EATCS, Crete Island, Greece
(July 3–6, 2001)

29. Tsigas, P., Zhang, Y.: Integrating non-blocking synchronisation in parallel applications: performance
advantages and methodologies. In: Proceedings of the 3rd International Workshop on Software and
Performance (WOSP-02), pp. 55–67. ACM Press, New York (July 24–26, 2002)

30. Yang, S.X., Guangfeng, Y., Meng, M.: Real-time collision-free path planning and tracking control of a
nonholonomic mobile robot using a biologically inspired approach. In: Proceedings of Computational
Intelligence in Robotics and Automation, pp. 113–118. IEEE Computer Society (2001)

123

	On the Design and Implementation of a Shared Memory Dispatcher for Partially Clairvoyant Schedulers
	Abstract
	1 Introduction
	2 Problem Statement
	3 Related Work
	4 Architecture and Algorithm
	4.1 Architecture
	4.2 Algorithms

	5 Empirical Analysis
	5.1 Machine Description
	5.2 Generation of Partially Clairvoyant Schedules
	5.3 Runtime Approximations
	5.4 Results

	6 Conclusion
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

