Int J Parallel Prog (2007) 35:477-491
DOI 10.1007/s10766-007-0056-z

Dynamic Data Migration for Structured AMR Solvers

Markus Nordén - Henrik Lof -
Jarmo Rantakokko - Sverker Holmgren

Received: 6 November 2006 / Accepted: 26 January 2007 / Published online: 6 September 2007
© Springer Science+Business Media, LLC 2007

Abstract On cc-NUMA multi-processors, the non-uniformity of main memory
latencies motivates the need for co-location of threads and data. We call this special
form of data locality, geographical locality. In this article, we study the performance
of a parallel PDE solver with adaptive mesh refinement (AMR). The solver is parallel-
ized using OpenMP and the adaptive mesh refinement makes dynamic load balancing
necessary. Due to the dynamically changing memory access pattern caused by the
runtime adaption, it is a challenging task to achieve a high degree of geographical
locality. The main conclusions of the study are: (1) that geographical locality is very
important for the performance of the solver, (2) that the performance can be improved
significantly using dynamic page migration of misplaced data, (3) that a migrate-on-
next-touch directive works well whereas the first-touch strategy is less advantageous
for programs exhibiting a dynamically changing memory access patterns, and (4) that
the overhead for such migration is low compared to the total execution time.

Keywords Adaptive mesh refinement - SAMR - OpenMP - Geographical locality -
cc-NUMA - Page migration - Graph partitioning - Shared memory

M. Nordén - H. Lot - J. Rantakokko - S. Holmgren (&)
Department of Information Technology, Uppsala University,
Box 337, Uppsalas S-751 05, Sweden

e-mail: sverker @it.uu.se

M. Nordén
e-mail: markusn@it.uu.se

H. Lof
e-mail: henlof@it.uu.se

J. Rantakokko
e-mail: jarmo @it.uu.se

@ Springer

478 Int J Parallel Prog (2007) 35:477-491

1 Introduction

Today, most parallel solvers for large-scale PDE applications are implemented using
a local address space programming model such as MPI. During the last decade there
has also been an intensified interest in using shared address space programming mod-
els like OpenMP for these type of applications. A main reason is that an increasing
number of applications require the use of adaptive mesh refinement (AMR), and in
this case the work and data need to be dynamically repartitioned at runtime to get good
parallel performance. Using a local address space model, an extensive programming
effort is needed to develop parallel PDE solver implementations that include such
mechanisms. Using a shared address space model, the programming effort for pro-
ducing a working parallel code can be reduced significantly. Another driving force for
the use of shared address space models is the recent development in computer archi-
tecture; emerging computer systems are built using multi-threaded and/or multi-core
processors, future standard computational nodes will comprise an increasing number
of threads that share a single address space. Codes using a programming model like
OpenMP can then be transparently and easily used on different size systems, ranging
from laptops with a single multi-threaded CPU to large shared memory systems with
many such CPUs.

Most large scale shared memory computers are built from nodes with one or several
processors, forming a cache-coherent non-uniform memory architecture (cc-NUMA).
In a NUMA system, the latency for a main memory access depends on whether data is
accessed at alocal memory location or at aremote location. One characteristic property
of this type of computer system is the NUMA-ratio, which is defined as the quotient
of the remote and local access times. The non-uniform memory access time leads to
that the geographical locality of data potentially affects the application performance.
Here, optimal geographical locality corresponds to that the data is distributed over the
nodes in a way that matches with the thread accesses in the best possible way. Good
geographical locality can be achieved by carefully selecting the node where data is
allocated at initiation, and/or by introducing some form of dynamic migration of data
between the nodes during execution [1-4].

A main reason for the complexity of local address space implementations of AMR
PDE solvers is that the programmer must explicitly control and modify the partition-
ing of work and data during execution. If suitable algorithms for partitioning and load
balancing are used and the communication is efficiently implemented, a local address
space implementation will regularly exhibit good parallel performance. In a shared
address space model, the native work sharing constructs and transparent communi-
cation result in that it is much less demanding to develop a working parallel code.
However, the aspects of work partitioning and load balancing must normally still be
considered to obtain robust and competitive parallel performance. In programming
models like OpenMP, the work partitioning and load balancing can easily be per-
formed using the same well-developed and efficient algorithms as for local address
space models, resulting in that the potential for good parallel efficiency is retained.
Data distribution is not considered in OpenMP, and poor geographical locality could
possibly lead to deteriorated performance. In this article, we study the implementation

@ Springer

Int J Parallel Prog (2007) 35:477-491 479

of a structured adaptive mesh refinement (SAMR) PDE solver and attempt to answer
the following questions:

e How large is the impact of geographical locality on the performance?
e Can the performance be improved through dynamic migration of misplaced data?
e How large is the migration overhead?

We also consider an additional question regarding migration, viz., how it should be
invoked.

The rest of the article is organized as follows: In Sect. 2 we describe existing parallel
SAMR solvers and techniques used for distribution of work and data. In Sect. 3 we
consider the model PDE application that is solved, in Sect. 4 we introduce the NUMA
computer system used, and in Sect. 5 we give some details about the implementation
and experimental setup. In Sect. 6 we present performance results, and in Sect. 7 we
conclude.

2 Parallel SAMR Solvers

Most existing parallel implementations of large-scale SAMR PDE solvers [5], e.g.,
AMROC [6], PARAMESH [7], GrACE [8], Chombo [9] and SAMRAI [10] exploit
a local address space model implemented using MPI. The parallelization is based on
grid patches or blocks, i.e., each MPI process is responsible for the computations
corresponding to one or more blocks or parts of blocks. For easier balancing of the
computational work, large blocks are often first split into smaller blocks. All blocks are
then assigned to the processors with a load balancing algorithm. In the computations,
a small amount of communication is always needed for interpolating grid function
values between some blocks in different processes.

Both patch-based and domain-based approaches for dynamic work partitioning and
load balancing in local address space SAMR solvers have been developed. In patch-
based methods the blocks at one level are partitioned over all processes while in the
domain-based the computational domain is partitioned and the partitions are projected
to the different grid levels. Hybrid versions combining patch-based and domain based
methods have also been considered [11]. Furthermore, the algorithms can be catego-
rized into scratch-remap and diffusion type. Using a scratch-remap strategy, a new
partitioning is computed without considering previous partitionings, but the new par-
titioning is re-mapped according to previous data distribution in order to minimize
data migration. In diffusion algorithms the partitioning is computed with a previous
partitioning as a starting point. Scratch-remap strategies tries to optimize load balance
and communication while the main objective in diffusion algorithms is to minimize
data migration with load balance and communication as secondary objectives [12].
So far, there is no single algorithm that performs best for all types of applications or
not even for all states of a particular application, see e.g., [11]. General dynamic load
balancing algorithms for SAMR solvers remains an open field of research. In hierar-
chical AMR methods a common choice is to use space filling curves for clustering
blocks into partitions [6,13,7,8,10], using Morton or Hilbert ordering. Space filling
curves are fast and offer both locality within and between levels in the grid hierarchy.

@ Springer

480 Int J Parallel Prog (2007) 35:477-491

For flat unstructured AMR methods, graph partitioning methods are more common
[12,14,15] and have better locality properties than the space filling curves. For flat,
SAMR applications and multi-block grids the graph partitioning algorithms are also
preferable [16,17]. For the experiments performed in this article, it is important to
minimize the data migration in addition to achieve a good load balance and minimize
communication. A diffusion partitioning algorithm then becomes the natural choice,
and we have chosen to use an algorithm of this type from the Jostle package [15].

In [18], a shared memory parallelization of a SAMR solver is presented. The code
is parallelized using OpenMP and the experiments are performed on an SGI Origin
system. A reasonable amount of geographical data locality is achieved by using SGI
Origin’s first touch data placement policy, i.e., data is allocated in the local memory
of the thread first touching a grid block. In [13] a shared address space parallelization
using POSIX-multi-threading is discussed. Here, explicit localization of data is imple-
mented by using private memory in the threads for storing the blocks, i.e., each thread
has access to the grid hierarchy but stores only its blocks in private data structures in
local memory. Moreover, to guarantee geographical locality the threads are explicitly
bind to single CPUs.

In [19] different programming models using MPI, OpenMP, and hybrid MPI-
OpenMP for parallelizing a SAMR solver are compared on a Sun Fire 15000. Parall-
elization is performed both at block level and at loop level. It is shown that the coarse
grain block level parallelization with MPI gives the best performance as long as the
number of blocks is large enough for a good load balance, otherwise a mixed MPI-
OpenMP model is better due to better distribution of the work. The standard OpenMP
implementation suffers from poor geographical data locality and does not perform as
well as the corresponding MPI implementations.

Finally, Blikberg et al. [20,21] present two-level nested parallelizations and load
balancing algorithms for OpenMP implementations of blockwise AMR. They do not
consider data locality and report only modest parallel performance.

3 The PDE Solver

As a representative model problem we solve the advection equation
U = Uy + Uy

with periodic boundary conditions on a square. The initial solution is a Gaussian
pulse. As time evolves the pulse moves diagonally out through one of the corners of
the domain and comes back in from the opposite corner without changing shape. The
PDE is discretized by a second-order accurate finite difference method in space and
the classical fourth order Runge-Kutta method in time. We use a structured cartesian
grid and divide the domain into a fixed user-defined number of blocks. As a simple
error estimate in the adaption criterion we use the maximum value of the solution in
a block. In a real-life application, a more sophisticated error estimate, e.g., based on
applying the spatial difference operator on a coarse and a fine block discretization
would be used [22]. However, this would not affect the parallel performance much,

@ Springer

Int J Parallel Prog (2007) 35:477-491 481

1 do t=1,Nt

2 if (t mod adaptInterval=0) then

3 Estimate error per block.

4 Adapt blocks with inappropriate resolution.
5 Repartition the grid.

6 Migrate blocks (if migration is activated).
7 end if

8 Compute next timestep

9 end do

Fig. 1 Pseudocode for the computational kernel of our SAMR application

and the conclusions drawn from the experiments presented later will not change. If
the error estimate of a block exceeds a threshold, the resolution of the grid is refined
by a factor two in the entire block. On the contrary, if the error is small enough, the
grid in the block is coarsened by a factor two.

The code is written in Fortran 90 and parallelized using OpenMP. The paralleliza-
tion is coarse grained over entire blocks, i.e., each thread is responsible for a set of
blocks. The blocks have two layers of ghost cells which are updated by reading data
from the neighboring blocks. When the grid resolution changes in any of the blocks,
the entire grid structure is repartitioned using the Jostle diffusion algorithm and the
work partitioning between the threads is changed accordingly.

Before the main time-evolution loop starts, the solution is initialized. This is done
in parallel, according to an initial partitioning that was defined when the grid was
created. After this the error is estimated and the grid adapted if necessary. This pro-
cedure, initialization and adaption, is repeated until the error estimates are satisfied in
all blocks. Thereafter, the grid is repartitioned and the main computations starts. The
computational kernel of our SAMR application is presented in pseudocode in Fig. 1.
In the code, the procedure Diff () performs the necessary interpolation between
grid blocks and applies the spatial difference operator for all blocks in the grid. In
the experiments presented later, we perform a total of 20,000 time steps. Adaption,
partitioning and migration (if active) is performed every Adapt Interval time step,
where we use AdaptInterval =20. We use a discretization with 16 x 16 blocks,
and the adaption criterion results in three different block sizes: 100 x 100, 200 x 200
and 400 x 400. When a block is refined or coarsened new memory is allocated and
the old block is discarded. At a typical iteration the resident working set was about
350 MB.

We define the load balance y by

max; w;

1 bl
ﬁ'E:i:1UH

y =)

where w; is the amount of work in partition i and n the number of partitions. Table 1
shows the arithmetic mean of y; for the application studied. As we partition every
20th timestep for a total of 20,000 timesteps j = 1,...,1,000. As a reference we
have also included the results of the MeTiS [23] scratch-remap graph-partitioner. We
can see from Table 1 that it becomes very hard to achieve a good load balance with

@ Springer

482 Int J Parallel Prog (2007) 35:477-491

Table1 Arithmetical means of the load balance y; forn = 4, 8, 16, 32 partitions using the Jostle diffusion
partitioner and the MeTiS scratch-remap partitioner

n Diffusion Scratch-remap
4 1.031 1.026

1.059 1.052
16 1.239 1.262

more than eight partitions. This fact might not come as a surprise as we only have 256
blocks which are very heterogeneous in size. The choice of partitioning strategy does
not affect the arithmetical load balance very much for this model problem. Because
we are interested in minimizing inter-partition data movement, we choose to use the
diffusion partitioner.

4 The NUMA System

All experiments presented were performed on a Sun Fire 15000 system, where a ded-
icated domain consisting of four nodes was used. Each node contains four 900 MHz
UltraSPARC-IIICu CPUs and 4 GByte of local memory, and each CPU has an off-chip
8 MB L2 cache. Within a node, the access time to local main memory is uniform. The
nodes are connected via a crossbar interconnect, forming a cc-NUMA system with
NUMA -ratio approximately 2.0.

The code was compiled with the Sun STUDIO 11 compiler using the flags -fast
-xarch=v8plusa -xchip=ultra3cu, and the experiments were performed
using the 4/04 release of Solaris 9. When an application starts the Solaris scheduler
assigns each thread a home node (called locality group or lgroup in Solaris termi-
nology). Although threads are allowed to execute on any node the scheduler tries to
keep the threads to their home node. By default, memory is allocated according to a
first-touch strategy which, in an ideal case, means that memory will be allocated to
the home node to create good geographical locality.

In Solaris, dynamic migration of pages between nodes can be performed using a
directive with a migrate-on-next-touch semantic using the madvise (3C) library
call [24]. The directive tags pages for migration and the kernel resets the address
translation for these pages. Since the TLB is handled by software in Solaris, dirty
translations needs to be invalidated by a TLB shoot-down procedure for all CPUs that
have executed the address space. After the shoot-down the pages have no physical
address associated with them. When a thread accesses one of these pages a minor
page fault occurs and the content of the page is migrated, i.e., physically copied, to
a new page allocated in the node where the faulting thread executes. If the new page
is physically allocated to the node where the contents resides, there is a fast-path, no
data is actually copied. The overhead of the migration can be divided into two parts:
the overhead from TLB shoot down and the cost of copying data. The shoot down
overhead is dependent on how many pages are shot down and for how many CPUs.
Due to kernel consistency issues this procedure needs to be serialized using global
locking [25,26].

@ Springer

Int J Parallel Prog (2007) 35:477-491 483

A migrate-on-next-touch directive is also available on the Compaq Alpha Server
GS-series [27]. On SGI Origin-systems [28], dynamic page migration is also avail-
able. However, it is implemented using access counters, and no migrate-on-next-touch
feature is available. Instead, HPF-style explicit directives for data distribution can be
inserted in the code. Tikir et al. [29] showed that a migrate-on-next-touch directive
can be used to create a transparent data distribution engine based on hardware access
counts. Also, Spiegel and an Mey [30] showed how to use the migrate-on-next-touch
call to speed up a hybrid CFD solver.

5 Experimental Methodology and Setup

In the SAMR application studied here, the data distribution corresponding to the initial
first-touch allocation will not be optimal since we need to maintain a good load bal-
ance. The partitioner will in many cases assign blocks where some or all of them were
initially allocated on a node different from the home node of a given thread. Also, in
our implementation, when a block is refined or coarsened, new memory is allocated
and the old block is discarded. As the adaption phase precedes the partitioner, new
blocks might be allocated by the first-touch strategy to a remote node depending on
the outcome of the partitioner.

To increase geographical locality we can use page migration to migrate the data of
each partition to the home locality group (node) of the corresponding thread. In [31]
we noticed that migration could be invoked in three different ways:

e User controlled migration, i.e., that the user specifies exactly where each memory
page should reside.

e User initiated migration, i.e., that the user specifies that a certain memory page
should be migrated but relies on a next-touch mechanism to determine where.

e Transparent migration, i.e., the need for migration is detected and performed auto-
matically, without any intervention from the user.

For adaptive PDE solvers, with a dynamically changing memory access pattern,
the situation is more complex than for a PDE solver with a static access pattern.

First of all, for an adaptive PDE solver, with a grid consisting of several smaller
blocks, the next-touch strategy may have a problem with “false sharing” of memory
pages. If two different threads are responsible for adjacent blocks, the “wrong” thread
may be the first to touch a memory page while updating boundary data.

Furthermore, there is no single data distribution that is optimal throughout the entire
execution. The grid must be repartitioned dynamically and as a result there may be a
need for migration. However, in such situations, a majority of the data may already
reside in a favorable part of the physical memory. Thus, the overhead for migration
may be reduced by only migrating data that is unfavourably located.

5.1 Experimental Setups
To investigate the performance impact of geographical locality we perform experi-

ments where the application was executed using four threads on the following three
configurations

@ Springer

484 Int J Parallel Prog (2007) 35:477-491

UMA All threads confined to the same node. Migration not active.
NUMA One thread per node. Migration not active.
NUMA-MIG One thread per node. Migrate data belonging to blocks that are trans-
ferred to another node. Force immediate migration by touching pages.

In addition, we also compare four different migration strategies for the adaptive
PDE solver. They differ in two ways:

Data selectivity (all or some), i.c., if all shared data is tagged for migration at
every adaptation occasion or only some memory pages (those belonging to blocks
that have been moved to another thread) are tagged for migration.

Affinity strategy (explicit or on touch), i.c., if it is stated explicitly where a memory
page should migrate or if that is decided by the next-touch strategy when the data
is accessed some time in the future (on touch).

To make sure that threads stay in their home nodes we used the SUNW_MP_ PRO
CBIND environment variable to bind each thread to a specific CPU. We also kept the
system unloaded apart from the application studied.

In the UMA case, all accesses will be local. However, there is a risk that the perfor-
mance of the code will be inhibited by the limited bandwidth provided by a single node.
In the NUMA cases the aggregate bandwidth to main memory is four times higher. We
align data to page boundaries by interposing the Fortran 90/95 allocate () routine.
Since the SAMR application allocates new blocks in parallel we used the mtmalloc
allocator. This allocator is part of Solaris and it is much more scalable than the standard
allocator. We mapped all allocations to the valloc () routine of mtmalloc. This will
result in that the smallest possible block of data is a memory page. The memory waste
was found to be very low. In total, the application allocated 241540 8kB pages which
is close to 2 GB of data in 7636 calls to allocate. The waste due to alignment was
about 40 MB.

To quantify the effect of geographical locality we measure the number of remote
accesses generating from the CPUs using the UltraSPARC-IIICu hardware counters.
We define the number of remote accesses as the difference between the total amount of
L2-cache misses served by local memory (EC_miss_local) and the total amount
of L2-cache misses (EC_misses). The hardware counter data was sampled using the
Sun Performance Analyzer. To reduce the file size of the hardware counter sampling
only 4,000 times steps of the 20,000 were executed. We believe that the basic miss ratio
characteristics can still be observed using only a subset of the iterations. Furthermore,
the Solaris kernel (kstat) provides counters for the amount of pages migrated to and
from a node and the Solaris tool trapstat was used to sample the amount of time spent
handling address translations.

6 Results
6.1 Impact of Geographical Locality
Table 2 shows both total execution time and hardware counter data from the three

setups. We can see from Table 2 that the NUMA case runs slower than the UMA case
and the NUMA-MIG case. The number of remote accesses is also much higher for

@ Springer

Int J Parallel Prog (2007) 35:477-491 485

Table 2 Execution time measurements and hardware counter data from the three different experimental
setups

UMA NUMA NUMA-MIG
Total execution time 4.09h 6.64h 3.99h
L2 miss ratio 4.3% 3.9% 4.2%
L2 remote ratio 0.2% 62.9% 8.1%

The L2 Remote ratio is the ratio of cache misses served by remote memory to the total number of L2 misses

this case compared to the UMA and NUMA-MIG cases which shows that the NUMA
case exhibits a low degree of geographical locality. It is also clear that the effect of
page migration is large since the amount of remote accesses for the NUMA-MIG case
is much lower compared to the NUMA case. We cannot completely remove all remote
accesses since the usage of ghost cells will result in a small amount of communication.

Figure 2 shows the entire execution for the UMA, NUMA, and NUMA-MIG cases.
In Fig. 2a the execution time for the UMA and NUMA cases are displayed on top of
the graph for the NUMA-MIG case. In Fig. 2b only the first 2,000 time steps are shown
and the three graphs are aligned in time. It is clear that the impact of geographical
locality is significant even though the NUMA-ratio of the SF15K is only about two. By
comparing the execution time of UMA and NUMA-MIG we see that we can increase
the geographical locality using a migrate-on-next-touch directive. Surprisingly, the
execution time for the NUMA-MIG case is lower than the UMA case. This can be
explained by the fact that in the UMA case all CPUs of the node will be used resulting
in a very high memory pressure on that node. In the NUMA cases each thread will have
the entire node for itself resulting in a higher aggregate bandwidth for the application
to use.

Table 3 shows migration statistics for the application in the NUMA-MIG case. Ata
typical iteration the resident working set is about 350 MB which corresponds to 44800
8kB pages. Migration is triggered every 20th time step which gives a total of 1,000
times. Assuming that the migrations, 2,212,844 pages in total, are evenly distributed
over time, only 2,213 pages (18.1 MB) are migrated at each migration. This small
amount of pages correspond to about 5% of a typical working set. Hence, we con-
clude that the amount of data migrated at each migration is fairly low. This together
with the fact that the NUMA-MIG case executes faster than the UMA case indicates
that the overhead of migration is low for the experiments performed. Using the trapstat
tool we found that the solver (all cases) spends at most 1.0% of its time (2.4 min) in
the Solaris page fault trap handler. This fact further supports the conclusion that the
overhead from migration is low.

6.2 Different Migration Strategies

Results, in terms of execution times for the four different migration strategies, are
found in Table 4.

@ Springer

486 Int J Parallel Prog (2007) 35:477-491

16 F 16 F
16k NUMA
14 UMA 15 F
14 |
12 |
13
a4 r 12
08 [~ e
B
o [UCH o R I B B P IR B B B
; 12 0 5000 10000 15000 20000 0 5000 10000 15000 20000
£
=
5
"é NUMA-MIG
¢
w
ik
08 [~
0'6_| 1 1 1 1
0 5000 10000 15000 20000
(a) All 20000 time steps
@ e e o A e ey o s s
qE;1.55
= 1.25F
c L
S 1
::: W H
8 0.75F T
B ogebee Lo vl Lo e e b e b e L L
) 200 400 600 800 1000 1200 1400 1600 1800 2000
@ L e L L L L L O L) L L B BB B
qE.>1.5j 3
:1.25m
c L -
s 1 E
=1 C]
S 075F — NUMA S
B gt Lo b Lo e e b e b e Lo Ly
0 200 400 600 800 1000 1200 1400 1600 1800 2000
@ e e o A e e e o s e B
2 1.5 — NUMA-MIG | T
= 1.25 =
c 4
S 1
3
$ 075
B gbece Lo oo e Lo e b e b e L L
) 200 400 600 800 1000 1200 1400 1600 1800 2000

(b) First 2000 time steps

Fig. 2 The impact of geographical locality on performance. Migration, adaption and partitioning is trig-
gered every 20th time step

@ Springer

Int J Parallel Prog (2007) 35:477-491 487

Table 3 Number of 8kB pages migrated for the NUMA-MIG case collected using Solaris kernel statistics
(kstat)

Migrated Migrated Total Total

to from net flow traffic
Thread 0 346479 356903 —10424 703382 (2.9 GB)
Thread 1 318407 319417 —1010 637824 (5.4 GB)
Thread 2 249414 243203 6211 492617 (3.8 GB)
Thread 3 192122 186899 5223 379021 (3.4 GB)

Column 4 shows the net data flow from a node where the thread executed. A negative value indicates that
more pages were migrated from the node. Column 5 shows the sum of columns 2 and 3 i.e., the total amount
of migrations for one node. The total amount of migrated pages for all nodes was 2212844 (16.88 GB)

Table 4 Execution time for different migration strategies

Data Affinity Execution
selectivity strategy time (h)
Some Explicit 3.99

All Explicit 4.37
Some On touch 4.49

All On touch 4.51

The two migration strategies with explicit affinity are examples of user controlled
migration, as defined in Sect. 5, and the two with affinity on touch are user initiated.
Since there is no support for transparent migration on the SF15k system, we were not
able to study any such migration strategy.

The results show that the execution time is reduced significantly for all four migra-
tion strategies in comparison with the NUMA case which took 6.64h, see Table 2.
The main conclusion is thus that the decision to migrate at all is more important than
which migration strategy to use.

There is, however, a difference in execution time also between the different migra-
tion strategies. When migrating all data, the overhead for migration is higher than
when migrating only misplaced data and when using the on touch affinity, the data
distribution will in general not become optimal due to stealing of pages belonging to
the ghost nodes.

From a programmer perspective, user initiated migration—i.e., using on touch affin-
ity—of all data is most appealing since it is the least demanding to implement, but it
also gives the least improvement of execution time.

Improving only the data selectivity, i.e., migrating misplaced data with on touch
affinity, is a somewhat contradictory strategy. On one hand, it does not require that the
programmer specifies where to migrate a memory page but on the other hand, he is
assumed to know which memory pages are misplaced. This strategy is only marginally
better than migrating all data with on touch affinity.

@ Springer

488 Int J Parallel Prog (2007) 35:477-491

Migrating all data explicitly can be seen as a compromise, where the programmer
is relieved of the burden of knowing anything about the previous data distribution but
where he has to specify the new data distribution. In this case, the data distribution
will be optimal but there will be unnecessary overhead from trying to migrate memory
pages that are already favorably placed.

Finally, fully user controlled migration, i.e., migrating only misplaced data with
explicit affinity specifications, gives an optimal data distribution with minimal migra-
tion overhead. As expected, this migration strategy gives the best improvement of
execution time, but it is not indisputable that the improvement is worth all the extra
implementation work compared to user initiated migration of all data.

6.3 Multiple Threads Per Node

All of the experiments presented so far have been executed using four threads on four
nodes to be able to compare with the corresponding UMA case. Using four threads we
found that we could increase the amount of geographical locality and that the over-
head of page migration was low. As the primary reason for implementing cc-NUMA
architectures is to increase the scalability of the system we would like to study the
geographical locality when more than four threads are used.

In the previous experiments partitioning for the threads is the same as partitioning
for the nodes. If we increase the number of threads per node we have the choice of
partitioning for the threads and mapping several partitions to each node or partitioning
for the nodes and then assign multiple threads to each partition. The latter strategy
requires a hierarchical parallelization which we have not yet implemented. Instead we
choose to study the multiple-partitions per node case.

We executed the code using the diffusion partitioner, “some” data selectivity option
and an explicit data affinity strategy for 2, 3, and 4 threads per node. The partitions
were mapped to the four nodes in a linear fashion. We can see from Table 5 that we
can improve the degree of geographical locality using page migration in the multiple
threads per node case. We also see that the scalability is rather poor. There are several
potential explanations for this behavior. First, the load balance of the application is not
very good when we increase the number of threads. For 16 threads the load imbalance
is 24%, see Table 1. The AMR strategy used for the experiments use a fixed number of
grid blocks. Increasing this number can be a way of improving the load balance. How-
ever, the number of blocks are constrained by factors determining AMR-efficiency
such the ability to capture regions of the domain needing resolution. These factors are
often more important than achieving a good load balance for typical AMR problems.
The low number of pages migrated in the 16 thread case can be explained by the fact
that the workload is heterogenous. When a total of 256 blocks are used and the heaviest
blocks have the weight 16, some of the partitions contained only two heavy blocks.
In some cases, the neighboring blocks very also heavy resulting in that the diffusion
algorithm did not repartition.

Second, the available bandwidth to the memory system is consumed as we increase
the number of threads. The UMA experiments performed earlier indicated that a single

@ Springer

Int J Parallel Prog (2007) 35:477-491 489

Table 5 Execution times in hours using multiple threads per node

Threads per node NUMA NUMA-MIG Pages migrated
1 6.64 3.96 2,212,844
2 3.51 2.43 2,870,340
3 3.04 1.87 3,099,778
4 2.35 1.67 908,274

The total amount of threads is 4, 8, 12, and 16. The Pages migrated column shows the total number of pages
migrated to and from a node during the whole simulation

node could not tolerate the bandwidth demand of four threads. Furthermore, when all
CPUs are used other system processes interfere with the execution.

Finally, the overhead of page migration might increase as we increase the number of
threads. In a previous study, Lof and Holmgren [26] showed that the overhead of page
migration increased with the number of threads. However, in that study the migration
was triggered once and the entire dataset of about 62,000 8kB pages were migrated.
In this application the total amount of migrated pages is distributed over the entire
execution time. Following the discussion in Sect. 6.1, the amount of pages migrated at
a single invokation is our case much lower, about 2-3000 pages. However, overhead
from migration is not only determined by the number of pages migrated but also by
the number of TLBs needed to keep consistent, see Sect. 4. As the number of threads
increase it is likely that the overhead from page migration also increase.

Hence, we cannot rule out the probability that overhead from migration affects the
execution time in a negative way. However, we believe that the main reason for the
poor scalability is the poor load balance.

7 Conclusions

In this article we have investigated the impact of geographical locality for an adaptive
PDE solver. This application has a dynamic access pattern which implies that a sys-
tem needs to support some kind of runtime data distribution to minimize the effects
of geographical locality. Our results show that the impact of geographical locality is
large even though the NUMA -ratio of the system used is only two. We also show that
we can significantly improve geographical locality and overall performance using a
library call with a migrate-on-next-touch semantic.

The overhead of migration was found to be low which can be attributed to two facts.
First, our experiments were performed using a moderate amount of threads and the
datasets were not very large. The overhead from page migration will probably increase
with the size of the dataset and the number of nodes and CPUs. Second, for SAMR
to be economic the refined area of the mesh needs to be rather small. This indicates
that the amount of data that needs to be migrated will be fairly low. The refinement
patterns of AMR solvers often vary a lot depending on the physics of the problem
studied. If data migration is to be used in a more general setting the frequency of
invoking a migrate-on-next-touch call must be tuned to match the refinement patterns

@ Springer

490 Int J Parallel Prog (2007) 35:477-491

and dynamics of the studied problem. If large amounts of data needs to be migrated we
may have to reduce the number of migrate calls to amortize the overhead over several
time steps. However, for the model problem studied in this article, using a diffusion
type partitioner resulted in fairly low amounts of data migrations.

We believe that a call or directive with a migrate-on-next-touch semantic can be a
useful addition to an architecture-independent language like OpenMP. Since such a
directive is invoked by the programmer we do not need to spend system resources mon-
itoring geographical locality were thread-data affinity is not critical for performance.
Furthermore, if a system support a transparent mechanism for increasing geographical
locality, a migrate-on-next-touch directive could serve as a useful hint to the system.

References

1. Wilson, K. M. Aglietti, B. B.: Dynamic page placement to improve locality in CC-NUMA multi-
processors for TPC-C. In: Supercomputing "01: Proceedings of the 2001 ACM/IEEE Conference on
Supercomputing, pp. 33-33. ACM Press, New York, NY, USA (2001)

2. Corbalan, J., Martorell, X., Labarta, J.: Evaluation of the memory page migration influence in the
system performance: the case of the SGI 02000. In: Proceedings of the 17th Annual International
Conference on Supercomputing, pp. 121-129. ACM Press (2003)

3. Holmgren, S., Nordén, M., Rantakokko, J., Wallin, D.: Performance of PDE solvers on a self-optimiz-
ing NUMA architecture. Parallel Algor. Appl. 17(4), 285-299 (2002)

4. Mark Bull, J., Johnson, C.: Data Distribution, Migration and Replication on a cc-NUMA Architecture.
In: Proceedings of the Fourth European Workshop on OpenMP. http://www.caspur.it/ewomp2002/
(2002)

5. Rendleman, C.A.: Parallelization of structured, hierarchical adaptive mesh refinement algo-
rithms. Comput Visual Sci 3, 147-157 (2000)

6. Deiterding, R.: Construction and application of an amr algorithm for distributed memory computers.
In: Adaptive Mesh Refinement — Theory and Applications, Proc. of the Chicago Workshop on Adaptive
Mesh Refinement Methods, pp. 361-372. Springer (2003)

7. MacNeice, P.: Paramesh: a parallel adaptive mesh refinement community toolkit. Comput Phys Com-
muni 126, 330-354 (2000)

8. Parashar, M., Browne, J.: System engineering for high performance computing software: the hdda/dagh
infrastructure for implementation of parallel structured adaptive mesh refinement. In: IMA Volume on
Structured Adaptive Mesh Refinement (SAMR) Grid Methods, pp. 1-18 (2000)

9. Colella, P, Graves, D.T., Ligocki, T.J., Martin, D.F., Modiano, D., Serafini, D.B., Straalen, B.V.:
Chombo Software Package for AMR Applications — Design Document. Applied Numerical Algo-
rithms Group, NERSC Division, Lawrence Berkeley National Laboratories (2000)

10. Wissink, A.M., Hornung, R.D., Kohn, S.R., Smith, S.S., Elliott, N.: Large scale parallel structured
amr calculations using the samrai framework. In: proceedings of SC2001 (2001)

11. Steensland, J.: Efficient partitioning of structured dynamic grid hierarchies. Doctoral thesis. Scien-
tific Computing, Department of Information Technology, University of Uppsala. Uppsala dissertations
from the Faculty of Science and Technology 44 (2002)

12. Schloegel, K., Karypis, G., Kumar, V.: A unified algorithm for load-balancing adaptive scientific
simulations. In: Proceedings Supercomputing 2000 (2000)

13. Dreher, J., Grauer, R.: Racoon: a parallel mesh-adaptive framework for hyperbolic conservation
laws. Parallel Comput. 31, 913-932 (2005)

14. Maerten, B.: Drama: a library for parallel dynamic load balancing of finite element applications. In:
Lecture Notes in Computer Science, Vol. 1685, pp. 313-316 (1999)

15. Walshaw, C., Cross, M., Everett, M.G.: Parallel dynamic graph partitioning for adaptive unstructured
meshes. Parallel Distributed Comput. 47(2), 102-108 (1997)

16. Rantakokko, J.: Partitioning strategies for structured multiblock grids. Parallel Comput. 26, 1661—
1680 (2000)

17. Steensland, J., Soderberg, S., Thuné, M.: A comparison of partitioning schemes for blockwise parallel
samr algorithms. In: Lecture Notes in Computer Science, Vol. 1947, pp. 160-169 (2001)

@ Springer

http://www.caspur.it/ewomp2002/

Int J Parallel Prog (2007) 35:477-491 491

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Balsara, D.S., Norton, C.D.: Highly parallel structured adaptive mesh refinement using parallel lan-
guage-based approaches. Parallel Comput. 27, 37-70 (2001)

Rantakokko, J.: Comparison of parallelization models for structured adaptive mesh refinement. In:
Lecture Notes in Computer Science, Vol. 3149, pp. 615-623 (2004)

Blikberg, R.: Nested Parallelism in OpenMP with Application to Adaptive Mesh Refinement. PhD
thesis, Parallab/Department of Informatics, University of Bergen, Norway, Februariy 2003 (2003)
Blikberg, R., Sgrevik, T.: Load balancing and openmp implementation of nested parallelism. Parallel
Comput. 31(10-12), 984-998 (2005)

Ferm, L., Lotsetdt, P.: Space—time adaptive solutions of first order pdes. J. Sci. Comput. 26(1), 83—
110 (2006)

Karypsis, G., Kumar, V.: A fast and highly qualitymultilevel scheme for partitioning irregular gra
phs. SIAM J. Sci. Comput. 20(1), 359-392 (1999)

Sun Microsystems, http://www.sun.com/servers/wp/docs/mpo_v7_CUSTOMER.pdf. Solaris Mem-
ory Placement Optimization and Sun Fire servers, January 2003 (2003)

Teller, P.J.: Translation-lookaside buffer consistency. Computer 23(6), 26-36 (1990)

Lof, H., Holmgren, S.: Affinity-on-next-touch: increasing the performance of an industrial pde solver
on a cc-numa system. In: ICS ’05: Proceedings of the 19th Annual International Conference on
Supercomputing, pp. 387-392. ACM Press, New York, NY, USA (2005)

Bircsak, J., Craig, P, Crowell, R., Cvetanovic, Z., Harris, J., Alexander Nelson, C., Offner,
C.D.: Extending OpenMP for NUMA machines. Sci. Program, 8, 163-181 (2000)

Laudon, J., Lenoski, D.: The SGI Origin: a ccNUMA highly scalable server. In: Proceedings of the
24th Annual International Symposium on Computer architecture, pp. 241-251. ACM Press (1997)
Tikir, M.M., Hollingsworth, J.K.: Using hardware counters to automatically improve memory perfor-
mance. In: SC ’04: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, p. 46. IEEE
Computer Society, Washington, DC, USA (2004)

Spiegel, A., an Mey, D.: Hybrid Parallelization with Dynamic Thread Balancing on a ccNUMA sys-
tem. In: Brorson M. (ed.) Proceedings of the 6th European Workshop on OpenMP, pp. 77-81. Royal
Institute of Technology (KTH), Sweden (2004)

Lof, H., Nordén, M., Holmgren, S.: Improving geographical locality of data for shared memory
implementations of PDE solvers. In: Sloth, PM.A., Tan, C.J.K., Dongarra, J.J., Hoekstra, A.G. (eds.)
Computational Science — ICCS 2004, Part II, pp. 9-16. Springer-Verlag, Berlin (2004)

@ Springer

http://www.sun.com/servers/wp/docs/mpo_v7_CUSTOMER.pdf

	Dynamic Data Migration for Structured AMR Solvers
	Abstract
	Introduction
	Parallel SAMR Solvers
	The PDE Solver
	The NUMA System
	Experimental Methodology and Setup
	Experimental Setups
	Results
	Impact of Geographical Locality
	Different Migration Strategies
	Multiple Threads Per Node
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

