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Abstract In this paper, we describe our experience of creating an OpenMP
implementation of the SPICE3 circuit simulator program. Given the irregular pat-
terns of access to dynamic data structures in the SPICE code, a parallelization using
current standard OpenMP directives is impossible without major rewriting of the orig-
inal program. The aim of this work is to present a case study showing the development
of a shared memory parallel code with minimum effort. We present two implementa-
tions, one with minimal code modification and one without modification to the original
SPICE3 program using Intel’s taskq construct. We also discuss the results of the case
study in terms of what future compiler tools may be needed to help OpenMP applica-
tion developers with similar porting goals. Our experiments using SPICE3, based on
SRAM model simulation, were compiled by the SUN compiler running on a SunFire
V880 UltraSPARC-III 750 MHz and by the Intel icc compiler running on both an IBM
Itanium with four CPUs and Intel Xeon of two processors machines. The results are
promising.
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1 Introduction

In modern Very Large-Scale Integrated circuit (VLSI) design, Electronic Design Auto-
mation (EDA) tools are used to accelerate the design cycle and to help engineers to
improve their designs. SPICE3 is the most important EDA tool used in circuit design.
It is a general purpose circuit simulation program for DC, transient, linear AC, pole-
zero, sensitivity, and noise analyses developed by UC Berkeley [1,2] and is written
in C. Several commercial codes are based on SPICE. It is used to simulate circuits
for various applications from switching power supplies to SRAM cells and sense
amplifiers. Doing so requires the simultaneous solution of a number of equations that
capture the behavior of electrical/electronic circuits. The number of equations can be
quite large for a modern electronic circuit with transistor counts from several hundred
thousands to some millions, and thus the simulation of circuits has become complex
and quite time-consuming. Thus, a shared memory parallel program version is needed
to achieve cost-effective performance.

Circuit simulator programs have been parallelized using Pthreads [3]. Although
particularly useful for task parallelism where it can provide good performance, Pthread
offers a low-level and cumbersome programming model. It requires major code rewrit-
ing and thus a major porting effort. Moreover, the resulting code is difficult to maintain
in view of the many calls to Pthreads library routines and explicit coding of parallelism.

OpenMP [4] is an industry standard for shared memory parallel programming
agreed on by a consortium of software and hardware vendors. It consists of a col-
lection of compiler directives, library routines, and environment variables that can be
easily inserted into a sequential program to create a portable program that will run in
parallel on shared-memory architectures. It is considerably easier for a non-expert pro-
grammer to develop a parallel application under OpenMP than under either Pthreads
or the de facto message passing standard MPI. OpenMP also permits the incremen-
tal development of parallel code. Thus it is not surprising that OpenMP has quickly
become widely accepted for shared-memory parallel programming.

For many scientific applications, especially numerical codes written in Fortran,
parallelization is chiefly a matter of distributing the computation in loops that modify
large arrays. Thus parallelization via OpenMP is simply a matter of inserting direc-
tives to indicate parallel regions and loops, and specifying which variables are shared
or private with few modifications of the original source code needed. Unfortunately,
this is not the case for other applications, particularly if they are written in C/C++.
Challenges arise in the OpenMP implementation of C codes with dynamic linked-list
data structures such as the SPICE3 circuit simulator, but are also encountered in agent-
based model simulations [5], such as simulation of the immune response to a pathogen,
financial markets applications, and more. In [5] Massaioli et al. discuss three tech-
niques for realizing pointer-chasing loops in OpenMP: (1) By explicit decomposition
of the lists into approximately equal-sized chunks, storing pointers to these chunks
in an array, and then adding omp for worksharing directives. With this approach, the
list decomposition is difficult to parallelize. (2) By adding the omp taskq directive,
which is available only in the Intel KSR KAP/Pro compiler, but is not (yet) part of
the official standard and thus introduces a portability problem. (3) By adding an omp
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single nowait clause to independently parallelizable linked-list loops. If the size of the
system being simulated is sufficiently large, this may scale well.

Our aim in this work was to realize an OpenMP implementation of the SPICE3
circuit simulator with as few modifications to the sequential program as possible. Our
approach relies on performing loop transformations and then adding OpenMP direc-
tives to the resulting loops. We discuss both possibilities for improving the OpenMP
SPICE3 parallel program and developing it with minimum effort using a task queue
without modification of the original program. Then, we present the result of our eval-
uation of this parallel version of SPICE3 on SunFire SPARC-III, Itanium, and Xeon
platforms and give our conclusions and future plans.

2 OpenMP Implementation

In this section, we give an overview of the original sequential SPICE3 program simula-
tor. Next, in Sect. 2.2 we present our OpenMP implementation of SPICE3. We describe
the steps taken to create the OpenMP program. In Sect. 2.3, we discuss the possibilities
for and challenges of further improvement of the parallel program. We also discuss our
development of a parallel SPICE3 implementation with minimum effort and without
modification to the original program using Intel’s omp taskq in Sect. 2.4.

2.1 Brief Overview of Sequential SPICE3

SPICE3 provides several types of circuit simulations (or analyses) for modern VLSI
design. Among these, the transient simulation is the most frequently used one. Figure 1
shows the basic configuration of the SPICE3 transient simulation algorithm. The cir-
cuit netlist describing the connection of the electronic devices in the circuit simulated
is first parsed by SPICE3 and the appropriate data structures are generated. Then, the
matrix representing the circuit is created and the data structures related to the matrix
are set up. Actual transient analysis occurs next. For each time point in the transient
analysis, the model calculations for each device, such as MOSFET, resistor, or capac-
itor device, are performed. The electrical parameters such as conductance and current
for each instance instantiated from the corresponding device model are computed and
put into the matrix elements. After the device model and instance calculations, all ele-
ments in the matrix for the linear system in transient analysis are ready for the sparse
matrix solver in SPICE3. Then the matrix calculations for the linear system, such as
the LU decomposition and forward/backward elimination in each iteration, are carried
out until convergence is obtained. This process will continue until the final transient
time is reached. Finally, the simulation results for all the time points simulated are
displayed on the screen or stored in an output file.

2.2 Transforming Sequential Application to OpenMP Version

In order to reduce the effort in developing our parallel code, we first try to compile the
original code with the auto-parallelization option of the Sun compiler switched on to
find loops that may be a good candidate for potential parallelization. Unfortunately,
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Fig. 1 Basic configuration of
SPICE3 simulator
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few loops are parallelizable, and their computational workload is very light. The most
time consuming loops are the matrix calculation and model and instance calculation
and these are not recognized as being parallelizable by the compiler.

In this work, we focus exclusively on parallelizing the model and instance calcu-
lation part, shown in Fig. 1. We refer to it as the device loading routine, because here
all the model parameters related to the device, and the parameters for the instantia-
tions of the device, are computed and loaded into the corresponding matrix elements.
Many devices, such as MOSFET, resistor, capacitor, diode, and bipolar transistor,
are supported by SPICE3. For each device, SPICE3 provides at least one model for
the instances corresponding to this device used in the circuit simulated. For example
MOS3 is one of the models for instances of the MOSFET device. Parameters such
as the conductance and current are calculated according to the model equations built
into the device loading routines. The conductance calculated will contribute to the
elements of the matrix used in the linear system for simulation, while the calculated
current will be entered into the right-hand-side of the linear system.

In this paper, we use an SRAM circuit as an example to demonstrate the SPICE3
simulation in its OpenMP implementation. A typical SRAM architecture is shown in
Fig. 2. The SRAM circuit has a data input bus (data_in), a data output bus (data_out),
an address bus (addr), and a write enable (wr_ena) pin. The data presented at data_in
will be stored in a word line specified by addr when wr_ena is asserted. The data,
stored in a word line and specified by addr, will be read and output to data_out if
wr_ena is disabled.
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Fig. 2 A typical SRAM
architecture
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For the 1 K SRAM used in this study, there are 1 K storage cells built in the circuit.
About 32 word lines are formed in the circuit and each word line has 32 storage cells
with each storage cell representing one bit data. The storage cell is constructed by a
basic six-transistor CMOS SRAM cell, which is shown in Fig. 3. There are six MOS-
FETs in the cell. The SRAM cell is designed by two cross-coupling CMOS inverters,
which consists of four MOSFETs, to form the main cell for data storage, and two
transmission-gate NMOS transistors to connect the main cell with the complementary
bit lines (D and Dbar).

In our study of the performance of SPICE3 circuit simulation, we used the MOS3
model to model all MOSFET devices in SRAM circuits. Therefore the time-con-
suming part of the original sequential routine was the MOS3load function, which is
the device-loading routine in SPICE3. It contains a nested pointer loop traversing an
orthogonal linked-list. The actual size of the source code of the loop is approximately
1.3 K LOC (Lines of Code) and Fig. 4 reproduces the compact example code. The
size of iterations of the loop depends on the size of the circuit; and the number of
devices such as transistor, capacitor, etc. simulated may vary widely. Currently, it is
not possible to parallelize a pointer-chasing loop by just directly adding an OpenMP
directive in a portable manner: the omp taskq directive available in the Intel compiler
is not a standard feature. Since there is a return statement within this loop, it has
multiple exits, and cannot be parallelized without modification in any case. Likewise,
we cannot employ an omp parallel for reduction to obtain the sum of the values for
each element of the linked list.
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int MOS3load(inModel,ckt) 
    GENmodel *inModel; 
    register CKTcircuit *ckt; 
{  register MOS3model *model = (MOS3model *) inModel; 
    register MOS3instance *here; 
    ........ 
   for( ; model != NULL; model = model->MOS3nextModel ) { 
        /* loop through all the instances of the model */ 
        for (here = model->MOS3instances; here != NULL; here=here->MOS3nextInstance) { 
            ......... 
            if ( ckt->CKTmode & MODETRAN ) { 
                error = NIintegrate(ckt,&geq,&ceq,here->MOS3capbd, here->MOS3qbd); 
                if(error) return(error); 
            } 
          ........ 
        // Right hand side of Ax = b 
         *(ckt->CKTrhs + here->MOS3gNode) -=   (model->MOS3type * (ceqgs + ceqgb + ceqgd)); 
           .... 
        //   Sum of contributions for the element of matrix A 
         *(here->MOS3DdPtr) += (here->MOS3drainConductance); 
           ........ 
    }}  /* end of for loop */ 
    return(OK); 
}

Fig. 4 Compact sequential code of MOS3load in SPICE3

There is a straightforward way to parallelize the sequential nested loop shown in
Fig. 4. First, at the level of the circuit matrix setup of Fig. 1, we introduce a data
structure to store the address of each linked-list element of an instance in an array
of pointers, MOS3instanceArray[i], as well as to keep track of the total number of
elements in the lists in a variable model->MOS3instanceCount. Second, we perform
loop coalescing to reduce the number and nesting level of loops, as well as to generate
loops with larger loop iteration counts. The result is shown in Fig. 5.

This loop now involves an array of pointers and integer index instead of pointers.
Finally, we may now directly add a parallel omp for directive to the loop since the loop
iterations are independent except for the following: first, shared pointers point to the
variables that are used to update the right hand side of the linear system, Ax = b, and
second, shared pointers point to the elements of matrix A, which is used to sum the
contributions for those elements. The omp critical synchronization directive is used to
resolve this conflict, as shown in Fig. 5. We have chosen to present the large number
of private variables required, given the lack of a default(private) clause; we believe
that such a clause would be beneficial for such codes. In our case, there are 56 private
variables to be declared manually and given the presence of pointer variables and
aliasing, automatic scoping of variables in parallel regions (as proposed in [6]) would
be highly desirable although we are aware that it may be difficult for the compiler to
perform.

Other model device-loading functions such as CAPload (capacitor load), DIOload
(diode load), VSRCload (voltage-source load), and many more as shown in Fig. 6, have
a program structure very similar to MOS3load, so they can be parallelized the same
way.
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int MOS3load(inModel,ckt) 
     GENmodel *inModel; 
     register CKTcircuit *ckt; 
{   ...... 
    register MOS3model *model = (MOS3model *) inModel; 
    register MOS3instance *here; 
    ...... 
    MOS3instance **MOS3instanceArray; 
    MOS3instanceCount = model->MOS3instanceCount; 
    MOS3instanceArray = model->MOS3instanceArray; 
#pragma omp parallel default(none) shared(ckt,  
CONSTKoverQ,MOS3instanceCount,MOS3instanceArray) 
  #pragma omp for private(vt,Check, SenCond,EffectiveLength,DrainSatCur, SourceSatCur, \ 

GateSourceOverlapCap,GateDrainOverlapCap,GateBulkOverlapCap,Beta,OxideCap,vgs,vds,vbs, \ 
vbd,vgb,vgd,xfact,vgdo,delvbs,delvbd,delvgs,delvds,delvgd,cbhat,cdhat,tempv, \ 
cdrain,capgs,capgd,capgb,von,evbs,evbd,vdsat,cdreq,xrev,xnrm, ceqbd,ceqbs,ceqgb, \ 
ceq,geq,vgs1,vgd1,vgb1,arg,sarg,sargsw,error,gcgs,ceqgs,gcgd,ceqgd,gcgb,model,here)  

     for( i = 0; i < MOS3instanceCount; i++) { 
           here = MOS3instanceArray[i]; 
           model = here->MOS3modPtr; 
           ...... 

#pragma omp critical(lockA)   
{  // Right hand side of Ax = b 

              *(ckt->CKTrhs + here->MOS3gNode) -=   (model->MOS3type * (ceqgs + ceqgb + ceqgd)); 
               ...... 
             //   Sum of contributions for the element of matrix A 
              *(here->MOS3DdPtr) += (here->MOS3drainConductance); 
              *(here->MOS3GgPtr) += ((gcgd+gcgs+gcgb)); 
              ...... 

}  /* end critical  */ 
}  /* end of for loop */    
    return(OK); 
} /* end of MOS3load() */ 

Fig. 5 OpenMP implementation of MOS3load in SPICE3
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MOS1load … MOS3loadDIOload INDload

Fig. 6 Structure of a partial callgraph for a transient simulation of SPICE3 simulator program

The shortcoming of parallelizing this code by creating the parallel region within
the MOS3load routine is that the routine is called many times, thereby involving con-
siderable fork-join overheads in addition to the cost of the synchronization. Barrier
and critical section overheads are, however, unavoidable.

2.3 Possible Improvements

The most important issue is to reduce the significant fork-join overhead incurred, since
MOS3load is invoked several hundreds to thousands of times by other functions. The
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……..
for (i=0;i<DEVmaxnum;i++) { 
        if ( ((*DEVices[i]).DEVload != NULL) && (ckt->CKThead[i] != NULL) ){ 
            error = (*((*DEVices[i]).DEVload))(ckt->CKThead[i],ckt);
            if (ckt->CKTnoncon)
}}
…..

Fig. 7 Dynamically bound call from CKTload routine

total number of calls to MOS3load depends on the number of time points and the
non-linear iteration counts at each time in the simulation. As the number of threads
increases, fork-join overheads increase significantly. To improve this situation, we
need to move the parallel region to include the calling functions. Unfortunately, it is
non-trivial to do so. To explain the difficulties, we first manually created an incomplete
or partial callgraph for a transient simulation of the SPICE3 program that shows invo-
cations of our MOS3load function in Fig. 6. This callgraph is built from dynamically
bound calls resulting from the variable pointer assignment mechanism. It is a quite
time consuming task and it would be preferable to have a tool to assist in doing this,
in particular to help a novice developer gain an understanding of the code.

Suppose we are able to move the omp parallel from the MOS3load function to CKT-
load. There will be no improvement because there is only one dynamically bound call
from the CKTload routine; as shown in Fig. 7, this is realized by the value of the pointer
(*((*DEVices[i]).DEVload))(ckt->CKThead[i],ckt), which can point to CAPload(),
MOS2load(), MOS3load(), INDload(), and/or many other device loading functions
corresponding to calling relationships shown in Fig. 6. It can be improved by moving
it to the function NIiter. From inside the for(;;) loop in the NIiter function, there is a
call to the CKTload function; this loop iterates until the convergence criterion is met.
Further, there is a call to NIiter from inside the while(1) loop of the DCtran function
of Fig. 6; these calls continue until the final transient time is reached. In other words,
the call from DCtran to NIiter represents the outer loop and the call from NIiter to
CTKload represents the inner loop of Fig. 1. The parallelization of the code becomes
more tedious, however.

2.4 Implementing Parallel SPICE3 without Code Modification

In this section, we discuss the OpenMP implementation of SPICE3 using Intel’s
omp taskq and without any other modifications to the original program. The detailed
description of Intel’s taskq pragma, implemented in icc as a workqueueing model by
the Intel compiler group can be found in [7,8]. The workqueuing model of Intel’s
taskq provides a flexible mechanism for specifying units of work that are not known
or pre-computed at the beginning of the worksharing construct. In other words, the
taskq and task pragmas are used to create dynamic tasks. It is extremely useful for
handling dynamic data structures such as linked lists and trees, as well as for pro-
grams with control structures such as while loops and recursion. Conceptually, a taskq
pragma causes the chosen thread to create an empty queue of tasks. The code inside
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int MOS3load(inModel,ckt) 
{  ................. 

#pragma omp parallel shared(ckt, CONSTKoverQ,inModel) 
     for( ; model != NULL; model = model->MOS3nextModel ) { 

#pragma intel omp taskq private(.....)
        for (here = model->MOS3instances; here != NULL; here=here->MOS3nextInstance) { 

#pragma intel omp task  
            {   ..... 
                 if (SendCond) continue;   
                 ..... 
                 if (here->MOS3senPertFlag == OFF) continue; 
                  ..... 
             } /* end of omp task */ 

}}  /* end of for loop */ 
    return(OK); 
}

Fig. 8 Device instance level of granularity

a taskq should be a structured block; it is executed in single-threaded mode. Any task
pragmas encountered while executing a taskq block specify that the enclosed work is
associated with the queue and can be executed by any thread, and the unit of work is
conceptually enqueued for subsequent execution.

Our implementation with few modifications discussed in Sect. 2.2 has been parall-
elized to perform device instance calculations per thread. To parallelize using Intel
omp taskq at this level is not possible without more code modifications, because there
are several branch statements such as return and especially continue in the inner loop
of the MOS3load function as shown in Fig. 8, which is not a structured block and is
not allowed by the compiler.

In order to parallelize it without any modification, we have to parallelize at a coarser
granularity, namely at the level of device instances of a model (each model consists of
many device instances) per task. This is shown in Fig. 9. With this level of granularity
(model per thread), the load imbalance problem can occur, since each model may
consist of a different number of device instances, but then the OpenMP directives can
be inserted directly into original program.

The source code of Fig. 9 has been successfully compiled by Intel’s OpenMP com-
piler on Linux Itanium of 4-CPUs machine. We include this experimental result in the
next section.

3 Experiments

Our experimental results are based on an 8 K SRAM model simulation compiled with
SUN compiler and run on a SunFire V880 Ultra SPARC-III 750 MHz with four CPUs
and 4 G memory. In this simulation, MOS3load is invoked 780 times; this number
depends on the number of time points simulated and the non-linear iteration counts of
each time. An increase in this number does not affect the scalability of the performance.
On the other hand, there are 61,584 total instances, which represent the size (number
of iterations) of the coalesced loop iterations in MOS3load. This in turn depends on
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int MOS3load(inModel,ckt) 
{
#pragma omp parallel default(none) shared(ckt, CONSTKoverQ,inModel) 

 #pragma intel omp taskq private(vt,Check, SenCond,EffectiveLength, \ 
DrainSatCur,SourceSatCur, ........... ,model,here)  

    for(model=inModel; model!=NULL;model=model->MOS3nextModel) { 
#pragma intel omp task 

         for(here=model->MOS3instances; here!=NULL; here=here->MOS3nextInstance){ 
           ... 
         #pragma omp critical(lockA)   

{     // Right hand side of Ax = b 
                 //   Sum of contributions for the element of matrix A 
           }  /* end critical  */ 

}}
    return(OK); 
}

Fig. 9 All instances of a model level of granularity
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Fig. 10 The performance of OpenMP MOS3load function

Fig. 11 The performance of
OpenMP SPICE3
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the number of device instances involved in the circuit simulation. Figures 10 and 11
show that it performs well up to three processors for the entire SPICE3 program (note
that the rest of SPICE3 is not parallelized here).

Other than the device model and instance calculation, the sparse matrix computa-
tion in SPICE3 is fairly time consuming. We are currently studying the parallelization
of a public domain linear algebra sparse matrix package implemented in SPICE3 by
Kundert [9]. It is not part of this paper. The code uses an orthogonal linked list data
structure to store the sparse matrix. The matrix computation technique is based on the
direct method with LU decomposition. With four processors, the fork-join overhead
costs more than the execution time of each call to MOS3load, since its average execu-
tion time is only about 0.2 s. To scale well, we would need to simulate a larger number
of device instances.
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Fig. 12 The performance of
OpenMP SPICE3 using Intel
taskq runing on Itanium
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We further performed the experiment with Intel’s taskq as shown in Fig. 9 and com-
pare it with the approach given in Fig. 5. Both were compiled with Intel icc compiler
version 9.0 under the option –O2 –openmp and run on a 4-processor IBM eServer
xSeries 380 Itanium 733 MHz with 16 GB memory. Again, we only parallelize the
MOS3load part and not the rest of SPICE3, but this time we simulate based on a 16 K
SRAM model simulation, which has a larger number of device instances. The results
in Fig. 12 show that both perform well for the entire SPICE3 program if the matrix
calculation part is also parallelized. But, with the taskq construct, significant runtime
overheads are incurred compared to the original sequential code without –openmp
compilation option labeled by ‘seq’ in the figure.

The programs labeled “CAPload”, “MOS3load”, and “CAPload+MOS3load” cor-
respond to the measurement of the whole SPICE with parallelized CAPload() func-
tion alone, MOS3load() function alone, both CAPload() and MOS3load() functions
respectively; these versions have been parallelized using omp parallel for directive.
Another three versions labels begin with “Taskq” correspond to the measurement of
the whole SPICE with parallelized CAPload() function alone, MOS3load() function,
and both CAPload() and MOS3load() function respectively; these three versions were
parallelized using omp taskq. Each version takes 16 K SRAM based on MOS3 model
simulation running on a DELL PowerEdge SC1420 Intel Xeon Processor 3.0 Ghz/2 M,
Em64T 800 Mhz FSB *2 and 1G DDR400 memory. They were compiled with the In-
tel icc compiler version 9.1.038 under the option –O2 –openmp. Figure 13 shows the
speedup of different versions of parallel SPICE. The result of parallelizing SPICE using
taskq for both MOS3load and CAPload functions, labeled “Taskq_MOS3load+CAP-
load”, gives comparable speedup to the other versions but at lower cost. In other
words, it offers relatively good performance but requires less programming effort than
the other versions.

4 Conclusions and Future Work

We have developed an OpenMP SPICE3 circuit simulator program. The matrix and
model device calculations are the two most time-consuming parts of the computa-
tion. We present our implementation of the device model and instance calculation
part of SPICE3. Our goals were to minimize the effort required and the amount of
modification of the original program. Our experimental results are promising in this
respect, despite the data structures used. We discussed possible improvements; how-
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Fig. 13 The performance of OpenMP SPICE3 using Intel taskq runing on Xeon

ever, they do require more programming work. In the implementation of SPICE3,
there are many while-loops, pointer-loops, and non-block structures, all require major
rewriting if they are to be parallelized by current standard OpenMP features. As an
alternative approach, we can use the omp taskq pragma since it is relatively easy to
employ it without modifying the original code, and thus it enables us to develop a
parallel application similar to our SPICE program using OpenMP with less effort.
But for the workqueueing model implemented in the compiler, further improvement
is essential.

The data handling of a bigger loop involves dubious variable declarations. This may
affect the correctness of the program. In our case, there are explicit declarations of
many private variables, and automatic data scoping may be needed. A compiler tool
for a novice user to create a precise callgraph of the corresponding input program in the
presence of dynamically bound calls (in Sect. 2.3) may aid programmer understanding
of the code. We are continuing our work by creating an OpenMP version of the sparse
matrix calculation (Sparse matrix package in SPICE3) that is also a time-consuming
part of SPICE3.
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