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OpenMP [OpenMP Architecture Review Board. OpenMP application pro-
gram interface, version 2.5] is an important API for shared memory program-
ming, combining shared memory’s potential for performance with a simple
programming interface. Unfortunately, OpenMP lacks a critical tool for dem-
onstrating whether programs are correct: a formal memory model. Instead,
the current official definition of the OpenMP memory model (the Open-
MP 2.5 specification [OpenMP Architecture Review Board. OpenMP appli-
cation program interface, version 2.5]) is in terms of informal prose. As
a result, it is impossible to verify OpenMP applications formally since the
prose does not provide a formal consistency model that precisely describes
how reads and writes on different threads interact. We expand on our pre-
vious work that focused on the formal verification of OpenMP programs
through a formal memory model [Greg Bronevetsky and Bronis de Supin-
ski. Formal specification of the memory model. In International Workshop
on OpenMP (IWOMP), (2006)]. As in that work, our formalization, which is
derived from the existing prose model [OpenMP Architecture Review Board.
OpenMP application program interface, version 2.5], provides a two-step pro-
cess to verify whether an observed OpenMP execution is conformant. This
paper extends the model to cover the entire specification. In addition to this
formalization, our contributions include a discussion of ambiguities in the
current prose-based memory model description. Although our formal model
may not capture the current informal memory model perfectly, in part due
to these ambiguities, our model reflects our understanding of the informal
model’s intent. We conclude with several examples that may indicate areas
of the OpenMP memory model that need further refinement, however it is
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specified. Our goal is to motivate the OpenMP community to adopt those
refinements eventually, ideally through a formal model, in later OpenMP
specifications.

KEY WORDS: OpenMP; parallel programming; formal systems; theorem
proving.

1. INTRODUCTION

Modern systems are increasingly being built using multi-threaded architec-
tures. These include systems with multiple processors on the same node
and/or multiple cores on the same chip. Given the proximity of the proces-
sors/cores on such machines, they typically feature a single memory acces-
sible to any processor. As such, these machines are easily and effectively
programmed in a multi-threaded shared memory style.

OpenMP(1) has emerged as a popular shared memory API because
it combines the performance advantages of shared memory with an easy-
to-use API. However, despite the relative simplicity of the API, Open-
MP applications remain difficult to write. The difficulty arises from several
inherent complexities of multi-threaded execution, including non-determin-
ism, a large space of possible executions and a very relaxed memory con-
sistency model. Thus, although OpenMP allows programmers to improve
application performance significantly, this comes at a cost of significantly
higher program complexity. This complexity makes OpenMP programs
much more vulnerable to bugs than sequential programs and thus, more
expensive to debug. Ultimately, confidence in the correctness of the final
application is reduced.

Formal verification is a family of techniques that formalize a program
or protocol into a mathematically well-defined form. Correctness is veri-
fied using a variety of techniques that range in their complexity and their
correctness guarantees, from model checking to theorem proving.(2) While
formal verification is generally too complex to apply to real-world appli-
cations, it is feasible for the basic algorithms on which they are based.

Existing work on formally verifying shared memory algorithms(3)

requires us to represent the entire computational content of the algorithm
formally, including algorithm logic and the details of the underlying sys-
tem. In particular the underlying memory model must be formalized.
While some formal memory models exist,(4) none exists for OpenMP.
Instead, the official description of OpenMP’s memory model (Section
1.4 of version 2.5 of the OpenMP specification(1)) is written in detailed
English, which is generally clear but not nearly precise enough for for-
mal verification tasks. Similarly, while the OpenMP memory model was
recently clarified further,(5) this clarification is also informal.
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We expand on our previous work(6) that focused on verification of
OpenMP programs through a formal memory model that we derived from
the existing prose model.(1) Our formalization provides a two-step process
to verify if an observed OpenMP execution is conformant. In contrast to
our previous work, the model presented here covers the full 2.5 specifi-
cation. We also provide a more detailed description on how our formal-
ization represents OpenMP programs. In addition to this formalization,
we discuss ambiguities in the current prose-based memory model descrip-
tion. Although our formal model may not capture the current informal
memory model perfectly, in part due to these ambiguities, this formaliza-
tion reflects our understanding of the informal model’s intent. We pres-
ent several examples that demonstrate a need for further refinement of the
OpenMP memory model. Our goal is to motivate the OpenMP commu-
nity eventually to adopt those refinements, ideally through a formal model,
in later OpenMP specifications.

This paper is divided as follows. Section 2 provides an overview of
the OpenMP memory model. Section 3 discusses aspects of that model
that we find ambiguous (despite one of the authors having significant
input into it). Section 4 outlines the formalization of this model. Sec-
tion 5 defines the language of the operations used in the formal model.
Sections 6 and 7 provide the details of the two phases used by the formal
specification. Finally, Section 8 provides several example programs and
their outcomes under the formal model specified in this paper.

2. OUTLINE OF THE OpenMP MEMORY MODEL

The OpenMP memory model provides for two types of memory:
shared and threadprivate. There is a single shared memory that is visible
to reads and writes on all threads. Furthermore, each thread has its own
threadprivate memory that is accessible to only the reads and writes on
that thread. OpenMP’s shared memory semantics are akin to but a lit-
tle weaker than weak ordering.(8) While each thread may read from and
write to data in shared memory, there is no guarantee that one thread
can immediately observe a write by another thread. Thus, the value associ-
ated with a given read may not reflect all prior writes from other threads.
Instead, each thread conceptually has a temporary view of shared memory
and a flush operation limits the reordering of operations and synchro-
nizes a thread’s temporary view with shared memory.

Simple, intuitive concepts motivate the OpenMP memory model. In
order to ensure that a read by thread j returns the value of a write by
thread i, the program must provide synchronization that guarantees the
following sequence of events:
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1. Thread i writes to the variable
2. Thread i flushes the variable
3. Thread j flushes the variable
4. Thread j reads the variable

and no other writes to the variable are happening at the same time. Any behav-
ior outside the above sequence can produce undefined read results and/or leave
the variable’s value in shared memory undefined. However, the OpenMP mem-
ory model is very complex with many potential pitfalls in practice, despite the
simplicity of the underlying concepts, as we will discuss.

A thread’s temporary view can be its cache, registers or other devices
that speed up memory operations by not forcing the processor to go to
main memory for every shared access. Reads and writes to shared vari-
ables access the thread’s temporary view of shared memory. If the thread
reads a shared variable and the temporary view does not hold a value for
this variable, the read goes directly to shared memory. If a thread writes
to a shared variable, it only updates the thread’s temporary view of that
variable. However, the system is then free to non-deterministically push
the value of the write from a thread’s temporary view to shared mem-
ory at any time. Since there are no atomicity constraints (e.g., a 64-bit
write may not be executed as a single operation), if two writes executed
on two threads are not ordered via synchronization, the value of the vari-
able in shared memory may become garbage and is thus undefined (until it
is overwritten by some later write). Similarly, if a write to a variable and
a read from the same variable are executed on different threads and are
not related via appropriate flushes and synchronization, the value read is
undefined.

In addition to uncertainty about when shared reads and writes will actu-
ally access shared memory, OpenMP allows the compiler and the hardware
to execute application operations out of order relative to their order in the
original source code (called “program order”). In particular, implementations
are allowed to reorder shared operations that access different shared mem-
ory variables. It is not specified whether it is legal to reorder operations that
do have a data dependence (ex: A=B and B= 1), although it is possible to
imagine aggressive compiler transformations that may do that.

OpenMP’s flush operation is the application’s primary means of lim-
iting the asynchrony of memory and the degree of out-of-order execution.
A given flush operation applies to a list of shared variables and has two
major effects:

– it synchronizes the thread’s temporary view with shared memory for the
variables in the list;

– it prevents reordering of the thread’s operations on variables in the list.
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The first effect ensures that any preceding writes to the list variables
by the thread have completed in the shared memory before the flush com-
pletes. It also ensures that the first read that follows the flush to each
of the list variables must come directly from shared memory. The second
effect ensures that shared memory operations that access a variable in the
flush’s variable list are executed in program order relative to the flush.
Furthermore, all flush operations with overlapping variable lists must be
executed in program order.

A program’s flush operations also restrict the interleaving of opera-
tions by different threads. All threads must observe any two flush opera-
tions with overlapping variable lists in some sequential order. This makes
it possible to organize non-flush operations on different threads into a
partial temporal order that in turn determines which writes are visible to
which reads.

OpenMP provides several synchronization operations that can be
used to explicitly order operations on different threads. These operations
are necessary because of the great difficulty of implementing synchroni-
zation using OpenMP’s basic reads, writes and flushes. Synchronization
operations include locks, barriers, critical sections, ordered
sections and atomic updates. All of these operations are preceded and/or
followed by implied flush operations that apply either to all variables or
just the variable involved in the operation.

3. AMBIGUITIES IN THE OpenMP MEMORY MODEL

Despite the precise prose that defines the OpenMP memory model,
formulating a formal memory model has uncovered some questions about
the model’s meaning. Some of the questions indicate ambiguities that
should be resolved in future specifications. Other questions arise from dis-
crepancies between the prose and our understanding of the intent of the
OpenMP language committee. We discuss several of these questions in this
section.

3.1. Dependence-breaking Compilers

The OpenMP memory model clearly defines reordering restrictions
with respect to flush operations. However, reordering restrictions for
non-flush operations are much less clear. For example, most sequential
compilers reorder operations that access different variables; does the mem-
ory model allow these? While the specification makes it clear that the
intent is to allow such reorderings, this is supported with only this sen-
tence: “The flush operation restricts reordering of memory operations that
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an implementation might otherwise do.” However, the model goes fur-
ther, stating that “OpenMP does not apply restrictions to the reordering
of memory operations executed by a single thread except for those related
to a flush operation.” This appears to imply that compilers may reorder
any other operations, including those that access the same shared variable.
In particular, they can reorder not only reads but also writes, as long as
these writes are not separated by a flush to the variable and as long as this
preserves the application’s sequential semantics.

if(threadNum!=0)
A=5;

Barrier
if(threadNum==0)

A=20;
Barrier
if(threadNum!=0) {

B=5;
B=A;
print B;

}

For example, in this sample code the application’s sequential seman-
tics would be preserved if the two writes to B were exchanged or the write
B = A eliminated, since in a single-threaded execution the write B = A is
guaranteed to assign 5 to B. However, if this code were to be executed
by two threads, the write B = A would assign B to 20, rather than 5.
As such, reordering these two writes, while apparently legal in OpenMP
and in sequential execution, can in fact produce unexpected results for
parallel applications. Since there exist apparently legal dependence-break-
ing compiler optimizations that violate the spirit of the OpenMP memory
model, the OpenMP specification should include a clear statement about
the validity of different types of variable access reordering.

3.2. Intra-thread Dependencies

The OpenMP memory model clearly states that a flush does not
complete until the values of all preceding writes have been completed in
shared memory. However, it is not clear if the OpenMP memory model
enforces program order, i.e., processor consistency.(9)

Section 2 presents the events required for a read by thread j to return
the value written by thread i. If thread i writes another value between
steps 1 and 2, the value of which write should be read in step 4? The
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question is related to the reordering questions in the preceding section, but
it is also different.

If the first value is captured in the writer thread’s temporary view but
not the second for some reason (for example, the writes are executed out
of order), is it legal not to propagate the captured value?

The memory model prose states, “the flush does not complete until
the value of the variable has been written to the variable in memory.” Sim-
ply put, the memory model does not address multiple writes to the same
shared variable by the same thread between two flush operations. Ulti-
mately, the question is: does OpenMP guarantee that writes by a given
thread must be seen in program order by other threads as long as the
appropriate flushes have been issued (i.e., writes, flush, flush, read)?

We can also ask about the impact of reads by thread i: suppose that
thread i reads the variable between steps 1 and 2 and that value is differ-
ent from what was written by the write in step 1 due to a write by some
other thread. This scenario includes a race condition and the specification
is clear that the variable’s value becomes undefined. However, completing
the write would now be inconsistent with program order. Does the race
imply that the flush should not see the write from step 1 and the read in
step 4 will get some other value? The specification provides little detail on
how local state evolves so the issue is unclear.

3.3. Effect of Privatization

The memory model section, Section 1.4, of the 2.5 specification(1)

states that OpenMP has two types of memory: shared and threadprivate.
The bulk of the section defines the semantics of the shared memory. It
provides few details of the second type, which corresponds to threadpri-
vate variables and to variables included in private clauses. The only issue
discussed is the interaction with nested parallelism.

The memory model does not address any interactions between the
two types. In particular, it does not discuss the impact on shared vari-
ables that are included in private clauses. However, Section 2.8.3.3, which
discusses the private clause of a given region, includes: “The value of the
original list item is not defined upon entry to the region. The original list
item must not be referenced within the region. The value of the original
list item is not defined upon exit from the region.” Including a shared
variable in a private clause essentially writes the shared variable with an
undefined value, an effect that is easily overlooked by someone trying to
understand the OpenMP memory model. We understand that this effect is
being reconsidered for the OpenMP 3.0 specification. However, our point
here is that any interactions between the two types of memory should be
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included in the memory model section. In the very least, a forward refer-
ence is needed.

3.4. Captured Writes

The OpenMP memory model states that “If a thread has captured the
value of a write in its temporary view of a variable since its last flush
of that variable, then when it executes another flush of the variable, the
flush does not complete until the value of the variable has been written
to the variable in memory.” This appears to be ambiguous. What does it
mean for a thread to capture a value of a write? Does this only refer to a
write by the thread that executes the flush? This appears to be the intent
but the actual wording could refer to writes on other threads that have
been read by the given thread. The ultimate point here is that English is
a rich and complex language in general and the phrase “precise English”
is an oxymoron. For this reason, a formal, mathematical model is needed.

3.5. Flushes During or at Regions

Section 2.7.5 of the 2.5 specification states:
“A flush region without a list is implied at the following locations:

– During a barrier region.
– At entry to and exit from parallel, critical, and ordered regions.
– At exit from work-sharing regions, unless a nowait is present.
– At entry to and exit from combined parallel work-sharing regions.
– During omp set lock and omp unset lock regions.
– During omp test lock, omp set nest lock, omp unset nest lock

and omp test nest lock regions, if the region causes the lock to be
set or unset.

A flush region with a list is implied at the following locations:

– At entry to and exit from atomic regions, where the list contains only
the object updated in the atomic construct.”

Furthermore, Section 1.2.2 defines “region” as “All code encountered dur-
ing a specific instance of the execution of a given construct or OpenMP
library routine. A region includes any code in called routines as well as
any implicit code introduced by the OpenMP implementation.”

These definitions give rise to an ambiguity. Consider the omp set lock
region. An omp set lock call could require many operations, including both
computations and communication.

What does it mean for a flush region to be “during” an omp set lock
region? Must a flush follow every operation inside of omp set lock?
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Is it sufficient to flush all variables just before and after the call to
omp set lock? Is including one flush in the omp set lock routine (i.e.,
“during” it) enough? How about only calling flush immediately after-
wards? In short, since the specification makes it unclear what semantics
need to be enforced by the implied flush, it is unknown what needs to be
done to satisfy them.

The following example demonstrates that different interpretations of
the specification can produce different results.

– Interpretation 1Flush: it is only necessary to flush all variables imme-
diately after each call to omp set lock and immediately before each
call to omp unset lock.

– Interpretation 2Flush: it is necessary to flush all variables immediately
before and after each call to omp set lock and omp unset lock.

Figure 1 contains a two-thread sample program where thread 0 acquires
and releases lock A before acquiring and releasing lock B. Meanwhile,
thread 1 acquires B, then A, before releasing them both.

Figures 2 and 3 present pseudo-code that the above program may
be translated to under 2Flush (Fig. 2) and 1Flush (Fig. 3). In this

Fig. 1. Locks sample program.

Fig. 2. Locks example under 2Flush.
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Fig. 3. Locks example under 1Flush.

Fig. 4. Sample execution of locks example under 1Flush.

pseudo-code we have separated lock acquire operations from flushes to
differentiate the semantics of synchronization and flushing, although in
a real implementation these operations may be merged. The flushes
in Fig. 2 prevent the compiler from reordering any instructions, ensur-
ing that this example will never deadlock. However, the pseudo-code in
Fig. 3 does not separate release lock(&A) and acquire lock(&B)
on thread 0 with a flush, allowing a compiler to reorder them. This reor-
dering could lead to deadlock, as occurs under the interleaving in Fig. 4.
In this interleaving the compiler has reordered the release lock(&A)
and acquire lock(&B) on thread 0, causing the two threads to try
to acquire locks A and B in reverse order relative to each other. Thus,
thread 0 could call acquire lock(&B) while holding lock A, while
thread 1 calls acquire lock(&A) as it holds lock B, causing them to
deadlock.

Given that different, apparently valid, interpretations of this aspect of
the 2.5 specification can differ this significantly in their runtime behavior,
it is critical to clarify the exact semantics of a flush region being implied
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“during” or “at” another region. Since the intent was not to allow such
deadlocks, we use the 2Flush interpretation.

4. FORMAL SPECIFICATION OF THE OpenMP MEMORY MODEL

4.1. Informal Outline of Memory Model

The OpenMP memory model defined in this paper specifies an order-
ing on the evaluation of operations on the same thread as well as on
different threads. Operations on the same thread are ordered via their
read/write/flush dependencies. The only operations that may define an
order across threads are flushes, with all other inter-thread orderings
derived from this flush-induced order.

4.1.1. Operations on the Same Thread

Read/write dependencies restrict the order in which operations within
a thread can occur. We show how to derive these restrictions for a sim-
ple example in Fig. 5. Figure 5(a) shows the original application source
code and Fig. 5 shows the read/write dependence graph of the same opera-
tions. Figure 5(c) then takes the operations in Fig. 5(a) and (b) and trans-
lates them into their constituent reads and writes, adding the appropriate
dependence relations (Read var → val corresponds to a read of variable
var that returned the value val, while Write var ← val corresponds to
a write of val to var). At runtime it is legal to execute these reads and
writes in any order that agrees with this dependence order.

Flush operations create additional dependence relations, as shown in
Fig. 6. The source code in Fig. 6(a) corresponds to the partial orders in
Fig. 6(b) and (c). Since the flush operation only applies to variable data,
it depends on the write to data and the execution of the flush must follow

a=0
b=5
c=a+b
d=a
e=d+c

a=0

c=a+bd=a

e=d+c

b=5

Write a 0

Read a [a]

Write b 5

Read b

Write c ([a]+[b])

Read a [a ]

Write d [a]

Read d [d] Read c [c]

Write e ([d]+[c])

[b]

(a) (b) (c)

Fig. 5. Generation of the dependence order.
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data=7
flush(data)
flag=1

data=7

flush(data)
flag=1

(a) (b) (c)

flush(data)

Write data 0

Write flag 1

data=7
flush(data, flag)
flag=1

(d) (e) (f)

data=7

flush(data, flag)

flag=1

flush(data, flag)

Write data 0

Write flag 1

Fig. 6. Generation of the dependence order with flushes.

the write to data in any valid execution. However, since neither the write
to data, nor the flush of data relate to the write to f lag, there is no
dependence relationship between these operations. As such, the write to
f lag may occur either before or after the other operations. Thus, the write
to f lag cannot be used to signal other threads that the write to data has
occurred. In Fig. 6(d), we replace f lush(data) with f lush(data, f lag). As
a result, the partial orders in Fig. 6(e) and (f) place the three operations
into a total order. This ensures that during any valid execution the write
to f lag will be executed after the flush, which will be executed after the
write to data.

4.1.2. Operations on Different Threads

Figure 7(a) shows a sample execution of an application where one
thread executes a write to variable x while another thread executes two
reads of x. Because the first read clearly races with the write, its output
is undefined. The second read clearly follows the write in this execution
but these operations also race since they are not separated by flushes, as
specified in Section 2. In Fig. 7(b), we add of two flushes, one after the
write and the other before the read, that create an inter-thread depen-
dency (shown by the dashed arrow) and eliminate the race. This depen-
dency causes the write to precede the read, and, thus, the read returns
the value written. However, the flushes are not sufficient to ensure that
the write precedes the read in every execution; the use of an explicit
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Write x 42

Read x 42

Write x 42 Flush(x)

Flush(x)

(a) (b)

Read x 42

Write x 42 Flush

Flush

(c)

Unlock(l)Lock(l)

Unlock(l)Lock(l)

Read x ???Read x ???

Fig. 7. Execution of read-write race.

Wr x 42

Rd x ???Wr x 24

Rd x ???

Flush(x)

Flush(x)

Flush(x)

Flush(x)

Fig. 8. Execution of Write-Write Race.

synchronization construct, such as a lock, can provide that guarantee, as
shown in Fig. 7(c).

Flushes are also required to ensure inter-thread dependencies between
two writes. Figure 8 shows a race between unsynchronized writes to x

from two threads. Flushes and reads of x then follow these writes. Since
the flushes ensure that the reads follow the writes, it might appear that
the reads should return valid values. However, the write race leaves the
state of x undefined, making the output of subsequent reads also unde-
fined, regardless of how well x is flushed.

4.1.3. Summary of the OpenMP Memory Model

Our formal OpenMP memory model is defined in two phases. The
first focuses on the operations on each thread, which are converted into
individual read, write and flush operations, which are ordered by their
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dependencies. The second phase focuses on the runtime execution of mul-
tiple threads, where each thread’s operations may be executed in any order
that agrees with the dependence order established above. Parallel execution
of multiple threads causes their operations to interleave in some non-deter-
ministic order, where each particular interleaving determines the values
returned by all read operations. For a given interleaving, the only way for
a given read to return the value of the most recent write is if (i) the read
follows the write via the inter-thread dependence established by flushes (as
specified in Section 2) and (ii) the write was not involved in a race with
another write to the same variable. Synchronization operations such as
locks, critical sections and barriers can be used to properly order reads,
writes and flushes to ensure that all read values are well-defined in all pos-
sible executions. While certain limited forms of synchronization through
variables are allowed, OpenMP’s weak guarantees for racing accesses make
such algorithms an advanced topic. Interested users should read the for-
mal memory model in detail before attempting this.

4.2. Outline of the Formal Memory Model

The following sections describe the OpenMP memory model in for-
mal, mathematical language. Our model takes as input an application and
a trace (finite or infinite) of how the application executed under some
OpenMP implementation. The trace includes the order in which each
thread executed its operations and the values returned by all reads. The
model uses a set of rules to judge if the application could have gener-
ated the trace and if there exists under the OpenMP memory model a
valid interleaving of thread operations that results in the values read in the
trace.

Our OpenMP formalization is an operational model (outlined in
Fig. 9). It defines a system state and valid transition rules for modifying

appOps

Thread 1

smOps smOps. . . 

appOps

smOps smOps. . . 

Thread n

.  .  .  .  . 

Shared Memory

Output

Fig. 9. Diagram of the formal memory model.
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this state. At a high level, this model defines the state of one or more
application threads running on top of shared memory and transition rules
for evaluating the next application operation on some thread. Applications
are specified as lists of high-level operations such as (varA = varB⊗varC)

and [While(var = val) bodyList ], called “application operations” or “ap-
pOps.” Each appOp is made up of one or more simpler operations such
as (Read varA) or (Write varB), called “shared memory operations” or
“smOps.” Every thread’s state transition either:

– Evaluates the next smOp that makes up the thread’s currently executing
appOp; or

– Moves to evaluation of the thread’s next appOp in its remaining appli-
cation source code.

The first action can change the shared memory state. The second
action typically removes an appOp from the remaining application source
code but can add appOps in the case of a while loop appOp that performs
multiple loop iterations. A trace records each thread’s view of a particular
execution of the system. As such, it is a tuple of lists of smOps, one for
each thread (each list is some thread’s “sub-trace”). Each sub-trace con-
tains the smOps and the values associated with them during their thread’s
execution. Traces do not specify the interleaving of smOps from different
threads.

We use the two thread execution shown in Fig. 10 to illustrate the
intuition of the model’s operation. One thread executes the appOp c =
a⊗ b while the second simultaneously executes appOp e = c⊗ d (⊗ is
some binary operation). Each appOp is composed of multiple Read and
Write smOps, which can be determined independently of the execution of
the appOps. However, we must observe the execution to associate values
with the read operations. Thus, a trace of this execution is two lists of
smOps and their associated values: < Rd a → 6;Rd b → 12;Wr c ←
6⊗12 > for the top thread and < Rd d → 1;Rd c→ 42;Wr e← 1⊗42 >

for the bottom thread. Note that we assume the system correctly computes

Read a    6 Read b    12 Write c    6    12

c = a     b

Read d    1 Read c    42 Write e    1    42

e = c     d

T0:

T1:

⊗

⊗

⊗

⊗

Fig. 10. Example two thread execution.
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6 ⊗ 12 and 1 ⊗ 42, as the calculation occurs outside of the memory sys-
tem. We apply our operational memory model’s rules to determine if a
valid interleaving that associates the values with the smOps exists. For our
example, the interleaving < T 0 : Read a → 6; T 1 : Read d → 1; T 1 :
Read c→ 42; T 0 : Read b→ 12; T 1 : Write e← 1⊗ 42; T 1 : Write c←
6 ⊗ 12 >, as shown in Fig. 10, verifies that execution is valid under the
OpenMP memory model.

Although we could specify the operational model in a single set of
rules, we break it into two sub-models, the Compiler Phase and the Run-
time Phase. This separation makes it possible to reason independently
about different aspects of the memory model: the translation from appli-
cation source code into basic shared memory operations (Compiler Phase)
and the results of interleaving these operations during execution (Runtime
Phase).

The compiler phase evaluates each thread’s source code independently
from any other thread to verify that the application could have generated
the list of smOps in each sub-trace. Its state consists of:

– a list of the current thread’s remaining appOps;
– a list of smOps generated by this thread so far;
– the suffix of the thread’s sub-trace that contains the yet unverified

smOps.

During each state transition the compiler phase evaluates the next appOp,
breaks it up into its constituent smOps [ex: the appOp (varA = varB ⊗
varC) breaks up into (Read varB), (Read varC) and (Write varA)

smOps] and checks whether these smOps are contained in the sub-trace.
Since the thread’s control flow depends on the values read from shared
memory, whenever an appOp reads a value from shared memory (e.g., as
part of (varA = varB ⊗ varC) or [While(var = val)bodyList)], it looks
them up in the sub-trace. The trace correctly corresponds to the applica-
tion’s source code if the compiler phase independently verifies this for each
sub-trace. In addition to this verification, the compiler phase determines
any ordering required by the application’s data dependences. The compiler
phase outputs this order for consumption by the runtime phase.

The runtime phase determines if the smOps in the individual threads’
sub-traces correspond to each other. More specifically, it evaluates all
of the threads’ sub-traces in parallel to determine whether a conformant
interleaving exists that results in the associated read values. It assumes that
the smOps in the individual threads’ sub-traces correspond to the appli-
cation’s source code (i.e., the compiler phase has already validated that
aspect of the trace). Therefore, its state consists of:
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– the reads, writes, flushes and synchronization operations that each
thread has already performed (one list per thread);

– a partial order that relates these smOps in time (used for determining
the values that a read may return);

– the system’s synchronization state: currently held locks, critical and
ordered sections, variables that are currently being atomically updated
and the identities of threads that are currently blocked on a barrier;

– the smOps that remain to be evaluated by each thread (one list per
thread).

During each state transition the runtime phase chooses a thread and
evaluates its pending smOp. It may evaluate smOps out of order if this
does not break their data dependences determined during the compiler
phase. Evaluation of read smOps examines the values available to be read
and verifies that the value returned by the read in the trace could actually
have been read during this interleaving. Every state transition also causes
the state to change, including updating the synchronization state and add-
ing new relations to the above partial order. Since the runtime phase is
non-deterministic, the trace is self-consistent if there exists some interleav-
ing of the different threads’ smOps such that all reads performed by the
formal model match their return values recorded in the trace.

Section 5 details the full language of appOps and smOps. Sections 6
and 7 provide more details on the mechanics of the compiler phase and
runtime phase.

5. LANGUAGE SPECIFICATION

5.1. Application Operations

The application language (specified below) models the major relevant
features of C/Fortran and OpenMP. It contains basic computational and
control flow operations as well as flushes, locks, critical section, ordered
regions and barriers. Section number references refer to the OpenMP 2.5
specification(1). The while loop primitive makes the application language
Turing-complete in its use of shared memory operations.

– varA = varB ⊗ varC
• Represents any local computation performed by the application.
• ⊗ is a Turing-complete binary operation that does not use shared

memory.
• varA, varB and varC are shared variables.
• Corresponds to (Read varB), (Read varC) and (Write varA) smOps.

– F lush varList

• Models explicit flushes [Sections 1.4.2 and 2.7.5].
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• varList is a list of shared variables.
• An explicit flush operation with a list maps to F lush varList , where

varList is its variable list.
• An explicit flush operation without a list maps to F lush allV arList ,

where allV arList contains all application shared variables.
• Corresponds to a single F lushmm smOp that applies to the same

varList .
– BlockSynch blockF updF synchID

• Represents a generic blocking synchronization operation that models
the synchronization semantics of higher-level operations such as locks,
atomic updates, critical and ordered regions, and barriers.
• blockF is function.
∗ Result depends on the formal system synchronization state.
∗ Returns True if the thread may continue executing (i.e., is not

blocked).
∗ Returns False if the thread is blocked.
• updF is a function.
∗ Result depends on the formal system current synchronization state.
∗ Returns the next synchronization state.
∗ Applied only when blockF returns True.
∗ Ensures the synchronization state reflects that the thread has

become unblocked.
• blockF and updF are different for each high-level synchronization

construct.
• synchID is the ID associated with this synchronization, such as the

name of the critical section or the lock variable being acquired or
released; used to order this BlockSynch’s BlockSynchmm smOps rela-
tive to F lushesmm and other BlockSynchsmm.

– NonBlockSynch blockF updF synchID varres
• Represents generic non-blocking synchronization operation that mod-

els the synchronization semantics of locks, specifically non-blocking
lock acquires.
• blockF is function, defined as in BlockSynch.
• updF is a function, defined as in BlockSynch.
• synchID is defined as in BlockSynch.
• NonBlockSynch evaluates blockF to determine whether it can syn-

chronize successfully.
∗ If blockF returns True(unblocked), NonBlockSynch writes True

into varres and updates the thread’s synchronization state using
updF .
∗ If blockF returns False(blocked), NonBlockSynch writes False into

varres .
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• Corresponds to a single NonBlockSynchmm smOp that applies to the
same blockF and updF , followed by Write varres .

– While(var = testV al) bodyList

• A while loop control flow primitive.
• var is a shared variable.
• testV al is a value.
• bodyList is a list of appOps.
• Corresponds to a single (Read var) smOp.

– Print var

• Outputs the value of a given shared variable to the user; primarily
used in examples to reason about outcomes of application executions.
• var is a shared variable.
• Corresponds to a single (Read var) smOp.

– End

• The last operation in the application’s source code.
• Ensures each thread’s sub-trace ends correctly.

5.2. Shared Memory Operations

The shared memory operation language is designed to be simple
but sufficient for the functionality needs of the higher-level appOps. The
smOps include reads, writes, flushes and blocking synchronizations (from
which higher-level synchronizations are built) and are detailed below.

– Write var ← val: writes val to variable var.
• var is a shared variable.
• val is a constant.

– Read var → val: read of variable var returns val.
• var is a shared variable.
• val is a constant.

– F lushmm varList : flushes this thread’s temporary view variables in
varList .
• varList is a list of shared variables.
• Updates thread’s temporary view of those variables with writes from

other threads and vice versa.
• Provides flush semantics for explicit and implicit flush operations.

– BlockSynchmm blockF updF : generic synchronization operation.
• Used to implement synchronization semantics of higher-level opera-

tions such as locks, critical and ordered regions, and barriers.
• blockF is function, defined as in BlockSynch.
• updF is a function, defined as in BlockSynch.
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• smOp that implements the semantics of BlockSynch during the run-
time phase.

– NonBlockSynchmm blockF updF → successF lag: generic synchroni-
zation operation.
• Used to implement synchronization semantics of higher-level opera-

tions such as locks, critical and ordered regions, and barriers.
• blockF is function, defined as in BlockSynch.
• updF is a function, defined as in BlockSynch.
• smOp that implements the semantics of NonBlockSynch during the

runtime phase:
∗ Equivalent to a BlockSynchmm if successF lag = True since it cor-

responds to an execution where blockF returned True(unblocked)
and updF was evaluated.
∗ Equivalent to a noop if successF lag = False since it corresponds

to an execution where blockF returned False(blocked) and updF

was not evaluated.

5.3. Translation of OpenMP into the Formal Language

The appOp and smOp languages presented in this paper were designed
to balance simplicity against similarity to the real OpenMP specification and
real OpenMP implementations. As a result, the appOps are not OpenMP con-
structs and the smOps do not directly map to OpenMP implementation in-
ternals. In this section, we discuss how to translate full OpenMP constructs
into appOps and relate smOps to existing and future OpenMP implementa-
tions so our formal model can be applied to real OpenMP applications and
implementations.

5.3.1. OpenMP to AppOps

The OpenMP specification allows application programmers to imple-
ment their applications in C/C++ or Fortran with additional annotations
and library calls that identify different variables as private or shared, man-
age threads, and perform inter-thread synchronization.

5.3.1.1. Private Computations. Although OpenMP applications operate on
private and shared memory, our formalism focuses on shared memory
behavior. Thus, we abstract all portions of the applications that oper-
ate only on private state through the ⊗ operator. For our purposes, the
(varA = varB ⊗ varC) appOp corresponds to any arbitrarily com-
plex computation ⊗ that uses only private data and the values of shared
variables varA and varB . The results of this computation are written to
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shared variable varC . This abstraction greatly simplifies reasoning about
the shared memory behavior of OpenMP applications. However, it could
overly simplify the dependence of application control flow on the state
of shared memory. In particular, it cannot represent applications where
a thread’s control flow depends on shared reads, which may influence
the thread’s subsequent choice of shared operations. Thus, we use the
[While(var = testV al)bodyList ] appOp to capture these dependences,
making the appOp language Turing-complete so that appOps can model
arbitrarily complex shared memory behaviors.

5.3.1.2. Thread management. OpenMP provides the #pragma omp par-
allel directive to enable programmers to create and destroy threads and
several functions such as omp set max threads to manipulate thread
creation. In contrast, our formalism does not include model thread cre-
ation or deletion but instead keeps the total number of threads static
throughout the application’s execution. This simplification is appropriate
since our formalism is an operational model that consumes a trace of
actual shared memory operations. The static number of threads can sim-
ply be set to the total number of threads in the trace. Infinite traces can
be handled similarly based on the upper limit on the number of active
threads.

5.3.1.3. Private vs Shared Data. The OpenMP specification includes sev-
eral mechanisms for identifying different memory regions as private or
shared. In contrast, our formalism ignores private variables completely, as
already discussed. Further, we treat all shared data as individual variables
and provide no functionality for changing the status of a variable from
shared to private. Conversion from OpenMP shared data to our shared
variables is simply a matter of treating each address in virtual memory
as an individual variable. Privatization of shared variables can be handled
by overwriting the shared variable at the time that it is privatized with an
undefined value, which is consistent with the 2.5 specification.

5.3.1.4. Synchronization Constructs. OpenMP provides application program-
mers with a variety of synchronization constructs, including locks, barri-
ers, critical regions, ordered regions, and atomic updates. Our formalism
does not, individually model these OpenMP synchronization constructs.
Instead, we support them with the (BlockSynch blockF updF synchID) and
(NonBlock Synch blockF updF synchID) appOps.

BlockSynch blocks its parent thread until the blockF function returns
True (not blocked). It then executes the updF function to update the
application’s synchronization state. NonBlockSynch uses the blockF to
determine whether it can pass through the synchronization point instead
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of blocking. If it can, it updates the application synchronization state
using updF and returns True. If not, it simply returns False.

We map the OpenMP synchronization constructs to ours through spe-
cific blocking and update functions. In these definitions, σ is the application’s
synchronization state and each type of synchronization can store its state in
different fields of σ , such as σ.BarBlocked for barriers. Each function takes
the current σ as an argument and returns either the new σ or True/False.
– Resource Acquire/Release Operations for resource resID, where resID

may be a lock, a critical region, an application variable or a given loop’s
ordered region.
Entries in σ.HeldRes indicate that some thread hold the specific
resource. Blocking resource acquire operations (lock acquire, entry into
critical or ordered region) are translated to F lush of all variables, a
BlockSynch that blocks to acquire the resource and another F lush of
all variables. Resource release operations (lock release, exit from crit-
ical or ordered region) are translated to a F lush of all variables, a
BlockSynch that releases the resource and another F lush of all vari-
ables. Nonblocking resource acquisition operations (omp test lock)
have a more complex translation since the acquire is only followed by
a F lush if the acquisition is successful.

• Blocking Resource Acquire: (BlockSynch acqBlockF acqUpdF

resID).
acqBlockF blocks until σ.HeldRes does not contain an ownership
record for resID.
acqUpdF adds an ownership record for the acquiring thread to
σ.HeldRes once blockF returns True.
acqBlockF = (λσ. ¬ < resID > ∈ σ.HeldRes)

acqUpdF = (λσ. σ.HeldRes := σ.HeldRes ∪ {< resID >}).
• NonBlocking Resource Acquire: translates to the following appOps

NonBlockSynch acqBlockF acqUpdF resID varres
varloop = varres & varT rue

While(varloop = T rue) {
F lush allV arList

varloop = varFalse & varFalse

},

where
acqBlockF and acqUpdF are defined as above. Result of acqBlockF

is stored in varres. acqUpdF is executed to acquire the resource if
and only if varres = True.
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• Resource Release: (BlockSynch releaseBlockF releaseUpdF resID).
releaseBlockF returns T rue immediately, regardless of σ.HeldRes.
releaseUpdF removes this resource’s ownership record from σ.

HeldRes.
releaseBlockF = (λσ. T rue)

releaseUpdF = (λσ. σ.HeldRes := σ.HeldRes − {< resID >}).
• Atomic Updates: Atomic var ⊕ = updV al.

Extend resource acquire and release with a variable update.
Resource acquired is the updated variable.
Atomic updates of the form BlockSynch acqBlockF acqUpdF var

F lush allV arList

var = var ⊕ varupdV al

F lush allV arList

BlockSynch releaseBlockF releaseUpdF var.

The above template applies directly to OpenMP locks and critical
regions. For ordered regions, we must treat each loop’s iterations and
ordered regions as a single resource and add logic to its acqBlockF

and releaseUpdF to track the current loop iteration number. Note that
the formalization above uses the 2Flush interpretation of the ambiguity
described in Section 3.5.

• Barrier on thread t .
σ.BarBlocked records for each thread whether that thread is currently
blocked on a barrier. A single barrier operation corresponds to a
BlockSynch for arrival at the barrier, a F lush of all variables, followed
by a BlockSynch for exiting the barrier. barV ar is a unique variable. Its
appearance in the BlockSynchs below is used to order the BlockSynchs

relative to F lush operations. While the translation below works for bar-
riers without nested parallelism; it is easily extended to cover the nested
case also.

• Barrier Arrival: (BlockSynch barArrBlockF barArrUpdF barV ar).
barArrBlockF returns T rue regardless of σ.BarBlocked.
barEntrUpdF updates σ.BarBlocked to record that thread t has
arrived at the barrier.
barArrBlockF = (λσ. T rue)

barArrUpdF = (λσ. σ.BarBlocked[t 	→ T rue]).
• Barrier Exit: (BlockSynch barExitBlockF barExitUpdF barV ar).

barExitBlockF blocks until all threads reach a barrier.
The first thread unblocked from the barrier sets all threads’ blocked
status to False in barExitUpdF
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All other threads perform no action in barExitUpdF .
barExitBlockF = (λσ. σ.Blocked(t) = False ∨ ∀ti . σ.Blocked(ti)

= T rue)

barExitUpdF = (λσ. if (∀ti . σ.Blocked(ti) = T rue)

then σ.Blocked := (λti . False)

else σ ).

Our translation of OpenMP synchronization operations into appOps
allows the application to use synchronization operations incorrectly. For
example, a thread can release a lock that it does not hold. While appropri-
ate synchronization semantics can be encoded straightforwardly, OpenMP
does not define detailed semantics for such erroneous behavior. Given the
variety of such unspecified behaviors in the current specification, we leave
formal definitions of lock operation and other high-level features as future
work. For this formal model we focus on providing formal semantics for
the memory model itself, including any of its unspecified behaviors such
as the outcomes of data races.

5.3.2. SmOps to OpenMP Implementations

Because this formalization describes the semantics of the memory
model as seen by the application, our smOps are an abstraction that
represent actions on a generic shared memory system. This abstraction
might be very different from the shared memory APIs used in a spe-
cific OpenMP implementation. However, the smOps feature simple seman-
tics that are readily translatable to concepts that underly existing and
future OpenMP implementations. Reads and Writes are fundamental
operations of shared memory. Variants of the F lush smOp exist in
almost every shared memory API (e.g., memory barriers or release/acquire
operations); those that do not include them satisfy its semantics trivi-
ally. Finally, although most OpenMP implementations do not implement
synchronization operations that superficially resemble BlockSynch and
NonBlockSynch, these smOps capture the semantics of synchronization
operations built on many real hardware mechanisms such as test-and-
set.

6. COMPILER PHASE

The compiler phase, diagrammed in Fig. 11, independently evaluates
each thread of the application. It relates the application’s source code to
the smOps recorded in the thread’s sub-trace. The evaluation pass reads
the appOps of the application source code in program order and expands



Complete Formal Specification of the OpenMP Memory Model 359

Write x 42

Read x 42

Write x 42 Flush(x)

Flush(x)

(a) (b)

Read x 42

Write x 42 Flush

Flush

(c)

Unlock(l)Lock(l)

Unlock(l)Lock(l)

Read x ???Read x ???

Fig. 11. Diagram of the compiler phase.

its while loops as appropriate. In the process, it translates each appOp into
its constituent smOp(s). These application smOps are looked up in the
thread’s sub-trace during this evaluation process to verify that they actu-
ally do appear there. The values of all shared reads are also looked up
in the trace. This phase also defines a dependence order −−−→DepO on each
thread’s smOps, which the evaluation in the runtime phase must not vio-
late. The remainder of this section defines the state and transition function
of the compiler phase.

This phase’s operational model is applied to each thread’s sub-trace.
During every transition it evaluates the next appOp from the list of
remaining appOps and verifies that its smOps occur in the sub-trace
and have the appropriate step counter labels. The phase fails if it can-
not verify those smOps. Whenever an appOp’s evaluation depends on
the outcome of a read, the read value is looked up in the trace and
used in the appOp. For example, the while loop transition behaves differ-
ently depending on whether the value returned by its read is testV al or
not.

The full trace is valid only if the above transition system indepen-
dently passes each of its sub-traces. The Dependence Order −−−→DepO defined
during the compiler pass is preserved for use in the runtime pass to ensure
that whenever smOps are evaluated out of order, this new ordering does
not violate their read-write dependences.
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6.1. Compiler State

[n, app, tracesub,
−−−→
DepO]

– n: the number of smOps evaluated by this thread thus far. Initially n=0.
– app : The list containing the appOps that remain to be evaluated by the

thread. Initially, it is the original source code of the application.
– tracesub : The list containing the thread’s sub-trace that is to be vali-

dated relative to application source code. The mth smOp generated on
this thread during the compiler phase is listed as < smOp, m > (recall
that the smOps in tracesub may have been executed out of order, mean-
ing that they may be listed out of program order). No two entries in
tracesub have the same m field.

– −−−→DepO: The dependence order established so far between thread’s smOps;
initially the empty relationship.

6.2. Compiler Transitions

The valid state transitions are shown below. Transition are specified
using using Structured Operational Semantics as follows:

Precondition

Original State ⇒ Next State
where Precondition is the logical expression defining the conditions that
must hold in order for this transition to happen, and the Original and
Next states describe the transition itself. For any state variable x, x

denotes its value in the original state and x′ denotes its value in the
next state. Given the state expression defined above, the transition format
becomes:

Conditions relating −−−→DepO, −−−→DepO ′, appOp, app, app′ and tracesub.
< n, appOp :: app, tracesub,

−−−→
DepO > ⇒ < n+ c, app′, tracesub,

−−−→
DepO ′ >

One compiler transition exists for each appOp type. While loops have two
transitions: the first is for the while loop performing an additional iter-
ation; the second transition is for the while loop’s termination The tran-
sition used depends on the value read for the loop variable, as described
in the transitions. Whenever the partial order −−−→DepO is updated with new
ordering relations, the new −−−→DepO is the transitive closure of the old −−−→DepO

and the the new relations.
Each compiler transition rule does the following:

– Advances the app list to the next appOp on the list. In the case of while
loops this may mean that the app list becomes longer since when the
while loop iterates, the loop body is prepended to app.
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– Identifies the smOp(s) that make up this appOp and ensures that each
of these smOp(s) is in tracesub.

– Increments the step counter n by c = “the number of smOps this appOp
contains.”

– Updates −−−→DepO to reflect the dependences of the appOp’s constituent
smOp(s). Thus, writes are made to follow prior reads, writes and flushes
to the same variable. Reads follow prior writes and flushes to the same
variable. Blocking synchronizations follow prior blocking synchroniza-
tions. Flushes follow all prior operations that touch variables in their
lists. All smOps must follow the read inside the most recent while loop
iteration test since this test decides whether or not later smOps are exe-
cuted.

6.3. Formal Definitions

// The transitive closure of the union of two partial orders−−−−→
Order1 � −−−−→Order2 ≡ −−−−−−−−−−−−→Order1 �Order2 ≡
{< op, op′ > | ∃op′′ ∈ (

−−−−−−−−−−−−→
Order1 ∪Order2).op

−−−−−−−−−−−−→
Order1 ∪Order2 op′′−−−−−−−−−−−−→

Order1 ∪Order2 op′}
//RelatesBef ore is true if the given smOp relates to a variable in the given
// list and happened before the nth smOp in tracesub and false otherwise.
RelatesBef ore(op, varsList, n, tracesub) =

// op was the mth smOp and it relates to a variable in varsList if . . .
∃m < n.

// if op is a read of a variable in the list OR
(op =< Readvar → val, m > ∧op ∈ tracesub ∧ var ∈ varsList)∨
// if op is a write to a variable in the list OR

(op =< Write var ← val, m > ∧op ∈ tracesub ∧
var ∈ varsList) ∨

// if op is a flush with an intersecting variable list
(op =< Flushmm f lushV arList, m > ∧op ∈ tracesub ∧

(f lushV arList ∪ varsList) �= ∅) ∨
//if op is an BlockSynch operation that relates to a variable in the list
(op =< BlockSynch blockF updF synchID, m > ∧
op ∈ tracesub ∧ synchID ∈ varsList)

// BlockSynchBef ore is true if the given smOp is a BlockSynch operation
// that happened before the nth smOp in tracesub and false otherwise.
BlockSynchBef ore(op, n, tracesub) = ∃m < n. op =< BlockSynch blockF

updF synchID, m > ∈ tracesub
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Transcomp = set of all compiler transitions

// A sequence of of compiler transitions for a given application and trace
// starting with thread i’s initial state is legal if the sequence begins with
// the initial state and every pair of adjacent compiler states is related via
// some valid compiler transition
LegalCompSeq(seq, app, trace, ti) =

seq[0] = [0, app, tracei,∅] ∧
∀n ∈ [0, seq.length). ∃ transition ∈ T ranscomp. transition(seq[n]⇒

seq[n+ 1])

// The compiler phase verifies a trace if there exists some legal sequence
// of compiler states that validates each thread’s sub-trace relative to the
// application
V alidT raceComp(app, trace) = ∀ti . ∃seqi . LegalCompSeq(seqi, app,

trace, ti)

6.4. Formal Transition System

The transitions below validate the sub-trace of thread ti .

Computation Step: varA = varB ⊗ varC

// The next operation in the source code is a computation
app = (varA = varB ⊗ varC) :: app′
// All three smOps that make up this appOp appear in the sub-trace
< Read varB → valB, n > ∈ tracesub

< Read varC → valC, n+ 1 > ∈ tracesub

< Write varA← (valB ⊗ valC), n+ 2 > ∈ tracesub

// Update −−−→DepO to contain new dependencies:−−−→
DepO ′ = −−−→DepO �

// The Write in this update depends on the reads.
� {<< Read varB → valB, n >, < Write varA
← (valB ⊗ valC), n+ 2 >}
� {<< Read varC → valC, n+ 1 >, < Write varA
← (valB ⊗ valC), n+ 2 >>}

// The Reads depend on all prior non-read smOps that reate to
// varB and varC
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� {< op
varB
prev , < Read varB → valB, n >> |

RelatesBef ore(op
varB
prev , {varB}, n, tracesub)

∧ op
varB
prev not a Read}

� {< op
varC
prev , < Read varC → valC, n >> |

RelatesBef ore(op
varC
prev , {varC}, n, tracesub)

∧ op
varC
prev not a Read}

// And the Write depends on all prior smOps that relate to varA
� {< op

varA
prev , < Write varA← (valB ⊗ valC), n+ 2 >> |

RelatesBef ore(op
varA
prev , {varA}, n, tracesub)}

// All operations depend on the last Read that was part of a while
// loop iteration test
� {< Rwhile

prev , < Read varB → valB, n >> |
Rwhile

prev = last while loop read}
� {< Rwhile

prev , < Read varC → valC, n+ 1 >> |
Rwhile

prev = last while loop read}
� {< Rwhile

prev , < Write varA← (valB ⊗ valC), n+ 2 >> |
Rwhile

prev = last while loop read}

< n, app, tracesub,
−−−→
DepO > ⇒ < n+ 3, app′, tracesub,

−−−→
DepO ′ >

Flush Step: F lush varList

// The next operation in the source code is a flush
app = (Flush varList) :: app′

// The F lushmm smOp that corresponds to the F lush appOp must
// appear in the sub-trace
< Flushmm varList, n > ∈ tracesub

// Update −−−→DepO to contain the dependence of the F lush−−−→
DepO ′ = −−−→DepO�

// on all previous operations that relate to variables in varList .
� {< opprev, < F lushmm varList, n >> | RelatesBef ore

(opprev, varList, n, tracesub)}
// and on the last Read that was part of a while loop iteration
// test

� {< Rwhile
prev , < F lushmm varList, n >> | Rwhile

prev = last while

loop read}

< n, app, tracesub,
−−−→
DepO > ⇒ < n+ 1, app′, tracesub,

−−−→
DepO ′ >
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Blocking Synchronization: BlockSynch blockF updF synchID

// The next operation in the source code is a BlockSynch

app = (BlockSynch blockF updF synchID) :: app′

// The BlockSynchmm smOp that corresponds to the BlockSynch appOp
// must appear in the sub-trace<BlockSynchmm blockF updF, n>∈
// tracesub

// Update −−−→DepO to contain the dependence of the BlockSynch−−−→
DepO ′ = −−−→DepO�

// on all previous operations that relate to synchID.
� {< opprev, < BlockSynchmm blockF updF >> |

RelatesBef ore(opprev, {synchID}, n, tracesub)}
// and on the last Read that was part of a while loop iteration test
� {< Rwhile

prev , < BlockSynchmm blockF updF >> |
Rwhile

prev = last while loop read}

< n, app, tracesub,
−−−→
DepO >⇒ < n+ 1, app′, tracesub,

−−−→
DepO ′ >

Non-Blocking Synchronization:NonBlockSynchblockFupdFsynchIDvarres

// The next operation in the source code is a NonBlockSynch

// app = (NonBlockSynch blockF updF synchID varres) :: app′

// The NonBlockSynchmm smOp that corresponds to the NonBlock

// Synch appOp must appear in the sub-trace and must return the same
// successF lag as the value written to varres .
< NonBlockSynchmm blockF updF → successF lag, n >∈ tracesub

< Write varres ← successF lag, n+ 1 > ∈ tracesub

// Update −−−→DepO to contain new dependencies:−−−→
DepO ′ = −−−→DepO�

// The NonBlockSynch depends on all previous operations
// that relate to synchID.
� {< opprev, < NonBlockSynchmm blockF updF >> |

RelatesBef ore(opprev, {synchID}, n, tracesub)}
// The Write depends on all prior smOps that relate to varres
� {< op

varA
prev , < Write varres ← successF lag), n+ 1 >> |

RelatesBef ore(op
varres
prev , {varres}, n, tracesub)}

// The smOps must appear in the order: NonBlockSynchmm,
// Write.
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� {<< NonBlockSynchmm blockF updF → successF lag, n >,

< Write varres ← successF lag, n+ 1 >>}
// And both depend on the last Read that was part of a while
//loop iteration test
� {< Rwhile

prev , < NonBlockSynchmm blockF updF → successF lag,

n >> | Rwhile
prev =last while loop read}

� {< Rwhile
prev , < Write varres ← successF lag),

n+ 1 >> | Rwhile
prev = last while loop read}

< n, app, tracesub,
−−−→
DepO > ⇒ < n+ 1, app′, tracesub,

−−−→
DepO ′ >

While Loop Iteration Step: While(var = testV al) body List

// The next operation in the source code is the while loop test condition
app = (While(var = testVal) bodyList) :: app′

// The Read smOp that makes up this appOp appears in the sub-trace
< Read var → readV al, n > ∈ tracesub

// And the read returned a value = testV al

readV al = testV al

// Update −−−→DepO to contain new dependencies:−−−→
DepO ′ = −−−→DepO�

// The read depends on all prior non-read smOps that relate to var

� {< opvar
prev, < Read var → readV al, n >> |

RelatesBef ore(opvar
prev, {var} ∧ opvar

prev not a Read, n, tracesub)}
// And on the last read that was part of a while loop iteration
//test
� {< Rwhile

prev , < Read var → readV al, n >> | Rwhile
prev = last

while loop read}

< n, app, tracesub,
−−−→
DepO > ⇒

< n+ 1, bodyList :: (While(var = testV al) bodyList) :: app′,
tracesub,

−−−→
DepO ′ >

While Loop Termination Step: While(var = testV al) bodyList

// The next operation in the source code is the while loop test condition
app = (While(var = testVal) bodyList) :: app′

// The Read smOp that makes up this appOp appears in the sub-trace
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< Read var → readV al, n > ∈ tracesub

// The read returned a value �= testV al

readV al �= testV al

// Update −−−→DepO to contain new dependencies:−−−→
DepO ′ = −−−→DepO�

// The read depend on all prior non-read smOps that relate to var

� {< opvar
prev, < Read var → readV al, n >> |

RelatesBef ore(opvar
prev, {var}∧opvar

prevnotaRead, n, tracesub)}
// And on the last read that was part of a while loop iteration test
� {< Rwhile

prev , < Read var → readV al, n >> |
Rwhile

prev = last while loop read}

< n, app, tracesub,
−−−→
DepO >⇒< n+ 1, app′, tracesub,

−−−→
DepO ′ >

Print Step: Print var

// The next operation in the source code is a print
app = (Print var) :: app′

// The Read smOp that makes up this appOp appears in the sub-trace
< Read var → readV al, n > ∈ tracesub

// Update −−−→DepO to contain new dependencies:−−−→
DepO ′ = −−−→DepO�
// The read depend on all prior non-read smOps that relate to var
� {< opvar

prev, < Read var → readV al, n >> |
RelatesBef ore(opvar

prev, {var} ∧ opvar
prev not a Read, n, tracesub)}

// And on the last read that was part of a while loop iteration
// test
� {< Rwhile

prev , < Read var → readV al, n >> |
Rwhile

prev = lastwhile loop read}

< n, app, tracesub,
−−−→
DepO >⇒< n+ 1, app′, tracesub,

−−−→
DepO ′ >

End Step: End

// The next operation in the source code is the End operation
app = (End) :: app′
// All the smOps in the sub-trace have been processed already
∀ < smOp, m >∈ tracesub, m ≤ n
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// No operations follow End in the source code
app′ = []

< n, app, tracesub,
−−−→
DepO >⇒< n+ 1, [], tracesub,

−−−→
DepO >

7. RUNTIME PHASE

The first pass verifies that the smOps from each thread’s sub-trace
could have come from the given application. The second pass, the run-
time phase, verifies that the values returned by reads would occur with
some OpenMP conformant interleaving of the smOp traces. It evaluates
the traces from all the threads in parallel, interleaving operations from
different threads, as diagrammed in Fig. 12. The transition system below
specifies this evaluation procedure.

During each transition we choose some thread and evaluate the next
smOp from this thread’s sub-trace. We then check that the value returned
for any read could have been read under the OpenMP memory model.
Conceptually, our runtime phase does not have a single shared memory.
Instead, each write simply becomes available to reads on its own thread
and other threads the moment it is evaluated. Overall, this phase deter-
mines the trace is valid if at least one interleaving of thread operations
agrees with the trace, since the procedure is non-deterministic. As dis-
cussed in Section 7.5, we consider an interleaving of smOps to agree with
the trace if:

– it verifies the values returned by all reads; and
– either all smOps were evaluated or the one remaining smOp on each

thread corresponds to a deadlock.

7.1. Runtime State

The state of an application with r threads is:
σ,
−−−−→
F lshO;< t1|subtrace1, done1,

−−−→
LclO1 >, ..., < tr |subtracer , doner ,−−−→

LclOr >, where:

Shared Memory

Trace : ... smOps ...1 Trace : ... smOps ...n
.  .  .  .  . 

Fig. 12. Diagram of the runtime phase.
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– σ : The state of all synchronizations.
• Contains one component for each type of synchronization in full

model.
• σ.HeldRes: Set of resource IDs, each corresponding to a synchroni-

zation resource currently being held by some thread. Initially = ∅.
• σ.BarBlocked: Mapping of threads to booleans that records whether

each thread is currently blocked on a barrier. Initially, maps every
thread to False.

– −−−−→F lshO: The flush order established so far; initially, the empty relation-
ship.

– subtracei : The suffix of thread ti ’s sub-trace with its smOps yet to be
evaluated; initially ti ’s full sub-trace.

– donei : Set of smOps that have already been evaluated by thread ti .

– −−−→LclOi : Thread ti ’s local order established so far; initially, the empty rela-
tionship.

The partial orders −−−−→F lshO and −−−→LclOi are defined on the events that
happen on different threads. −−−−→F lshO applies to events on all threads. −−−→LclOi

applies to events on thread ti . How these two orders relate events deter-
mines the values returned by reads.−−−→

LclOi is the evaluation order of thread ti in our runtime pass, the
order in which it evaluates ti ’s operations. If event E1 is evaluated on
thread ti before event E2 then we have E1

−−−→
LclOi E2. For any event E that

happened on some thread ti , “−−−→LclOi �i E” is defined to be an order that
is identical to −−−→LclOi , except that event E follows all events that have been
completed on thread ti . (i.e., all events already included in −−−→LclOi).−−−−→

F lshO is the global sequential flush order, defined by the relative
times that different threads evaluate flushes. Let E and F be two events
such that F is a flush of the form F lushmm varList . These two rules
relate E and F :

– If the same thread evaluates E and F and E is a (Read var),
(Write var), (BlockSynchmm blockF updF) or (NonBlockSynchmm

blockF updF → successF lag) and var ∈ varList then if E
−−−→
LclOi F

then E
−−−−→
F lshO F , otherwise F

−−−−→
F lshO E.

– If E is a flush of the form F lushmm varList2 (on any thread) and
varList ∩ varList2 �= ∅ then if E was evaluated by the runtime phase
before F then E

−−−−→
F lshO F , otherwise F

−−−−→
F lshO E.

The transitive closure of these rules defines −−−−→F lshO. For any smOp
op that was evaluated on some thread ti we define “−−−−→F lshO �j

varList op”
be an order that is identical to −−−−→F lshO, except that op follows any opera-
tion evaluated on tj that relates to any variable in varList. �F j

varList is a
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flush-specific variant of �j
varList , where “−−−−→F lshO �F j

varList op” is defined to
be an order that is identical to −−−−→F lshO, except that op follows any flush
operation evaluated on tj whose variable list overlaps with varList .

These orders are used in two key concepts: operation races and
eclipsing operations. Two operations race if they are to the same
variable and they are not related via −−−−→F lshO. A write Wecl on thread ti
eclipses a write W on thread tj from view by read R on thread tk (all
accessing the same variable) if Wecl sits between W and R under the order−−−−−−−−−−−−−−−−−−−−→
F lshO � LclOi � LclOk. Similarly, a read Recl on thread ti eclipses
a write W on thread tj from view by read R on thread tk (all access-
ing the same variable) if Recl sits between W and R under the order−−−−−−−−−−−−−−−−−−−−→
F lshO � LclOi � LclOk and Recl returns a value different from that
written by W .

The notion of operation races is used to determine undefined
behavior as a result of a lack of synchronization between writes and other
operations. The notion of eclipsing operations is used to define the set
of writes that are visible to a given read operation. Both notions are used
to define the set of values that are available for reading by a given read.

7.2. Runtime Transitions

The runtime phase transition system contains one rule for each smOp.
Each transition evaluates si , the first smOp in subtracei , provided that:
– no s′i previously evaluated on thread ti exists such that si

−−−→
DepO s′i ;

– if si is a Read, the return value recorded in si is available for reading
as defined below;

– if si is a BlockSynchmm, its blockF function evaluates to True and its
updF function would update the synchronization state σ to reflect si ’s
evaluation.

If these conditions are not satisfied for thread ti , its next smOp will not
be evaluated until they are.

For any si , its transition rule:
– removes si so subtrace′i=tail(subtracei)(recall that si=head(subtracei));
– updates −−−−→F lshO and −−−→LclOi to include the ordering relationships between

Esi , si ’s evaluation event, and those of all previously evaluated smOps,
as discussed above;

– if si is a BlockSynchmm, updates synchronization state to σ ′ = updF(σ).
Additional actions depend on the type of smOp, as detailed in the transi-
tions in Section 7.4.

The runtime phase succeeds once subtracei is empty on every thread
ti or there is a deadlock, as discussed in Section 7.5; otherwise the phase
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backtracks to examine other interleavings. If no interleavings succeed,
the phase fails and the trace demonstrates nonconformance. This section
addresses the safety properties of valid traces. Fairness is addressed in Sec-
tion 7.5.

The values available for reading in subtracei depend on the estab-
lished −−−−→F lshO and −−−→LclO orders and the writes that the transition system
has previously evaluated. Specifically, let R be a read of variable var on
thread ti . Let visibleWriteSet be the set of all un-eclipsed writes that pre-
cede R under −−−−−−−−−−−−→F lshO � LclOi and let presentRemoteWriteSet be the
set of writes that race R. Then a given value val is available for
reading by R if:

– presentRemoteWriteSet contains any writes (the writes race with RA,
allowing it return any value); or

– visibleWriteSet contains a write raced with some write in visibleWrite

Set (the race can leave the variable with an undefined value); or
– visibleWriteSet contains a write that wrote val; or
– visibleWriteSet is empty (R is not preceded by any writes to var and

thus got its value from uninitialized memory).

In other words, val is available if it is the most recently written value to
var, there were writes racing with R or if var is uninitialized or contains
the result of racing writes (so R may return anything).

7.3. Formal Definitions

Definitions Used in Transitions:
// The order that results from appending smOp op to order −−−→LclOi .−−−→
LclOi �i op = −−−→LclOi � {< op′, op > | op′ ∈ donei}
// The order that results from appending smOp op to order −−−−→F lshO,
// causally connecting it to all prior operations evaluated by thread tj that
// refer to one or more variables in varList .−−−−→
F lshO �j

varList op = −−−−→F lshO �
{< op′, op > | ∃m.

// op′ has been evaluated by thread tj
op′ ∈ donej ∧
(

// and op′ is a flush
(op′ =< Flush f lushV arList, m > ∧
// and one or more variables in varList is in the flush’s

// list
(varList ∩ f lushV arList) �= ∅

) ∨
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// or op′ is a read or write
((op′ =< Read var → readV al, m > ∨

op′ =< Write var ← readV al, m > ∨
) ∧
// that refers to a variable in varList

var ∈ varList)

)

}

// The order that results from appending smOp op to order −−−−→F lshO,
// causally connecting it to flushes of one or more variables in varList on
thread tj .−−−−→
F lshO �F j

varList op =
−−−−→
F lshO �

{< op′, op > | ∃m.

// op′ is a flush
op′ =< Flush f lushV arList, m > ∧
// and op′ has been evaluated by thread tj
op′ ∈ donej ∧
// and one or more variables in varList is in the flush’s list
(varList ∩ f lushV arList) �= ∅}

// An event accesses a given variable if it is a Read of that variable or a
// Write to that variable.
V arAccess(op, var) = (op is a Read f rom var)∨ (op is a Write to var)

// Two events are racing under a given Flush Order if they are not related
// under it and touch the same variable.
Racing(op1, op2, var,

−−−−→
F lshO ) =

V arAccess(op1, var) ∧ V arAccess(op2, var) ∧ ¬(op1
−−−−→
F lshO op2)∧

¬(op2
−−−−→
F lshO op1)

// Defines what it means for a given write Wecl to eclipse the write
// W from the view of read R under a given ordering −−−→Order.
WriteEclipse(var, R, W, Wecl,

−−−→
Order) = (Wecl is a write to var)∧

(W
−−→
Ord Wecl

−−−→
Order R)

// Defines what it means for a given read Recl to eclipse a write
// W from the view of read R under a given ordering −−−→Order.
ReadEclipse(var, R, W, Recl,

−−−→
Order) =

(Recl is a read f rom var) ∧ (R′ecls value �= WA′s value)∧
(W
−−−→
Order Recl

−−−→
Order R)
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// If R is a read of variable var on thread ti then its visibleWriteSet is the
// set of writes that precede the given event and were not eclipsed by other
// writes and reads to var under the given flush order and local orders.
visibleWriteSet (R, var, ti ,

−−−−→
F lshO,

−−−→
LclO) =

{W | W is a write to var on thread tj ∧
// −−−−−→activeO is the active inter-thread order that will be used to
// determine which writes

// are visible to this read and which writes may be eclipsed by other
// reads and writes
let
−−−−−→
activeO = −−−−−−−−−−−−−−−−−−−−→F lshO � LclOi � LclOj in

// visibleWriteSet is the set of writes to var that:
// (i) Precede the read in −−−−→F lshO or −−−→LclOi

∧ (W
−−−−→
F lshO RA) ∨ (W

−−−→
LclOi RA)

// (ii) And there are no other writes to var that eclipse W from
R under −−−−−→activeO ∧ ¬∃Wecl. (Wecl is a write to var) ∧
WriteEclipse(var, R, W, Wecl,

−−−−−→
activeO)

// (iii) And there are no reads of var that eclipse W from R

under −−−−−→activeO ∧ ¬∃Recl. (Recl is a read of var) ∧
ReadEclipse(var, R, W, Recl,

−−−−−→
activeO)

}
// If R is a read of variable var on thread ti then presentRemoteWriteSet

// is the set of writes to var from another thread that could happen at the same
// time as the read according to the flush order.
presentRemoteWriteSet (R, var, ti ,

−−−−→
F lshO) =

{W is a write to var | (W is on thread j �= i) ∧ Racing(W, R, var,−−−−→
F lshO)}

// Defines the set of values that read R of var, evaluated on thread ti , can
// return under
// −−−−→F lshO and −−−→LclO.
availableForReading(R, var, ti ,

−−−−→
F lshO,

−−−→
LclO) =

{readV al|
// The value readV al could have been read if R is racing some
// write (in which case it may read any value)
∃W ∈ presentRemoteWriteSet (R, var, ti ,

−−−−→
F lshO). W is a write

// Or some of the past writes that R could have read its value from
// were racing with each other (in which case the variable may contain
// value)
∨ ∃W1, W2 ∈ visibleWriteSet (R, var, ti ,

−−−−→
F lshO,

−−−→
LclO).

W1 and W2 are writes ∧ Racing(W1, W2, var,
−−−−→
F lshO)

// Or readV al is the value written by some past un-eclipsed write



Complete Formal Specification of the OpenMP Memory Model 373

∨ ∃W ∈ visibleWriteSet (R, var, ti ,
−−−−→
F lshO,

−−−→
LclO), m.

W =< Write var ← readV al, m >

// Or the visibleWriteSet is empty, meaning that R gets the
// variable’s uninitialized value (which may be anything).
∨ visibleWriteSet (R, var, ti ,

−−−−→
F lshO,

−−−→
LclO) = ∅

}

Definition of Valid Sequences:
T ransruntime = set of all runtime transitions
If transition ∈ T ransruntime then its application to thread ti is denoted
as: transitioni .
// The initial state of the runtime transition system for the given application
// and trace, running on r threads
InitSruntime(r, app, trace)=σinit ,∅;<t1|trace1,∅,∅>, . . . , <tr |tracer ,∅,∅>
// where σinit is:
σinit : HeldRes = ∅
σinit .BarBlocked = (λthread. False)

// A sequence of runtime transitions for a given application and trace,
// running on r threads is legal if it begins with the initial state and every pair
// of adjacent runtime states is related via some valid runtime transition
LegalRuntimeSeq(seq, app, trace, r) =

seq[0] = InitSruntime(r, app, trace) ∧
∀n ∈ [0, seq.length). ∃ ti , transition ∈ T ransruntime. transitioni

(seq[n]⇒ seq[n+ 1])

7.4. Formal Transition System

Write Step

// The next operation in thread ti ’s sub-trace is a Write

subtracei =< Write var ← val, ni >:: subtrace′i

// Thread ti evaluates the write operation and transitions to the
// corresponding new state if the conditions below are satisfied.
// −−−−→F lshO ′ is −−−−→F lshO but updated to include the new write, with the write
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// following all the flush operations relating to var that have been
// completed on this thread−−−−→
F lshO ′ = −−−−→F lshO �i

{var} < Write var ← val, ni >

// −−−→LclOi
′ is −−−→LclOi but updated to include the new read, with the

// read following all events that have been completed on thread ti .−−−→
LclOi

′ = −−−→LclOi �i < Write var ← val, ni >

// The write operation has not been evaluated after some other
// operation that depends on the write via −−−→DepO.
∀smOpprev ∈ donei . ¬(< Write var ← val, ni >

−−−→
DepO smOpprev)

// Thread ti has a Write operation as the next operation in its trace
σ,
−−−−→
F lshO; ..., < ti |subtracei, donei,

−−−→
LclOi >, ..., < tj |subtracej , donej ,−−−→

LclOj >, ...⇒ σ ′,−−−−→F lshO ′; ..., < ti |subtrace′i , donei ∪ head(subtracei),−−−→
LclOi

′ >, ..., < tj |subtracej , donej ,
−−−→
LclOj >, ...

Read Step

// The next operation in thread ti ’s sub-trace is a Read

subtracei =< Read var → readV al, ni >:: subtrace′i

// Thread ti evaluates the read operation and transitions to the
// corresponding new state if the conditions below are satisfied.

// −−−−→F lshO ′ is −−−−→F lshO but updated to include the new read, with the
// read following all the flush operations relating to var that have been
// completed on this thread−−−−→
F lshO ′ = −−−−→F lshO �i

{var} < Read var → readV al, ni >

// −−−→LclOi
′ is −−−→LclOi but updated to include the new read, with the

// read following all events that have been completed on thread ti .−−−→
LclOi

′ = −−−→LclOi �i < Read var → readV al, ni >

// The value returned by this read, was actually available for
// reading at this time
readV al ∈ availableForReading(< Read var → readV al, ni >, var,

ti ,
−−−−→
F lshO ′,−−−→LclO ′)

// The read operation has not been evaluated after some other
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// operation that depends on the read via −−−→DepO.
∀smOpprev ∈ donei .¬(< Read var → readV al, ni >

−−−→
DepOsmOpprev)

// Thread ti has a Read operation as the next operation in its trace
σ,
−−−−→
F lshO; ..., < ti |subtracei, donei,

−−−→
LclOi >, ..., < tj |subtracej , donej ,−−−→

LclOj >, ... ⇒
σ ′,−−−−→F lshO ′; ..., < ti |subtrace′i , donei ∪ head(tracei),−−−→

LclOi
′ >, ..., < tj |subtracej , donej ,

−−−→
LclOj >, ...

Flush Step

// The next operation in thread ti ’s sub-trace is a F lushmm

subtracei =< Flushmm varList, ni >:: subtrace′i

// Thread ti evaluates the flush operation and transitions to the
// corresponding new state if the conditions below are satisfied.

// −−−−→F lshO ′ is −−−−→F lshO but updated to include the new flush, with the
// flush following−−−−→
F lshO ′ = −−−−→F lshO

// all smOps that have been evaluated on this thread and access
// a variable ∈ varList .
�i

varList < F lushmm varList, ni >

// all flushes that have been completed on any thread and have
// variable lists that overlap varList .
�F j

varList < F lushmm varList, ni > ∀ threads tj

// −−−→LclOi
′ is −−−→LclOi but updated to include the new flush, with the

// flush following all events that have been completed on thread ti .−−−→
LclOi

′ = −−−→LclOi �i < F lushmm, ni >

// The flush operation has not been evaluated after some other
// operation that depends on the flush via −−−→DepO.
∀smOpprev ∈ donei . ¬(F lush

−−−→
DepO smOpprev)

// Thread ti has a flush operation as the next operation in its trace
σ,
−−−−→
F lshO; ..., < ti |subtracei, donei,

−−−→
LclOi >, ..., < tj |tracej , donej ,−−−→

LclOj >, ... ⇒ σ ′,−−−−→F lshO ′; ..., < ti |subtrace′i , donei ∪ head(tracei),−−−→
LclOi

′ >, ..., < tj |tracej , donej ,
−−−→
LclOj >, ...
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Blocking Synchronization Step

// The next operation in thread ti ’s sub-trace is a BlockSynchmm

subtracei =< BlockSynchmm blockF updF, ni >:: subtrace′i

// Thread ti evaluates the blocking synchronization operation and
// transitions to the corresponding new state if the conditions below are
// satisfied.

// Thread ti is not currently blocked and may proceed with its execution
blockF (σ) = T rue

// The synchronization state is transformed to reflect that thread
// ti is unblocked
σ ′ = updF(σ)

// −−−−→F lshO ′ is −−−−→F lshO but updated to include the new synchronization
// operation, with the synchronization following all flush operations that
// have been completed on thread ti .−−−−→
F lshO ′ = −−−−→F lshO �i

allV arList < BlockSynchmm blockF updF, ni >

// −−−→LclOi
′ is −−−→LclOi but updated to include the synchronization

// operation, with the synchronization following all events that have
// been completed on thread ti .−−−→
LclOi

′ = −−−→LclOi �i < BlockSynchmm blockF updF, ni >

// The synchronization operation has not been evaluated after some
// other operation that depends on it via −−−→DepO.
∀smOpprev ∈ donei . ¬(< BlockSynchmm blockF updF, ni >−−−→
DepO smOpprev)

σ,
−−−−→
F lshO; ..., < ti |subtracei, donei,

−−−→
LclOi >, ..., < tj |nj , tracej , donej ,−−−→

LclOj >, ...⇒ σ ′,−−−−→F lshO ′; ..., < ti |subtrace′i , donei ∪ head(tracei),−−−→
LclOi

′ >, ..., < tj |nj , tracej , donej ,
−−−→
LclOj >, ...

Non-Blocking Synchronization Step

// The next operation in thread ti ’s sub-trace is a NonBlockSynchmm

subtracei =< NonBlockSynchmm blockF updF → successF lag,

ni >:: subtrace′i

// Thread ti evaluates the non-blocking synchronization operation and
// transitions to the corresponding new state if the conditions below are
// satisfied.
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// If this is a successful synchronization, NonBlockSynchmm acts like
// BlockSynchmm, only being able to proceed if blockF returns True.
successF lag = T rue ⇒

// Thread ti is not currently blocked and may proceed with
// its execution

∧ blockF (σ) = T rue

// The synchronization state is transformed to reflect that thread
// ti is unblocked
∧ σ ′ = updF(σ)

// If successF lag = False, NonBlockSynchmm acts as a noop and
neither blockF, nor updF are evaluated.

// −−−−→F lshO ′ is −−−−→F lshO but updated to include the new synchronization
// operation, with the synchronization following all flush operations that
// have been completed on thread ti .−−−−→
F lshO ′ = −−−−→F lshO �i

allV arList < NonBlockSynchmm blockF updF →
successF lag, ni >

// −−−→LclOi
′ is −−−→LclOi but updated to include the synchronization

// operation, with the synchronization following all events that have
// been completed on thread ti .−−−→
LclOi

′=−−−→LclOi �i <NonBlockSynchmmblockFupdF→successF lag, ni>

// The synchronization operation has not been evaluated after some
// other operation that depends on it via −−−→DepO.
∀smOpprev ∈ donei . ¬(< NonBlockSynchmm blockF updF →

successF lag, ni >
−−−→
DepO smOpprev)

σ,
−−−−→
F lshO; ..., < ti |subtracei, donei,

−−−→
LclOi >, ..., < tj |nj , tracej , donej ,−−−→

LclOj >, ... ⇒ σ ′,−−−−→F lshO ′; ..., < ti |subtrace′i , donei ∪ head(tracei),−−−→
LclOi

′ >, ..., < tj |nj , tracej , donej ,
−−−→
LclOj >, ...

7.5. Fairness and Deadlocks

The transition rules verify that a trace conforms with the OpenMP
memory model if an interleaving of operations that agrees with the out-
comes of the trace’s smOps exists. However, the rules specified thus far
allow executions where one thread executes an infinite number of opera-
tions while another one is starved. This section specifies our fairness guar-
antees.

For finite traces the above rules provide a basic fairness guarantee
in that an interleaving in which some smOp of some thread never exe-
cutes will not be accepted because the runtime phase will not validate
that thread’s sub-trace. As such, these rules require that for each finite



378 Bronevetsky and de Supinski

trace there exists an interleaving that terminates in a complete state, one
where no thread has any remaining un-evaluated smOps in its sub-trace.
However, this alone is not sufficient because OpenMP does not guarantee
(poorly written) programs freedom from deadlocks. An application dead-
locks if the application reaches a state where there exists a subset of
threads such that,

– the next smOp on each thread in the subset is a BlockSynchmm or
NonBlockSynchmm that is not enabled, and

– the remaining smOps on each thread do not violate the dependence
order established by the compiler phase relative to the smOps previously
evaluated by the runtime phase.

In particular, BlockSynchmm and NonBlockSynchmm with successF lag=
True are only enabled in states where their blockF returns True, Reads are
enabled when their values are available for reading and Writes,
F lushes and NonBlockSynchmm with successF lag = False are always
enabled for execution. A finite trace is valid if an interleaving of thread
transitions exists such that all transitions are valid and the final state is com-
plete or is a deadlock that involves all remaining un-evaluated smOps.

For infinite traces the rules above provide no fairness guarantees. As
such, we define an infinite trace as fair if an interleaving of thread tran-
sitions exists such that no thread’s current smOp is enabled for evalu-
ation an infinite number of times without being evaluated (this is known
as Strong Fairness(10)). This fairness condition guarantees that every smOp
on every thread will eventually be evaluated unless there is a deadlock or
the ordering of smOps on a thread’s sub-trace violates the application’s
dependence order.

7.6. Formal Fairness

// An smOp is enabled for evaluation if it is not a BlockSynchmm or a
// NonBlockSynchmm with successF lag=True or if it is an unblocked
// BlockSynchmm or NonBlockSynchmm with successF lag=True
// EnabledOp(σ, op) =

(op �=< BlockSynchmm blockF updF, ni >∧ op �=< NonBlockSynchmm

blockF updF → T rue, ni >) ∨
((op=<BlockSynchmm blockF updF, ni >∨ op=< NonBlockSynchmm

blockF updF → T rue, ni >) ∧
blockF (σ) = T rue)

// A state is deadlocked if the next smOp for all deadlocked threads
// is not enabled and its evaluation does not violate −−−→DepO
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Deadlock(state, deadSet) =
∀ ti ∈ deadSet.

let lastOp = head(state.ti .subtracei) in

¬EnabledOp(state.σ, lastOp) ∧ (∀ smOpprev ∈ donei .

¬(lastOp
−−−→
DepO smOpprev))

// A state is fully deadlocked if a deadlocked set of threads exists, each
// with exactly one un-evaluated smOp remaining and all non-deadlocked
// threads have no more un-evaluated smOps
FullDeadlock(state) =
∃deadSet.

Deadlock(state, deadSet))

(∀ ti ∈ deadSet. |state.ti .subtracei | = 1) ∧
(∀ tj ∈ (T hreads − deadSet). (state.tj .subtracej ) = ∅

// A state is complete if all threads’s smOps have been evaluated
Complete(state) = ∀ti . state.ti .subtracei = ∅

// A sequence, seq, of runtime states is Fair if for every thread for which
// operations are enabled for evaluation infinitely often, the operations are
// evaluated infinitely often
FairSeq(seq) =

(∀ti .∀m < seq.length. ∃ n <∞.EnabledOp(seq[m+ n].σ, head(seq

[m+n].ti .tracei))⇒∀m<seq.length. ∃ n <∞ , transition∈ T ransruntime.

transitioni(seq[m+ n]⇒ seq[m+ n+ 1]))

// The runtime phase verifies a trace, including the Fairness guarantee,
// if there exists some fair sequence of runtime states that satisfies all
// the safety properties that relate it to the application and its trace
V alidT raceRuntime(app, trace, r) =
∃seq.

LegalRuntimeSeq(seq, app, trace, r) ∧
((|seq| = ∞ ∧ FairSeq(seq)) ∨
(|seq|<∞∧ (Complete(seq[seq.length])∨
FullDeadlock(seq[seq.length]))))

8. EXAMPLES

In the examples below we use the following shorthand:
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– varA = const corresponds to varA = varconst + varzero where varconst

and varzero are variables that are initialized to const and 0 and never
modified.

– Barrier corresponds to the smOps that make up the Barrier appOp:
F lushmm allV arList ,
BlockSynchmm barEntrBlock barEntrUpd,
BlockSynchmm barExitBlock barExitUpd and
F lushmm allV arList .

8.1. Uninitialized Read

Figure 13 contains an example code where the read on thread 0 may
return any value. The reason is that if the read executes before the write,
its visibleWriteSet will be empty. Therefore, the read may return any
value since the value would come from uninitialized memory. In order to
avoid such uninitialized reads we can transform this program into the one
in Fig. 14.

In the modified program the barrier ensures that thread 0’s read must
follow some write to var, meaning that its visibleWriteSet cannot be
empty. In future examples, whenever we make a statement about variables’
initial value, we mean that the example’s operations were preceded by a
barrier, which was itself preceded by writes that initialized those variables.
Equivalently, we could assume that the initialization occurs prior to the
first parallel construct; we construct our examples with existing threads for
notational simplicity.

Fig. 13. Uninitialized read example.

Fig. 14. Initialized read example.
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Fig. 15. Example A.2.

Fig. 16. Example A. 2 sample execution.

8.2. Example A.2

The example in Fig. 15 comes directly from example A. 2 from
the OpenMP 2.5 specification,(1) converted from the original C/C++ and
Fortran into the simplified language. Figure 16 shows a typical opera-
tion interleaving of this code (All other interleavings produce the same
results).

This interleaving features three reads. The first read is evaluated on
thread 1 before the barriers. As such, in any possible interleaving it must
race the write to x on thread 0. Since the write is in the first read’s
presentRemoteWriteSet , the read may return any value, regardless of x’s
initial value. The two other reads are in a different situation. The barriers
force them to follow the write in any interleaving. Because of the F lushmm

inside each barrier, both reads follow the write on thread 0 in −−−−→F lshO. As
such, the write is in their visibleWriteSet . With no other available writes,
this means that both reads must return 5, the value written by thread 0.
The formalism is consistent with the explanation of example A. 2.(1)

8.3. Faulty Spinlock

Figure 17 shows a basic spinlock. At first it appears that this program
will print a finite sequence of 0’s, followed by a 1. However, despite the
abundance of flushes there is a race between the write on thread 0 and the
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Fig. 17. Example of a faulty spinlock.

reads on thread 1. The smOp interleaving that reveals this race is shown
in Fig. 18.

The problem is that the reads on thread 1 may happen before the
flush on thread 0. Thus, these reads return unspecified values, meaning
that the printed values may be garbage. Fortunately, our fairness assump-
tion guarantees the flush on thread 0 will eventually be evaluated. The fol-
lowing iteration of the while loop on thread 1 will execute a flush. Since
this flush will follow thread 0’s flush, thread 0’s write will now precede
subsequent reads on thread 1 under −−−−−−−−−−−−→F lshO � LclO1. This in turn causes
them to read 1, terminating the while loop.

While this may appear to be a contrived example, consider a shared
memory implementation that breaks writes to 64-bit values up into mul-
tiple 16-bit messages and the write on thread 0 actually writes some large
64-bit value. In this case the reads on thread 1 may read f lag while it is
only partially updated with only some of the 16-bit messages, causing the
prints to output garbage. Despite the erroneous output, it is still true that
the while loop on thread 1 will eventually terminate, making this the only
way to write a working spinlock in OpenMP: use a loop that waits until
a variable is written to but does not care about the value written. Since
Write-Read races result in undefined read output, other spinlock variants
will not work.

Consider the example code in Fig. 19, which is identical to Fig. 17,
except that the write is replaced with an atomic update. While atomic
updates are atomic relative to other atomic updates due to their flushes
and synchronization, they do not look atomic to regular reads that may
be racing with them. Figure 20 shows what happens.

An atomic update consists of two reads (one to the updated variable
and one to the constant variable) and a write surrounded by flushes of
var, which are themselves surrounded by BlockSynchmms that ensure that
no two atomic updates may execute at the same time. The first iteration
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Fig. 18. Sample faulty spinlock interleaving.

Fig. 19. Correct Spinlock.

of thread 1’s wait loop executes at the beginning of thread 0’s atomic
update, after its initial flush but before its read and write. As such, the
two loop reads both return 0, since they are only preceded by the initiali-
zation write. The next iteration of the while loop happens after thread 0’s
write. However, because thread 1’s flush happens before thread 0’s flush,
thread 1’s reads are not properly ordered relative to thread 0’s write. As
such, their return values are undefined. The last loop iteration happens
after thread 0’s atomic update has performed its final flush (though, not
the final BlockSynchmm). Because thread 1’s flush now properly follows
thread 0’s flush, the subsequent reads on thread 1 return 1.

8.4. Correct Use of Atomic Updates

The example in Fig. 21 shows an example of how atomic updates are
to be used correctly. In this code threads 0 and 1 execute atomic updates
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Fig. 20. Sample faulty spinlock interleaving.

Fig. 21. Example of the correct use of atomic updates.

while thread two tries to read their intermediate results. All threads then
execute a barrier and print the variable.

Figure 22 shows a sample execution of this code. Thread 0 starts first,
by executing its atomic update. It reads 0 and writes 1, performing appro-
priate flushes before allowing thread 1 to begin its atomic update. Thread
1’s atomic update does the same, reading 1 and writing 2, because appro-
priate synchronization and flushing were performed relative to thread 0’s
write. Meanwhile thread 2 executes its two read operations. Because there
is no synchronization relative to the writes on threads 0 and 1, the values
returned by the reads are undefined. After all threads have performed their
barriers (and thus, performed both synchronization and flushes) their sub-
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Fig. 22. Atomic updates sample execution.

sequent reads are guaranteed to be properly ordered relative to the preced-
ing writes. As such, when each thread tries to read the variable, the write
on thread 1 is the most recent uneclipsed write for all of them, meaning
that each thread reads 2 as the value of x.

8.5. Multi-thread Writer Race

The example code in Fig. 23 and possible corresponding interleaving
in Fig. 24 show the effect of a race between writes. Before threads 0 and
1 perform their flushes, the reads on thread 2 are racing with the writes
on threads 0 and 1 under the order −−−−→F lshO. This is still true after thread
0 performs its flush since the reads on thread 2 are still racing with thread
1’s write. The problem persists even after thread 1’s flush. At this point
both writes are in the past of all subsequent reads on thread 2 according
to −−−−−−−−−−−−−−−−−−−−→F lshO � LclO0 � LclO2 and −−−−−−−−−−−−−−−−−−−−→F lshO � LclO1 � LclO2. How-
ever, the two writes are not related to each other under −−−−→F lshO, mean-
ing that they race. Thus, the third read on thread 2 may also return an
unspecified value.
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Fig. 23. Multi-thread writer race example.

Fig. 24. Sample multi-thread writer race interleaving.

In reality, this example can happen in the aforementioned implemen-
tation where 64-bit writes are broken up into 16-bit messages and no
filtering is done to tell which 16-bit message comes from which 64-bit
write. Since the writes on threads 0 and 1 are unrelated by any synchroni-
zation, their individual messages may arrive in memory in arbitrary order,
causing the resulting stored value to contain pieces from both writes.

Fig. 25. Example of writes from the same thread.
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Fig. 26. Properly ordered interleaving.

8.6. Writes from Same Thread

The example in Fig. 25 again highlights the importance of enforc-
ing a proper order on the reads and writes on different threads. In this
case, we have two writes executed on one thread and a read executed on
another (with appropriate flushes). If the read is properly ordered to exe-
cute after the writes, it is guaranteed to see them in their program order:
it will return the value of the last write. In the absence of proper ordering,
anything can happen.

Figure 26 shows a properly ordered trace. Thread 0 executes first,
issues both writes and performs a flush. Since both writes were to f lag,
they were related via −−−→DepO and had to be evaluated in that order. Fur-
thermore, when the read on thread 1 was evaluated, both writes precede
it according to order −−−−−−−−−−−−−−−−−−−−→F lshO � LclO0 � LclO1 and write [**] follows
write [*] under to the same ordering. As a result, the write [*] is eclipsed
by write [**] under the definition of WriteEclipse(f lag, R, Write [∗],
W [∗∗],−−−−−−−−−−−−−−−−−−−−→F lshO � LclO0 � LclO1). Thus, the read only has write [**] in
its past, no writes in its present and therefore returns 2.

Figure 27 shows what happens when the read is not properly ordered
relative to the writes. In this case both writes are in the read’s present since
they are not ordered relative to the read via −−−−→F lshO. Thus, the read may
return any value. Indeed, any later read can return any value until thread
1 calls a F lushmm, placing the two writes on thread 0 into the past under
order −−−−−−−−−−−−−−−−−−−−→F lshO � LclO0 � LclO1).

8.7. Local Reads Eclipse Writes

Figure 28 presents an example in which a read on one thread
can eclipse prior writes on another thread from all subsequent reads
on the same thread. The smOp interleaving in Fig. 29 shows how this
can happen. In this trace threads 0 and 1 perform a writes to flag,
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Fig. 27. Unordered interleaving.

Fig. 28. Example of local reads eclipsing writes.

followed by flushes. When thread 1 performs read [*], it has two writes
that are in its visibleWriteSet and, thus, the read can return either
of their values. Assume it return 1. At the time when thread 1 evalu-
ates read [**], read [*] has already eclipsed write [@] via the definition
ReadEclipse(f lag, Read [∗∗], Write [@], Read [∗],−−−−−−−−−−−−−−−−−→F lshO �LclO1 �LclO1)

because it reads 1 rather than 2 and appears between write [@] and read
[**] under ordering −−−−−−−−−−−−−−−−−−−→F lshO � LclO1 � LclO1. However, write [@@] is not
eclipsed by read [*] because it writes value 1, the same as read [*]. Alterna-
tively, the reverse eclipse would occur if read [*] returned read 2 rather than 1.

Fig. 29. Sample interleaving showing eclipsing behavior.
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Fig. 30. Example of remote reads eclipsing writes.

Fig. 31. Sample interleaving showing eclipsing behavior.

8.8. Remote Reads Eclipse Writes

The example in Fig. 30 and the smOp interleaving in Fig. 31 show
how a read on one thread can eclipse prior writes on the same thread
from subsequent reads on another thread.

In this trace threads 0 and 1 both perform writes to flag, followed
by flushes. Thread 0 then performs read [*], which has two writes in its
visibleWriteSet . As such, it can read any value, in this case 42. When
thread 1 performs read [**], both writes are in its past. However, read [*]
eclipses both writes under order −−−−−−−−−−−−−−−−−−−−→F lshO � LclO0 � LclO1 since it reads
a different value from what either write. Thus, in this trace read[**] may
only read 42.

8.9. Lock Usage

The example in Fig. 32 shows how locks can be used to enforce
mutual exclusion. Any execution of the above program must print out the
infinite sequence 1,2,3,... The smOp interleaving in Fig. 33 shows why.

In this example thread 0 begins its execution by entering its while loop
and locking lockV ar. The Lock operation translates into a BlockSynchmm

smOp, followed by a flushes of all variables. BlockSynchmm acqBlockF
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Fig. 32. Lock usage example.

acqUpdF lockV ar blocks if lockV ar∈σ.HeldRes. Since initially σ.Held

Res=∅, thread 0 does not block and continues executing, changing
σ.HeldRes to {lockV ar}. Meanwhile thread 1 also begins its execution and
while it can enter the while loop, it’s BlockSynchmm acqBlockFacqUpdF lock

V ar cannot continue because lockV ar ∈ σ.HeldRes. Thus, it blocks until this
changes.

After acquiring the lock, thread 0 increments counter. counter’s value
must be read in as 0 because the presentRemoteWriteSet for the read of
counter is empty (due to the mutual exclusion provided by the locks) and
the visibleWriteSet contains only the initialization write. Thus, the value
of counter is written out as 1 and then printed out as 1. Finally, thread 0
evaluated the Unlock lockV ar. This consists of a F lushmm of all variables,
followed by a BlockSynchmm releaseBlockF releaseUpdF lockV ar.
releaseBlockF never makes the thread block and releaseUpdF removes
lockV ar from σ.HeldRes.

Since σ.HeldRes is now empty, thread 1 can proceed. It adds
lockV ar to σ.HeldRes, F lushesmm all variables and reads counter. At
this point the only value that can be read for counter is 1 because
presentRemoteWriteSet is empty and the only un-eclipsed write in
visibleWriteSet is the write from counter’s previous increment on thread
0. (the initialization write is eclipsed by thread 0’s increment write
under −−−−−−−−−−−−−−−−−−−−→F lshO � LclO0 � LclO1). Thus, the write that follows saves
counter’s value as 2, which is the value printed by print (counter). Finally,
Unlock lockV ar performs the F lushesmm and removes lockV ar from
σ.HeldRes.

This pattern is repeated infinitely. The mutual exclusion provided by
the Lock operations, together with their internal flushes ensures that the
updates performed in one locked code region are seen in another locked
code region and the locked code regions execute in a sequential fashion.



Complete Formal Specification of the OpenMP Memory Model 391

Fig. 33. Lock usage sample interleaving.

9. CONCLUSION

The OpenMP 2.5 specification includes a section that details the
OpenMP memory model.(1) This section significantly improves previous
specifications—the previous C/C++ specifications did not directly address
the issue. Instead, users and implementers had to synthesize a model as
best they could from several disparate sections. However, the memory
model is still described in informal prose, which lacks precision by defi-
nition.

This paper presents a formal OpenMP memory model, derived from
the model in the current specification. We tried to adhere to that prose
description faithfully. However, as we have discussed, it has several ambi-
guities, which we resolve in our formal model by relying on our under-
standing of the intent of the language committee. Our operational model
supports the verification of the conformance of OpenMP implementations.
It consists of two phases: a compiler phase that extracts the constitu-
ent operations of the application and a runtime phase that verifies that
a compliant execution could produce the values that appear in the trace.
We have applied this model to several examples. Overall, our work demon-
strates the need for the OpenMP community to adopt further refinements
of the OpenMP memory model. Ideally those changes will lead to a for-
mal model in later OpenMP specifications.
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