
DOI: 10.1007/s10766-007-0046-1
International Journal of Parallel Programming, Vol. 35, No. 6, December 2007 (© 2007)

Parallel Algorithms Development
for Programmable Devices
with Application from Cryptography

Issam W. Damaj1

Received November 17, 2006; accepted May 2, 2007

Reconfigurable devices, such as Field Programmable Gate Arrays (FPGAs),
have been witnessing a considerable increase in density. State-of-the-art
FPGAs are complex hybrid devices that contain up to several millions of
gates. Recently, research effort has been going into higher-level paralleliza-
tion and hardware synthesis methodologies that can exploit such a program-
mable technology. In this paper, we explore the effectiveness of one such
formal methodology in the design of parallel versions of the Serpent cryp-
tographic algorithm. The suggested methodology adopts a functional pro-
gramming notation for specifying algorithms and for reasoning about them.
The specifications are realized through the use of a combination of func-
tion decomposition strategies, data refinement techniques, and off-the-shelf
refinements based upon higher-order functions. The refinements are inspired
by the operators of Communicating Sequential Processes and map easily to
programs in Handel-C (a hardware description language). In the presented
research, we obtain several parallel Serpent implementations with different
performance characteristics. The developed designs are tested under Celoxica’s
RC-1000 reconfigurable computer with its two million gates Virtex-E FPGA.
Performance analysis and evaluation of these implementations are included.

KEY WORDS: Parallel algorithms; methodologies; data encryption; formal
models; gate array.

1. INTRODUCTION

The rapid progress and advancement in integrated circuits (ICs)
technology provides a variety of new implementation options for system

1Dhofar University, Salalah, Oman. E-mail: i damaj@du.edu.om

529

0885-7458/07/1200-0529/0 © 2007 Springer Science+Business Media, LLC

530 Damaj

engineers. The choice varies between the flexible programs running on a
general purpose processor (GPP) and the fixed hardware implementation
using an application specific integrated circuit (ASIC). Many other imple-
mentation options present, for instance, a system with a RISC processor
and a DSP core. Other options include graphics processors and microcon-
trollers. Specialized processors certainly improve performance over general-
purpose ones, but this comes as a quid pro quo for flexibility. Combining
the flexibility of GPPs and the high performance of ASICs leads to the
introduction of reconfigurable computing (RC) as a new implementation
option with a balance between versatility and speed.

Field Programmable Gate Arrays (FPGAs), are nowadays important
components of RC-systems. FPGAs have shown a dramatic increase in
their density over the last few years. For example, companies such as
Xilinx(1) and Altera(2) have enabled the production of FPGAs with several
millions of gates, such as in Virtex-II Pro and Stratix-II FPGAs. The ver-
satility of FPGAs, opened up completely new avenues in high-performance
computing. These programmable hardware circuits can be supported with
flexible parallel algorithms design methodologies to form a powerful par-
adigm for computing.

The traditional implementation of a function on an FPGA is done
using logic synthesis based on VHDL, Verilog or a similar hardware
description langauge (HDL). These discrete event simulation languages are
rather different from languages, such as C, C++ or JAVA. An interesting
step toward more success in hardware compilation was to grant a high-
level of abstraction from the point of view of programmer. Accordingly,
and recently, vendors have initiated the use of high-level languages like
Handel-C,(3,4) Forge,(5) Nimble,(6,7) and SystemC.(8)

Although modern hardware compilation tools have significantly
reduced the complexity of hardware design, many research opportuni-
ties are still present to study even more reduced design complexity.
Accordingly, in this paper we investigate a methodology enabling high-
level of abstraction in the process of hardware design. The proposed
methodology is a step-wise refinement approach for developing paral-
lel algorithms. The development will is based on higher-order skeletons
exploiting possible inherent algorithmic parallelism. Algorithmic skeletons
provide a promising basis for the automatic utilization of parallelism at
sites of higher-order functions.(9) The correctness of the developed hard-
ware is put forward for further discussion through in this paper.

The research presented in this paper, builds on the work of Abdallah
and Hawkins(10–13) that adopts the transformational programming
approach for deriving massively parallel algorithms from functional spec-
ifications (See Fig. 1). In this approach, the functional notation is used

Parallel Algorithms Development for Programmable 531

Fig. 1. An overview of the transformational derivation and the hardware realisation
processes.

for specifying algorithms and for reasoning about them. This is usually
done by carefully combining a small number of generic higher-order func-
tions (such as map, filter, and fold) that serve as the basic building blocks
for writing high-level programs. The parallelization of algorithms work by
carefully composing an “off-the-shelf” parallel implementation of each of
the building blocks involved in the algorithm. The underlying paralleliza-
tion techniques are based on both pipelining and data parallelism. The
essence of this approach is to design a generic solution once, and to use
instances of the design many times for various applications.

In order to develop generic solutions for general parallel
architectures it is necessary to formulate the design within a concurrency
framework such as CSP.(4,11,14) Often parallel functional programs show
peculiar behaviors which are only understandable in the terms of concur-
rency rather than relying on hidden implementation details. The formal-
ization in CSP (of the parallel behavior) leads to better understanding
of the described network of processes and allows for the analysis of its
performance. The establishment of refinement concepts between functional
and concurrent behaviors allows for the generation of parallel implemen-
tations for various architectures. This gives the ability to exploit well-
established functional programming (FP) paradigms and transformation
techniques in order to develop efficient parallel and sequential CSP
processes independent from architectural details. The refinement from
functional specification to CSP descriptions is reflected in Fig. 1 as trans-
formational derivation. The transformational derivation is supported by
strategies for parallelism, CSP laws, refinement rules including those for
the refinement to CSP networks of processes.

532 Damaj

The initial stages of development require a back-end hardware com-
piler stage for realizing the developed parallel designs. In the proposed
methodology, Handel-C is adopted as the last stage of development
generating the final hardware product. Note at this point that Handel-
C language relies on the parallel constructs in CSP to model concur-
rent hardware resources. Mostly, algorithms described with CSP could
be implemented under Handel-C. Handel-C enables the integration with
VHDL and Electronic Design Interchange Format (EDIF) and thus vari-
ous synthesis and place-and-route tools. The Handel-C development stage
is described in Fig. 1 as an automated compilation step supported by dif-
ferent code libraries and place-and-route tools that produces the desired
hardware.

The adopted methodology is systematic in the sense that it is carried
out on using step-by-step procedures. The development is yet manual and
applied according to the following informal procedure:

• Specify the algorithm in a functional setting relying on high-order
functions as the main building constructs wherever necessary.

• Apply the predefined set of rules to create the corresponding CSP
networks according to a chosen degree of parallelism.

• Write the equivalent Handel-C code and complete the hardware
compilation.

These steps are aided with different compilers and integrated develop-
ment environments as shown in Fig. 2. The set of available mathematical
rules belong mainly to the refinement to CSP stage. The automation of the
development process including the creation of a preprocessor is currently
under investigation.

The research related to the adopted methodology has been initiated
by Abdallah, investigating the refinement from functional specifications
into concurrency,(11) and presenting a calculus of decomposition of higher
order functions for parallel programs derivation.(15) Hawkins and Abdal-
lah work included the formalism for proving the refinement rules for both
datatypes and processes and investigated possible Handel-C implementa-
tions.(13) Case studies where developed for a JPEG decoder, closest pair
algorithm, sorting algorithms, DNA processing algorithms,(10,12,16,17) the
Kasumi cryptographic algorithm,(18) and various parallel implementations
of a matrix multiplication algorithm.(19)

The main focus of this paper is on the realization and application
of the theory suggested by the development methodology. An additional
focus is to test the development method and to broaden its area of use to
include an industrial level application. Furthermore, it includes investigat-
ing the performance of the developed designs by carrying out a thorough

Parallel Algorithms Development for Programmable 533

Fig. 2. Assisting tools used in the proposed development method, including, Haskell
Hugs98 compiler to test the specification, Handel-C for hardware compilation, Visual C++
integrated development environment to create the host program driving the RC-1000 device
with its FPGA.

analysis and evaluation. This leads to critically extending, tuning, and
enhancing the suggested method and its realization. In addition, the cur-
rent investigation enriches the adopted method by providing libraries that
supports and promotes the method for further investigation and possibly
adoption by mainstream engineers.

The remaining sections of the paper are organized so that Section 2
introduces background material. In Section 3, related work is discussed.
The case study from cryptography is proposed in Section 4. The analysis
and performance evaluation are included in Sections 5 and 6. Section 7
concludes the paper.

2. BACKGROUND

Abdallah and Hawkins defined in Ref. 12 some constructs used in the
adopted development model. Their investigation looked in some depth at
data refinement; which is the means of expressing structures in the speci-
fication as communication behavior in the implementation.

534 Damaj

The following parts of this section introduces briefly the proposed
steps of development; the functional paradigm, CSP, and Handel-C. In
addition, we introduce the basis of the refinement from a functional spec-
ification to networks of CSP processes. The benefits of each development
step and the adopted refinement approach are stressed in Section 5.

2.1. The Functional Paradigm

Functional programming is quite different from imperative (or pro-
cedural) programming and also from object oriented programming. FP’s
main concern is expressions, where everything reduces to an expression.
An expression, that is a collection of operations and variables, will results
in a single value. Functions are the main building block in functional pro-
grams and could passed around within a program like other variables.
Functional programs are usually List oriented, and they focus descrip-
tion of the problem to be solved rather than focus on the mechanism of
solution. There are currently many functional languages, one of the most
widely used is Haskell.(20)

As a brief overview, we can summarize that functions are consid-
ered as the basic unit of program development and as the major routes
to reuse. In addition, strong typing is considered as an aid to devel-
opment pre-implementation, during implementation and post-implemen-
tation. Some of the fundamental features in FP are powerful high-order
functions, parametric polymorphism, the support provided of develop-
ing user-defined datatypes. Other features of no less importance are lazy
evaluation and programming with infinite data structures. Overloading of
function names are not supported in all functional languages.(21)

High-order functions are an important feature supported in func-
tional languages. A high-order function is a function which takes another
function as a parameter. The most commonly used high-order functions
are map, zipWith, fold, and filter.

The functions map and zipWith are introduced in this section. The
function map takes a list and a function as parameters, then it applies the
input function to all elements of the input list, for example:

map even [1, 2, 3, 4] = [False, T rue, False, T rue],

where even is a function that checks wether a number is even or not.
The function zipWith takes two lists and a function as inputs, then it

applies the function on two elements; one element taken from each input
list, for example:

Parallel Algorithms Development for Programmable 535

zipWith add [1, 2, 3, 4] [2, 3, 4, 5] = [3, 5, 7, 9],

where add is a function that adds two numbers.
Related work adopting FP in hardware development is introduced in

Section 3, and the main benefits gained in using this paradigm in the
adopted model are discussed in Section 5.

2.2. Communicating Sequential Processes (CSP)

The Communicating Sequential Processes (CSP) notation is based on
events and processes. A CSP process engages in a series of events, which
can be local, or perform channel-based communication with synchroniza-
tion capabilities. A channel communication is an event where at most two
processes participate, one acting as an input and the other as an output.

The alphabets of the components of a concurrent system determine
the overall structure and interface of that system. The fact that the nota-
tion regards basic concurrency operations as primitives enables the devel-
oper to concentrate on the concurrent behavior of the system without
needing to worry about the implementation of these basic functions. A
synchronization or communication can be specified in one operation with-
out any concern over how it takes place.(14)

Valuable features of CSP include its strong support for formal
reasoning. CSP allows to make generic assertion about the behavior of the
system, such as deadlock freedom. Moreover, specific assertions of require-
ments for the behavior of the process could be done. These assertions are
made with reference to a number of models of the process. Two typical
models are the trace and failures-divergences models.

Communicating Sequential Process also has the advantage of gener-
ality. The primitive operations of CSP are simple enough that almost any
form of concurrency can be represented using them. Thus, CSP can be
used to specify a wide variety of concurrent systems. Moreover, it can
be used to specify the intended functionality of a message passing sys-
tem at a formal level without requiring the system to be modified for a
specific architecture (as may be required by implementation). Employing
such features in hardware development gives the designer the freedom to
choose an appropriate architecture and organization of an implementation
leaving no effect on the original description. Many research projects have
employed CSP in hardware design; this is discussed in Section 3.

536 Damaj

2.3. Data Refinement

In the following, the main concern is explaining the main constructs
and rules to be used in refining a possible functional specification with
its description in CSP notation. Accordingly, we start by presenting some
communication entities used for refining datatypes declared in the initial
functional step of development; these are Item, Stream, Vector, and some
of their combined forms. We note here that the suggested methodology
relies on the message passing technique to implement parallelism.

The Item corresponds to a basic type, such as an Integer data type,
and it is to be communicated on a single communicating channel.

The Stream is a purely sequential method of communicating a list of
values (a list is a functional term equivalent to an array in a language like
C). It comprises a sequence of messages on a channel, with each message
representing a value. Values are communicated one after the other. Assum-
ing the stream is finite, after the last value has been communicated, the
end of transmission (EOT) on a different channel will be signaled. Given
some type A, a Stream containing values of type A is denoted as 〈A〉.

Each item to be communicated by the vector will be dealt with in
parallel. A vector refinement of a simple list of items will communicate the
entire structure in a single step. Given some type A, a Vector of length n,
containing values of type A, is denoted as �A�n.

Whenever dealing with multi-dimensional data structures, for exam-
ple, lists of lists, implementation options arise from differing composi-
tions of our primitive data refinements—streams and vectors. Examples
of the combined forms are the Stream of Streams, Streams of Vectors,
Vectors of streams, and Vectors of Vectors. These forms are denoted by:
〈S1, S2, . . . , Sn〉, 〈V1, V2, . . . , Vn〉, �S1, S2, . . . , Sn�, and �V1, V2, . . . , Vn�.

2.4. Process Refinement

The refinement is continued by looking into the functions specified in
the first stage of development. Accordingly, the refinement of the formally
specified functions to processes is the key step toward understanding pos-
sible parallel behaviour of an implementation. In this section, the interest
is in presenting refinements of a subset of functions—some of which are
higher-order. A bigger refined set of these functions is discussed in Ref. 11.

Generally, These highly reusable building blocks can be refined to
CSP in different ways. This depends on the setting in which these func-
tions are used (i.e., with streams, vectors, etc.), and leads to implementa-
tions with different degrees of parallelism. Note that we do not use CSP
in a totally formal way, but we use it in a way that facilitates the later

Parallel Algorithms Development for Programmable 537

Fig. 3. The Produce process (PRD) for items.

Fig. 4. The Producer process (PRD) for streams.

Handel-C coding stage. Recall for the following subsections that values are
communicated through as an elements channel, while a single bit is com-
municated through another eotChannel channel to signal the end of trans-
mission in the case of Streams.

2.4.1. Produce

The producer process (PRD) is fundamental to process refinement.
It is used to produce values on the channels of a certain communication
construct (Item, Stream, Vector, etc.). These values are to be received and
manipulated by another processes.

2.4.1.1. Items. For simple, single item types (int, char, bool, etc.), the pro-
ducer process is very simple. This is depicted in Fig. 3. Here the output
is just a single channel.The definition in CSP notation is very straightfor-
ward:

PRD (Item a) = out.element.channel ! a

→ SKIP

2.4.1.2. Streams. The producer process for streams is depicted in Fig. 4. As
already noted, the output in this case is a pair of two other channels. One
channel carries the values of the stream, and the other is a simple channel
used to signal EOT.

In a more general case, the structure of the values which the stream
is carrying is not necessarily known. These may be simple items, but
may also be streams or vectors. Generally, producing a stream could be
described as:

538 Damaj

Fig. 5. The Producer process (PRD) for vectors.

PRD (〈s〉) =
((;)i=length(s)

i=1
(PRD si)[out.elements.channel/out]);
out.eotChannel ! eot → SKIP

This description defines PRD as a process that produces items
sequentially (this is described using the sequential execution operator “;”).
The number of items is equal to the length of the stream. After all ele-
ments are produced, an end of transmission signal will be produced on the
eotChannel channel.

2.4.1.3. Vectors. For vectors of size n, n instances of the producer process
are composed in parallel, one for each item in the vector. The output here
is an array of channels. This is depicted in Fig. 5. A general definition is
given below:

PRD (�v�n) = |||i=n
i=1

(PRD vi)[out.elementsi.channel/out].

The operator |||i=n
i=1 is used to indicate that n copies of the process

PRD v for producing items will be running concurrently. PRD is described
as a processes that runs concurrently n instances (of a processes that pro-
duces single items).

A process STORE stores a communication construct in a variable. We
use this process to store items, vectors, streams, or combinations of vec-
tors and streams. A subscript letter is used with the processes PRD and
STORE to indicate the type of communication. We sometimes omit this
subscript if the communication structure is clear from context.

Parallel Algorithms Development for Programmable 539

2.4.2. Feeding Processes

The feed operator in CSP models function application. The feed oper-
ator is written �. The feed operator takes two processes, composes them
together in parallel, and renames both the output of the first and the input
of the second to a new name, which is then hidden. Given the lifted con-
cepts of CSP channel renaming and hiding, the definition can remain the
same regardless of the type of the communicating construct (Item, Stream,
Vector or any combination).

P � Q =
(P [mid/out] || Q[mid/in])\{mid}.

2.4.3. Formal Process Refinement

Given the definition of a feed operator that operates on processes,
a formal definition of process refinement could be delivered. Consider a
function f , which takes input values of type A and returns values of type
B. Assume that the data refinement step has already been performed, such
that A and B are both types of some transmission value:

f :: A → B.

Then, consider a potential refinement for a function f , a process F .
The operator � denotes a process refinement, where the left-hand side is
a function, and the right-hand side is a process. To state that f is refined
to F , or in other words, the process F is a valid refinement of the func-
tion f , the following may be used:

f � F.

The rules of refinement were proven once in Ref. 11 and applied in
this paper refine a functional specification into a network of communicat-
ing processes.

2.4.4. MAP the Process Refinement of the Higher-order
Function map

Now the attention is turned to the refinement of the widely used
higher-order function map.(12) Employing this function in stream and vec-
tor settings is presented. The refinement for combined structures is to be
made in a similar way.

540 Damaj

Fig. 6. The SMAP process for streams.

Fig. 7. The VMAP process for vectors.

2.4.4.1. Streams. A process implementing the functionality of map f in
stream terms should input a stream of values, and output a stream of val-
ues with the function f applied (See Fig. 6).

In general, the handling of the EOT channels will be the same. How-
ever, the handling of the value will vary depending on the type of the ele-
ments of the input and output stream.

SMAP(F) =
µX • in.eotChannel ? eot →
out.eotChannel ! eot → SKIP

�

F [in.elements.channel/in,

out.elements.channel/out]; X

2.4.4.2. Vectors. In functional terms, the functionality of map f in a list
setting is modeled by vmap f in the vector setting. Consider F as a valid
refinement of the function f . The implementation of V MAP can then
proceed by composing n instances of F in parallel, and directing an item
from the input vector to each instance for processing (See Fig. 7). In CSP
we have:

VMAPn(F) =
|||i=n

i=1F [ini/in, outi/out]

Parallel Algorithms Development for Programmable 541

Fig. 8. The SZIPWITH process for streams.

2.4.5. ZIPWITH the Process Refinement of the Higher-order
Function zipWith

Recall another higher-order function, namely zipWith. This function
is used to zip two lists (taking one element from each list) with a certain
operation. Formally:

zipWith ::

(A → B → C) → [A] → [B] → [C]

zipWith (⊕) [x1, x2, . . . xn][y1, y2, . . . yn] =
[x1 ⊕ y1, x2 ⊕ y2, . . . , xn ⊕ yn]

2.4.5.1. Streams. The process implementation of (zipWith f) in stream
terms should input two streams of values, and output a stream of values
with the function f applied (See Fig. 8).

Again, the handling of the EOT channel will be the same. Neverthe-
less, the handling of the value will vary depending on the type of the input
and output streams elements.

SZIPWITH(F) =
µX • in.eotChannel ? eot →
out.eotChannel ! eot → SKIP

�

F [in1.elements.channel/in1,

in2.elements.channel/in2,

out.elements.channel/out]; X

2.4.5.2. Vectors. To implement the data parallel version of this higher-
order function, we refine it to a process VZIPWITH that takes two vec-
tors as input and zips the two lists with a process F; F is a refined process
from the function (⊕). This is depicted in Fig. 9.

542 Damaj

Fig. 9. The VZIPWITH process for vectors.

vzipWith (⊕) :: �A�n →, �B�n → �C�n

V ZIPWIT H (⊕) =
|||i=n

i=1F [outi/out, ci/in1, di/in2].

2.5. Handel-C as a Stage in the Development Model

Based on datatype refinement and the skeleton afforded by process
refinement, the desired reconfigurable circuits are built. Circuit realisation
is done using Handel-C, as it is based on the theories of CSP(14) and
Occam.(22)

From a practical standpoint, each refined datatype is defined as a
structure in Handel-C, while each process is implemented as a macro pro-
cedure. We divide the constructs corresponding to the CSP stage into
two main categories for organisation purposes. The first category repre-
sents the definitions of the refined datatypes. The second category imple-
ments the refined processes. The refined processes are divided into different
groups. The utility processes group contains macros responsible for pro-
ducing, storing, sinking, broadcasting data, etc. The basic processes group
contains macros that correspond to simple arithmetic and logical opera-
tions. These basic processes could be simple addition, multiplication, etc.
The higher-order processes group contains the macros realising the CSP
implementations corresponding to the higher-order functions. A separate
group contains the macros that handle the FPGA card setup and general
functionality. The reusable macros found in these groups serves as building
blocks used for constructing a certain specified algorithm (Fig. 9).

2.5.1. Datatypes Definitions

The datatypes definitions are implemented using structures. This
method supports recursive as well as simple types. The definition for an

Parallel Algorithms Development for Programmable 543

Item of a type Msgtype is a structure that contains a communicating chan-
nel of that type.

#define Item(Name, Msgtype)
struct {

chan Msgtype channel;
Msgtype message;
} Name

For generality in implementing processes the type of the communicat-
ing structure is to be determined at compile time. This is done using the
typeof type operator, which allows the type of an object to be determined
at compile time. For this reason, in each structure we declare a message
variable of type Msgtype.

A stream of items, called StreamOfItems, is a structure with three
declarations a communicating channel, an EOT channel, and a message
variable(12):

#define StreamOfItems(Name, Msgtype)
struct {

Msgtype message;
chan Msgtype channel;
chan Bool eotChannel;
} Name

A vector of items, called VectorOfItems, is a structure with a variable
message and another array of sub-structure elements.(12)

#define VectorOfItems(Name, n, Msgtype)
struct {

struct {
chan Msgtype channel;
} elements[n];

Msgtype message;
} Name

Other definitions are possible, but it affects the way a channel is
called using the structure member operator (.). Examples of different
extended definitions are as follows (the first definition reuses the Item
structure, while the second one employs channel arrays supported in
Handel-C):

#define VectorOfItems(Name, n, Msgtype)
struct {

struct {

544 Damaj

Item(element, MsgType);
} elements[n];

} Name

#define VectorOfItems(Name, n, Msgtype)
struct {

chan Msgtype channel[n];
Msgtype messages;
} Name

2.5.2. Utilities Macros

The utility processes used in the implementation are related to the
employed datatypes. The Handel-C implementation of these processes
relies on their corresponding CSP implementation. An instance of these
utility macros is shown in the following code segment:

macro proc ProduceItem(Item, x){
Item.channel ! x;}

macro proc StoreItem(Item, x){
Item.channel ? x;}

2.5.3. Higher-Order Processes Macros

An example for an implementation in Handel-C of the CSP refine-
ment of a higher-order function (map) is done as follows. The process runs
through a loop which terminates when the variable eot is set to true. At
each step of the loop, the process enters a wait state until either the EOT
or the value channel of the input stream is willing to communicate. If the
EOT channel is willing to communicate, the input is consumed from it and
stored in the variable eot, then output an EOT message for the output
stream. If the value channel of the input stream is willing to communicate,
the value is consumed then F is applied to it giving the result on the out-
put stream channel.

macro proc
SMAP (streamin, streamout, F){
Bool eot;
eot = False;
do{

prialt{
case streamin.eotChannel ? eot:

Parallel Algorithms Development for Programmable 545

streamout.eotChannel ! True;
break;

default:
F(streamin.elements,

streamout.elements);
break;

}} while (!eot)}

We turn the attention to providing a definition in Handel-C for the
behaviour of the process VMAP. Here we can employ Handel-C’s enumer-
ated par construct to place n instances of the process F in parallel. Each
instance is passed to the corresponding channels from both the input and
output channels.

macro proc
VMAP (n, vectorin, vectorout, F) {
typeof (n) c;
par (c = 0 ; c < n ; c++){

F(vectorin.elements[c],
vectorout.elements[c]);}}

2.6. Evaluation Tools and Performance Metrics

Different tools are used to measure the performance metrics used for
the analysis. These tools include the design suite (DK) from Celoxica,
where we get the number of NAND gates for the design as compiled to
(EDIF). The DK also affords the number of cycles taken by a design
using its simulator. Accordingly, the speed of a design could be calculated
depending on the expected maximum frequency of the design.

To get the practical execution time as observed from the host com-
puter, the C++ high-precision performance counter is used. The counter
probes the execution of the design after loading the image of the design
into the FPGA till termination. Practically, the probation comes directly
after writing a control signal to the FPGA enabling execution. The
counter stops immediately after receiving a signal through reading the sta-
tus register. According to this measurement the speed of execution is cal-
culated.

The information about the hardware area occupied by a design, i.e.,
number of Slices used after placing and routing the compiled code, is
determined by the ISE place and route tool. In the current investigation
the only used metrics are the number of Slices and the Total Equivalent
Gate Count for a design.

546 Damaj

3. RELATED WORK

In this section we define four perspectives, not necessarily mutually
exclusive or unconnected, to be considered for relating our work with its
global literature:

• Purpose: Related to frameworks created for refining correct hard-
ware implementations.

• Implementation Framework: Related to the use of the Functional
Paradigm in hardware development. Related work in this area
might also meet the purpose of developing correct reconfigurable
hardware.

• Description: Related to the use of CSP in hardware development.
• Application: Related to the use of FPGAs in implementing the Ser-

pent cryptographic algorithm.

The idea for deriving implementations from the specification through
correct well defined refinement steps has been motivated by many technical
facts. For instance, the limitations in commonly used synthesis tools and
formal verification techniques utilized in equivalence checking between
the synthesized hardware and the abstract specification.(23) Many frame-
works for developing correct hardware has been brought out in the liter-
ature.(23–26) Our work meets these multi-stage frameworks in their aim of
refining correct hardware from specification.

The Provably Correct Systems project (ProCoS) suggested a mathe-
matical basis for the development of embedded and real-time computer
systems. They used FPGAs as a back-end hardware for realizing their
developed designs.(24)

In Ref. 26, a formal approach to correctly generate an architecture-
level model of a system from its specification model is proposed. The pro-
posed approach relies on formal transformations to refine a specification
model into a provably correct architectural model. Tools have been created
to support automatic generation of refined models.(23)

The attractions for using the functional paradigm in hardware devel-
opment incited many researchers. This triggered many investigations in
this area, such as Lava,(27) Hawk,(28,29) Hydra,(30) HML,(31) MHDL,(32)

DDD system,(33) SAFL,(34) MuFP,(35) Ruby,(36) and Form.(37)

The compiled Occam into FPGAs(38,39) and the Handel-C compiler(3)

are considered as the major work introducing CSP in hardware develop-
ment. Susan Stepney at the University of York(4,40) investigated ways to
translation between CSP and Handel-C. Handel-C compiler is used to map
designs onto FPGAs. The suggested translation uses FDR2 as a front-

Parallel Algorithms Development for Programmable 547

end specification and proof tool, then automatically translates the formal
designs into executable Handel-C.

Many efforts have been put to efficiently implement the Serpent in
hardware. R. Anderson proposed in Ref. 41 the Serpent algorithm and
evaluated its performance under different processing systems. Adam et
al. Ref. 42 presented an FPGA implementation and performance evalua-
tion of the Serpent. Multiple architecture options of the Serpent algorithm
were explored with a strong focus being placed on high-speed implemen-
tations. Bora in Ref. 43 investigated the possibilities of realising the Ser-
pent using FLEX10K ALTERA FPGAs series. The implementations of this
algorithm was introduced in Ref. 44 with an effort to determine the most
suitable candidate for hardware implementation within commercially avail-
able FPGAs.

4. CASE STUDY: THE SERPENT CRYPTOGRAPHIC ALGORITHM

The Serpent algorithm is chosen as a test case for the proposed devel-
opment model. The motivation behind choosing the Serpent is its proven
strength and suitability for hardware implementation.(41) The Serpent algo-
rithm is a 32-round substitution-permutation (SP) network operating on
four 32-bit words. The algorithm encrypts and decrypts 128-bit input data
and a key of 128, 192 or 256 bits in length. The Serpent algorithm con-
sists of three main blocks an initial permutation (IP), A 32-round block,
and a final Permutation (FP). One round function is comprised of three
operations occurring in sequence. These are bit-wise XOR with the 128-
bit round key, substitution via 32 copies of one of eight S-boxes, and
data mixing via a linear transformation. These operations are performed
in each of the 32 rounds with the exception of the last round. In the last
round, the linear transformation is replaced with a bit-wise XOR with a
final 128-bit key.

This section develops parallel implementations of the Serpent algo-
rithms showing all stages of development and the results of testing. The
following subsections presents the functional specification, followed by the
refinement and the implementation in Handel-C. Various designs with dif-
ferent degrees of parallelism are investigated. Different solutions are pre-
sented to some realization pitfalls. The final section presents the results of
running the compiled designs with comparison among different processing
systems.

548 Damaj

4.1. Formal Functional Specification

Two main building blocks construct the Serpent, the key scheduling
block and the encryption (decryption) block. The key scheduling block
inputs the private key and outputs the desired 132 subkeys. The encryp-
tion block inputs data segments representing the plaintext and outputs the
corresponding ciphered data segments. The formal functional specification
employs the following names used for clarifying types definitions.

type Private = [Bool]
type SubKey = [Bool]
type DataBlock = [Bool].

The following subsections present the specification of the Serpent
algorithm. The implementation of the specification under HUGs98 Haskell
compiler is tested at the unit, component and integration levels.

4.1.1. Key Scheduling

Two main steps are carried out to generate the required 132 32-bit
subkeys for the Serpent. The algorithm for generation is as follows:

• Generate an intermediate list ws by:

– Padding the input key to 256-bit if necessary.
– Then, partitioning the key into eight segments of equal

length (32-bit) ws0, .., ws7.
– Then, expanding these to intermediate prekeys ws8, .., ws139

by the following recurrence: wsi := (wsi−8 ⊕wsi−5 ⊕wsi−3 ⊕
ws ⊕ 9e3779b9hex ⊕ (i − 8)) <<11 where (<<n) is the
n-element left circular shift operator.

• The round subkeys ks are now calculated from the prekeys ws
using the S-boxes as follows:

{k0; k1; k2; k3} = S3(w0; w1; w2; w3)

{k4; k5; k6; k7} = S2(w4; w5; w6; w7)

{k8; k9; k10; k11} = S1(w8; w9; w10; w11)

{k12; k13; k14; k15} = S0(w12; w13; w14; w15)

{k16; k17; k18; k19} = S7(w16; w17; w18; w19)
· · ·
{k124; k125; k126; k127} = S4(w124; w125; w126; w127)

{k128; k129; k130; k131} = S3(w128; w129; w130; w131)

Parallel Algorithms Development for Programmable 549

Fig. 10. Steps for Serpent subkeys generation.

The function keySchedule formally specifies the above algorithm. This
function inputs the private key and outputs the desired subkeys following
the steps clarified in Fig. 10. This figure also shows the format of the final
output as ordered for later use in the functions specifying the encryption.

keySchedule :: Private -> [[SubKey]]
keySchedule key = concat kss
where
ws = drop 8 (generateWs 8 (segs 32 key))
kss = map (mapWith [s3, s2, s1, s0,

s7, s6, s5, s4])
(segs 8 (segs 4 ws))

The application of the S-boxes is done by mapping the function
(mapWith [s3, s2, s1, s0, s7, s6, s5, s4]) over the prepared segmentation
of ws [segs 8 (segs 4 ws)]. Note that the length of the list ws at this
point is 132 elements. Grouping this list into segments of four and then of
eight, will give four lists each of eight four-element sublists, covering 128
elements from ws. The remaining four elements constitutes a final list of
four elements. With the lazy evaluation property found in functional pro-
gramming, the final mapped mapWith only applies the function s3 to the
remaining list. This will give the desired output list of lists representing the
132 round subkeys.

550 Damaj

The generateWs responsible for generating the prekeys is specified as
follows:

generateWs :: Int -> [[Bool]] -> [[Bool]]
generateWs i ws

| ((i < 140) && (i > 7)) =
(generateWs (i+1) (ws ++ [wsD]))

| otherwise = ws
where
wsD = (shift 11 (foldr1 fullexor
[(ws!!(i-8)), (ws!!(i-5)),
(ws!!(i-3)), (ws!!(i-1)),
const, (itob (i-8))]))

const = concat
(map itob.htoi ["9e37", "79b9"])

The S-boxes are specified using the logic functions fullexor, fullOR,
fullAND, and fullComplement. These corresponds to the full-word bitwise
version of XOR, OR, AND, and NOT logic operations. For instance, the
first S-box is specified as the function s0 with a list of list of bool as input
and output. The input list elements [a, b, c, d] are distributed to differ-
ent operations computing for the final output list [w, x, y, z]. Temporary
variables used to compute the final output list are grouped to be zipped
with their operation using the higher-order function zipWith. The current
specification does not reflect the order that these operations should be car-
ried out. A dependency analysis has to be done aiding the later refine-
ment. Note that the decryption inverse S-boxes are specified in a similar
way. In the following we show the specification of the s0 function.

s0 :: [[Bool]] -> [[Bool]]
s0 [a,b,c,d] = [w, x, y, z]

where
[t01, t03, z, t06, y,
t12, t13, t15, t17, x]=
zipWith

fullexor [b, a, t02, a, t09,
c, t07, t06, w, t12]

[c, b, t01, d, t08,
d, t11, t13, t14, t17]

[t05,t07, t02] =
zipWith fullOR [c, b, a] [z, c, d]

Parallel Algorithms Development for Programmable 551

Fig. 11. Serpent encryption (a) and decryption (b) flowcharts.

[t08, t09, t11, t14] =
zipWith fullAND [d, t03, t09, b]

[t05, t07, y, t06]

w = fullComplement t15

4.1.2. Serpent Block Cipher

Flowcharts showing the steps to carry out the encryption and the
decryption are shown in Fig. 11. Decryption is different from encryption
in that the inverse of the S-boxes must be used in the reverse order, as well
as the inverse linear transformation and reverse order of the subkeys.

A functional specification formulates Serpent encryption as a function
serpentEncrypt. This function works by firstly inputting a list of lists of
data blocks. Then, it maps the function serpentEncryptSeg, responsible for
a single 128-bit data block encryption, with the input private key to all
the input list elements. The functional specification of serpentEncrypt is as
follows:

552 Damaj

serpentEncrypt :: [[DataBlock]] -> Private
-> [[DataBlock]]

serpentEncrypt inputs key =
map (serpentEncryptSeg(keySchedule key))

inputs

The formalised function serpentEncryptSeg inputs the generated round
subkeys in a form of a list of lists, besides, the 128-bit plaintext input data
block. The first 31 rounds subkeys are taken from the input list of sub-
keys and zipped in a list of pairs with the corresponding S-box number.
The higher-order function foldl is used with the function serpentFold to
fold the input data block over the zipped list of pairs. In other words, the
function foldl replicates the required 31 rounds in a pipelined fashion. The
final round is carried out by XORing the output from the 31st round with
the 32nd set of subkeys (sKeys!!32), at this point the result is passed to
the function s7. The final ciphered output is the result of XORing the out-
put from the function s7 with the last set of subkeys (sKeys!!32). The sug-
gested formal functional specification is as follows:

serpentEncryptSeg :: [[SubKey]] ->
[DataBlock]->[DataBlock]

serpentEncryptSeg sKeys input =
zipWith fullexor (sKeys!!32) (s7 xorOut))
where

xorOut = zipWith fullexor (sKeys!!31) roundsOut

roundsOut = foldl serpentFold input
(zip (take 31
(concat (copy1 [0,1,2,3,4,5,6,7] 5)))

(take 31 sKeys))

A Serpent fold, specified as the function serpentFold, inputs a data
block and a pair corresponding to a list of four subkeys and the corre-
sponding S-box number employed in that fold. The subkeys are zipped
with the input, passed to the corresponding S-box, and finally linearly
transformed using the function lTransfrom. The input S-box number is
used to choose one of the available S-boxes listed in the list of functions
s. A possible formalisation is as follows:

serpentFold :: [DataBlock] ->
(Int, [SubKey]) -> [[Bool]]

Parallel Algorithms Development for Programmable 553

serpentFold input (i,skey) =
lTransform ((s!!i)

(zipWith fullexor skey input))
where
s = [s0, s1, s2, s3,

s4, s5, s6, s7]

The function lTransform linearly transforms a list of four inputs into
a list of four outputs. the transformation uses the left circular shift func-
tion shift and the left shift function lshift as follows:

lTransform :: [[Bool]] -> [[Bool]]
lTransform [x0, x1, x2,x3] =

[y0, y1, y2, y3]
where

[y0i, y2i, y0, y1, y2, y3] =
mapWith [(shift 13), (shift 3),

(shift 5), (shift 1),
(shift 22), (shift 7)]

[x0, x2, y0ii, y1i, y2ii, y3i]

[y1i, y3i, y0ii, y2ii] =
zipWith fullexor

(zipWith fullexor
[x1, y2i, y0i, y2i]
[y0i, (lshift 3 y0i),

y1, y3])
[y2i, x3, y3, (lshift 7 y1)])

lshift :: Int -> [Bool] -> [Bool]
lshift n ls =
(drop n ls) ++ (copy False n)

4.2. Algorithms Refinement to CSP

For the key scheduling part we suggest two designs. The first design
implements the scheduling in a data-parallel fashion. The second design
economises the implementation by carefully removing replication from one
of the main building blocks. For the encryption part, we suggest three
designs. The first design presents a fully pipelined network of rounds. The
second design uses only one stage from the pipeline suggested in the first
design. In this case inputs and outputs are refined to streams. The third

554 Damaj

design leaves a flexible choice for the level of parallelism, allowing control
over the number of pipelined stages.

4.2.1. Key Scheduling

At this development stage, we refine each function from the specifica-
tion of the key scheduling part. In the following section, the two suggested
designs are presented and explained.

4.2.1.1. First Design. The types used in the specification of the function
keySchedule are refined to a 256-bit Integer item for the private key, and
a vector of vectors of items of size (33 × 4) for the output subkeys:

keySchedule :: Int256 → ��Int32�4�33

The refinement implements the function keySchedule as a process
KEYSCHEDULE. According to the specification, the first event to occur
is the segmentation of the input key into eight segments using a predefined
process SEGS. These eight segments are passed to the process GENERAT-
EWS.

KEYSCHEDULE = ((PRD(32) � SEGS) �8
ST OREv(ws)); (GENERAT EWS(8, ws)) �132

(V MAP4(V MAPWIT H([S0, S1, S2, S3, S4, S5, S6, S7])) ‖ S3)

where,

S0 � s0; S1 � s1; S2 � s2; S3 � s3; S4 � s4; S5 � s5; S6 � s6; S7 � s7;

The higher-order process (V MAP4) creates four parallel instances of the
process VMAPWITH. In turn, 32 parallel instances of the S-boxes pro-
cesses is now available for parallel computation. These 32 S-boxes process
takes 128 items from the 132 generate prekeys in the process GENERAT-
EWS. The final four prekeys are passed to a parallel instance of the pro-
cess S3. The output from these parallel S-boxes processes is the desired
vector of 132-round subkeys. The process KEYSCHEDULE is depicted in
Fig. 12.

The function generateWs could be refined as follows:

generateWs :: Int32 → �Int32�8 → �Int32�132

generateWs � GENERAT EWS

GENERAT EWS(i, ws) =

Parallel Algorithms Development for Programmable 555

Fig. 12. The process KEYSCHEDULE, first design.

if (7 < i < 140)

then WsD(i, ws) � StoreI tem(wsd);
GENERAT EWS(i + 1, ws ++ [wsd])

else PRD(ws)

Unrolling the above recursive implementation for GENERAT EWS

(8, ws):

GENERAT EWS(8, ws) =
WsD(8, ws) � ST OREv(wsd); GENERAT EWS(9, ws ++ [wsd]);
WsD(9, ws) � ST OREv(wsd); GENERAT EWS(10, ws ++ [wsd]);
.

.

.

WsD(139, ws) � ST OREv(wsd); GENERAT EWS(140, ws ++ [wsd]);
PRD(ws).

This could be done as:

GENERAT EWS(8, ws) =
f or(i = 8; i < 140; i + +){
WsD(i, ws) � StoreI tem(wsd); },
where,

WsD(i, ws) = out!(
11 (ws[i − 8] ⊕ ws[i − 5] ⊕ ws[i − 3] ⊕ ws[i − 1] ⊕
(9e3779b9hex) ⊕ (i − 8)))

4.2.1.2. Second Design. The second design intends to eliminate the replica-
tion in the S-boxes computation processes. This leads to a smaller hard-
ware circuit in the later stage as a trade for the expected speed. The
change from the first design is made by refining map to its stream setting.

556 Damaj

Fig. 13. The process KEYSCHEDULE, second design with replication reduced.

This implementation is depicted in Fig. 13 and described in the following
CSP network:

KEYSCHEDULE = ((32 � SEGS) �8
ST OREv(ws)); (GENERAT EWS(8, ws)) �

(SMAP(V MAPWIT H([S0, S1, S2, S3, S4, S5, S6, S7])) ‖ S3)

4.2.2. Serpent Block Cipher

The current refinement is done in three different designs. The process
responsible for a single block ciphering is SERPENTESEG, the refinement
of the function serpentEncryptSeg. The input data items, for instance,
could be passed as a stream of vectors of four 32-bit data items to the
encrypting block SERPENTESEG. The output is refined also to a stream
of items as follows:

serpentEncrypt (key) :: 〈�Int32�4〉 → 〈�Int32�4〉

Consequently, we suggest the following refinement employing the
higher-order process SMAP. The key, in this case, is passed as an argu-
ment to the process SERPENTENCRYPT.

SERPENT ENCRYPT (key) = KEYSCHEDULE(Key) �
SMAP(SERPENT ESEG)

A multi-way Serpent encryption version is implemented as follows:

Parallel Algorithms Development for Programmable 557

Fig. 14. The process SERPENTESEG, first pipelined design.

serpentEncrypt (key) :: 〈�〈�Int32�4〉�n〉 → 〈�〈�Int32�4〉�n〉

SERPENT ENCRYPT (key) = KEYSCHEDULE(key) �
SMAP(V MAPn(SMAP(SERPENT ESEG)))

where the value of n is limited by the ability to realise this network on the
available hardware in the following stage. The following three designs are
suggested for the implementation of the process SERPENTESEG.

4.2.2.1. First Design. This design suggests a fully pipelined implementa-
tion of the Serpent encryption specification. The pipeline is constructed by
replicating the single round specified as the function serpentFold. The rep-
lication is done using the vector setting refinement of the higher-order
function foldl, where the input is a vector of items. The input 132 sub-
keys are distributed to the pipelined folds as shown in Fig. 14. Also,
the number of the round in use is distributed to the pipelined folds. The
output from the pipeline is the input to the higher-order process VZIP-
WITH(EXOR), zipping it with a set of four subkeys. The result of zip-
ping is passed to an S7 S-box process, whose output vector is zipped again
using another VZIPWITH(EXOR) with the last generated set of four
subkeys. The CSP description is as follows:

serpentEncryptSeg = �Int32�132 → 〈�Int32�4〉 → 〈�Int32�4〉
serpentEncryptSeg � SERPENT ESEG

SERPENT ESEG = (BROADCAST3([0..7]) ‖
(PRD([0..6]))) � (V V FOLDL(SERPENT FOLD) ‖

V ZIPWIT H4(EXOR) �4 S7 ‖ V ZIPWIT H4(EXOR))

where,

serpentFold � SERPENT FOLD.

The serpent fold is implemented as in the following:

558 Damaj

serpentFold :: �Int32�4 → (Int3, �Int32�4) → �Int32�4

SERPENT FOLD = (in?i → SKIP); V ZIPWIT H4(EXOR) � Si �
LT RANSFORM,

where

lT ransf orm � LT RANSFORM.

The linear transformation function lTransform is refined to the pro-
cess LTRANSFORM. The input and output are refined as a vector of
items as follows:

lT ransf orm :: �Int32�4 → �Int32�4

The process LTRANSFORM is implemented as follows:

LT RANSFORM = (|||i=3
i=0in[i]?x[i] → SKIP);

LSHIFT (3) ‖ LSHIFT (7) ‖
(V ZIPWIT H4(EXOR) �4 V ZIPWIT H4(EXOR)) ‖
V MAPWIT H([SHIFT (1), SHIFT (13), SHIFT (3),

SHIFT (5), SHIFT (1), SHIFT (22), SHIFT (7)])

4.2.2.2. Second Design. In this design, the network component processes
are still the same, as shown in the first design, with a modification to
the way they communicate. The stream communication with the main
process SERPENTFOLD, allows the elimination of copies of this pro-
cess using SVFOLDL the stream refinement of foldl, where the input is a
vector of items. The subkeys distribution, at this point, are passed sequen-
tially to the process SERPENTFOLD. Only the last two sets of subkeys
are produced as vectors to be used in the two similar parallel processes
V ZIPWIT H4(EXOR). This network is shown in
Fig. 15. The CSP description is as follows:

serpentEncryptSeg = 〈Int32〉 → 〈�Int32�4〉 → 〈�Int32�4〉

SERPENT ESEG = (BROADCAST3([0..7]) ‖
(PRD([0..6]))) � (SV FOLDL(SERPENT FOLD) ‖

V ZIPWIT H4(EXOR) �4 S7 ‖ V ZIPWIT H4(EXOR))

Parallel Algorithms Development for Programmable 559

Fig. 15. The process SERPENTESEG, second design with stream of subkeys.

Fig. 16. The process SERPENTESEG, third partially pipelined design.

4.2.2.3. Third Design. Based on the above suggested implementations,
this design composes both a pipelined part and a stream-based part to
build the final desired Serpent network. This implementation is shown in
Fig. 16 and done as follows:

serpentEncryptSeg = 〈Int32〉 → �Int32�132 → 〈�Int32�4〉 → 〈�Int32�4〉

SERPENT ESEG = (BROADCAST3([0..7]) ‖ (PRD([0..6])))
�(((PRD(n) � V V FOLDL(SERPENT FOLD)) ‖

SV FOLDL(SERPENT FOLD)) ‖ V ZIPWIT H4(EXOR) �4
S7 ‖ V ZIPWIT H4(EXOR))

4.3. Reconfigurable Hardware Implementations

The part of the hardware implementation included in this section is
aimed to show samples of the implemented code. We put some emphasis
on some code segments, where we could not base the implementation from
the previous stage in a straightforward manner. Remember that the main
reason behind the faced coding difficulties resides in the level of generality
of the constructs to be implemented.

560 Damaj

The following macros are for the two designs of key scheduling. The
first macro KeySchfedule1st outputs the subkeys as a vector of vectors of
vectors of items from the macros GenerateWsVOVOV and S3.

macro proc KeySchedule1st (keyIn, KssOutVOVOV,
lastksV){
.
.
.
par{
Segs(keyIn, segmentsOut);

GenerateWsVOVOV
(segmentsOut, WsOutVOVOV, lastwsV);

VMap
(WsOutVOVOV, 4, KssOutVOVOV, VMapWithSs);
S3(lastwsV, lastksV);}

The macro for the second design with its stream implementation is as
follows:

macro proc KeySchedule2nd
(keyIn, KssOutSOVOV, lastksV) {

.

.

.
par{
Segs(keyIn, segmentsOut);

GenerateWsSOVOV
(segmentsOut, WsOutSOVOV, lastwsV);

Map(WsOutSOVOV, KssOutSOVOV, VMapWithSs);
S3(lastwsV, lastksV);}}

The stream-version macro implementing the process GenerateWs is
shown in the following code section. In this macro a 140 (32-bit Integer)
elements array ws is used to store the generated prekeys. This means occu-
pying a large area from the targeted FPGA. An alternative implementa-
tion is to use the available internal RAM, so, this would dramatically save
the needed space. The RAM property of allowing only one access to it
at once (read or write at a time) imposes some restrictions. For instance,

Parallel Algorithms Development for Programmable 561

the production of the final calculated prekeys should be done as stream
of items instead of a stream of vectors of vectors of items. Both cases are
shown in the following code sections:

macro proc GenerateWsSOVOV
(wsIn, wsOutSOVOV, lastwss) {
.
.
.
Int32 ws[140];

par(j = 0; j < 8; j++){
jTemp[j] = 0@j;
wsIn.elements[j].channel ?

ws[jTemp[j]];}

PHI = 0x9e3779b9;

for(i = 8; i < 140; i++){
iTemp = 0@i;
wTemp = ws[i-3]ˆws[i-5]ˆ

ws[i-8]ˆws[i-1]ˆ
PHIˆ(iTemp-8);

par{
ProduceItem(wItem, wTemp);
Shift(wItem, 11, sOut);
StoreItem(sOut, ws[i]);}

if (i == 139){
break;}}

ProduceSOVOVOItemsFromArrayWithOffset
(wssOutSOVOV, 4, 8, 4, ws, 8);

par{
lastwss.elements[0].channel ! ws[136];
lastwss.elements[1].channel ! ws[137];
lastwss.elements[2].channel ! ws[138];
lastwss.elements[3].channel ! ws[139];}}

The second version is as follows:

macro proc GenerateWsRam
(wsIn, wssOut) {

.

.

.
ram Int32 ws[140];

562 Damaj

par(j = 0; j < 8; j++){
jTemp[j] = 0@j;
wsIn.elements[j].channel ?

ws[jTemp[j]];}

PHI = 0x9e3779b9;

for(i = 8; i < 140; i++){
iTemp = 0@i;
wTemp = ws[i-1]ˆPHIˆ(iTemp-8);
wTemp1 = wTemp ˆ ws[i-8];
wTemp2= wTemp1ˆws[i-5];
wTemp3 = wTemp2ˆws[i-3];
par{

ProduceItem(wItem, wTemp3);
Shift(wItem, 11, sOut);
StoreItem(sOut, ws[i]);}

if (i == 139){
break;}}

ProduceStreamOfItems(wsOut, 140, ws);}

The use of an FPGA’s on-chip memory is constrained with its sup-
ported memory capabilities and corresponding Handel-C compilation options.
The available sophisticated SelectRAM memory hierarchy available on the used
Virtix-E FPGA supports True Dual-Port BlockRAMs and Distributed RAMs.
However, Handel-C declaration of an array is equivalent to declaring a num-
ber of variables. Each entry in an array may be used exactly like an individual
variable, with as many reads, and as many writes to a different element in the
array as required within a clock cycle. Arrays are more efficient to implement
in terms of concurrent access required by fast pleasantly parallel designs. Arrays
are implemented using the available logic blocks in an FPGA (Slices in the case
of Xilinx devices). RAMs, are normally more efficient to implement in terms of
hardware resources than arrays since they use the on-chip RAM blocks. RAMs,
would allow one location to be accessed in any one clock cycle.

To take the advantage of an available multi-port memory blocks, one can
use the mpram declaration in Handel-C instead of ram. A design that uses
an mpram with two ports would outperform the sequential design in terms of
speed, but still replications of some processes would be necessary to cope with
the doubled amount of information retrieved. A design that uses a dual-ported
memory to store a list should have refined the list as a stream of vectors of two
elements in the description stage.

Before we present parts of the realization of the encryption designs, we
note the solution we suggest for implementing the higher-order process VMAP-
WITH with a list of different processes. The macro VMapWith needs to map
a list of macros to a list of items. The problem we faced is for how to pass a

Parallel Algorithms Development for Programmable 563

list of macros as an argument to the macro VMapWith. A best case scenario is
having the following code implementation:

macro proc VMapWith
(vIn,, vProcesses, vOut, n){

par(i = 0, i < n, i++){
vProcesses[i]
(vIn.elements[i],

vOut.elements[i]);}}

The vector of macros vProcesses passing to the macro VMapWith is not
supported in the current version of Handel-C. A second possible form for a pos-
sible implementation in Handel-C is as follows:

macro proc VMapWith
(vIn, P1, P2,..., Pn, vOut, n){

par{
P1(vIn.elements[i], vOut.elements[i]);
P2(vIn.elements[i], vOut.elements[i]);
.
.
.
Pn(vIn.elements[i], vOut.elements[i]);}}

A step forward in the code generation leads to the third possible form of
implementation. This form would fit the calling of the process VMAPWITH
from another higher-order macro as had been done in:

VMap(WsOutVOVOV, 4,
KssOutVOVOV, VMapWithSs);.

This suggests the removing of the zipped-with macro names from the argu-
ments lists in the macro procedure definition as follows:

macro proc VMapWithPs(vIn, vOut, n){

par{
P1(vIn.elements[i], vOut.elements[i]);
P2(vIn.elements[i], vOut.elements[i]);
.
.
.
Pn(vIn.elements[i], vOut.elements[i]);}}.

564 Damaj

A possible solution to such a limitation is, again, the availability of a pre-
processor automatically generating the allowed implementation from the best
case scenario presented. For the case of mapping with the list of S-boxes
macros; the code is as follows:

macro proc VMapWithSs(vIn, vOut){
par{
S3(vIn.elements[0], vOut.elements[0]);
S2(vIn.elements[1], vOut.elements[1]);
S1(vIn.elements[2], vOut.elements[2]);
S0(vIn.elements[3], vOut.elements[3]);
S7(vIn.elements[4], vOut.elements[4]);
S6(vIn.elements[5], vOut.elements[5]);
S5(vIn.elements[6], vOut.elements[6]);
S4(vIn.elements[7], vOut.elements[7]);}}

For the encryption part, we include the implementation done for the third
design. Whereby, a combination of parallel and sequential fold are employed
with vector of items as input. Based on the CSP implementation, the macro En-
cryptSegsVVandSV is implemented as follows:

macro proc EncryptSegsVVandSV
(input, sKeysVOV, VRnds,

sKeysSOV, finalKeys, output) {

par{
VVFoldL(sKeysVOV, output1, 4,

NParalRnds, SerpentFold, input);

SVFoldL(sKeysSOV, 4, output2,
SerpentFold, output1, 4, NParalRnds);

VZipWith(4, output2,
finalKeys.elements[0], output3, EXOR);

S7(output3, output4);

VZipWith(4, output4,
finalKeys.elements[1], output, EXOR);}}

The macro SerpentFold implements its corresponding process as follows:

macro proc SerpentFold
(input, i, sKeys, output) {

VectorOfItems (vOut, 4, Int32);
VectorOfItems (output1, 4, Int32);

Parallel Algorithms Development for Programmable 565

par{
par{
VZipWith(input, sKeys, vOut, EXOR);}

if(i==0)
S0(vOut, output1);

else if(i==1)
S1(vOut, output1);

else if(i==2)
S2(vOut, output1);

else if(i==3)
S3(vOut, output1);

else if(i==4)
S4(vOut, output1);

else if(i==5)
S5(vOut, output1);

else if(i==6)
S6(vOut, output1);

else if(i==7)
S7(vOut, output1);

LinearTransformation
(output1, output);}}

5. GENERAL EVALUATION

In this paper, the contribution of the presented work could be found in
many aspects. Some additions were crucial to the realization step of the method
so that it can cope with real-life complex areas of applications. A famous algo-
rithm from cryptography has been targeted as a test case that has given a clear
idea about the practical use of the methodology. Reusable libraries are created
at all levels of development. The availability of such libraries supports and facil-
itates the development in general. The created libraries for the different studies
from cryptography are highly reusable for developing other cryptographic algo-
rithm. This might include the introduction of new components to the libraries,
or slightly modifying the available ones. According to these points, we stress the
following aspects:

The development is originated from a specification stage, whose main
key feature is its powerful higher-level of abstraction. During the specification,
the isolation from parallel hardware implementation issues allowed for deep
concentration on the specification details. Whereby, for the most part, the style
of specification comes out in favor of using higher-order functions. Two other
inherent advantages for using the functional paradigm are clarity and concise-

566 Damaj

ness of the specification. This was reflected throughout all the presented studies.
At this level of development, the correctness of the specification is insured by
construction from the used correct building blocks. The implementation of the
formalized specification is tested under Haskell by performing random tests for
every level of the specification.

The correctness will be carried forward to the next stage of development by
applying the provably correct rules of refinement. The available pool of refine-
ment formal rules enables a high degree of flexibility in creating parallel designs.
This includes the capacity to divide a problem into completely independent
parts that can be executed simultaneously (pleasantly parallel). Conversely, in a
nearly pleasantly parallel manner, the computations might require results to be
distributed, collected and combined in some way. Remember at this point, that
the refinement steps are done by combining off-the-shelf reusable instances of
basic building blocks.

6. PERFORMANCE ANALYSIS

In this section we show the testing results of mapping the designs, analyz-
ing their timing, and showing the speeds as measured for testing the RC-1000
board from the used P4 machine. The fully pipelined design was over-mapped,
thus, the following presented speeds are for the remaining designs. Note that in
the suggested Serpent implementations, the finest grains of basic building blocks
are refined as processes rather than using Handel-C operators. Thus, an increase
in communications cost between processes is found.

In Table I, we show the testing results of the encryption subkeys genera-
tion. The keys generation (second design) runs with a throughput of 96 Mbps
occupying 13097 Slices, i.e., 68% of the FPGA area.

As shown in Table II, the testing results of the Serpent second and third
designs are included, while the first design failed to compile with its large gates
count. The maximum achieved parallelism was in running the third design with
two parallel folds and a third performing the remaining 29 sequential folds. This
implementation has a throughput of 12.21 Mbps occupying an area of 19198
Slices (99% of the available FPGA area). The second design with its sequential
single fold implementation achieved throughput of 12.15 Mbps with an area of
12291 Slices.

In Table III, we include some results from literature mapping the same
algorithms onto FPGAs. The high-speeds achieved for the suggested opti-
mised implementations is very clear, as compared to our high-level (un-opti-
mised) implementation (yet) — from performance perspective. The shown results
include a high-speed implementations for the Serpent (333 Mbps) presented by
Elbirt et al.(42) Gaj et al. in Ref. 45 presented another high-speed implementa-
tion for the Serpent (431.4 Mbps).

Parallel Algorithms Development for Programmable 567

Table I. Testing Results of Serpent Encryption Subkeys Generation

Design First Parallel-Output Design Second
Metrics Streamed-Output

Design

Number of Gates NA—Simulators failed to pro-
duce results due to the design
size and simulation complexity.

137256 NANDs

Number of Occupied Slices 13097 Slices (68%)
Number of Slice Flip Flops 9137 (23%)
Number 4 input LUTs 9773 (25%)
Number used for 32 × 1 RAMs 256
Number used as 16 × 1 RAMs: 32
Total equivalent gate count 180963 Gates
Number of Cycles NA
Maximum Frequency of Design 67.45 MHz
Throughput NA
Measured Execution Time 44 Micro sec.
Measured Throughput 96 Mbps

In Table IV(46–48) we compare the number of cycles for different hardware
implementations of the Serpent including a number of microprocessor-based
implementations.

The higher-level development caused high replication in using basic build-
ing blocks, and more clearly their communications. Many instances of
PRODUCE and STORE processes caused the high use of intermediate variables.
Other processes were used for structuring data in the format corresponding to
their functional definitions. For instance, to collect some vectors of subkeys and
produce them as a vector of vectors of vectors of items. Such use also plays a
big role in occupying larger silicon area after realization.

If we consider the implementation of an algorithm without using our
proposed method, we might implement the whole design with a small num-
ber of macros and minimum use of communications. Moreover, possible hand-
made enhancements could be done with the aid of shared variables. This would
undoubtedly reduce the cost paid for communicating parallel processes imple-
mentation and might lead to a more economical realization and less congested
design with a higher frequency. This certainly comes as quid pro quo for the
step-wise development.

568 Damaj

T
a

b
le

II
.

T
e

s
ti

n
g

R
e

s
u

lt
s

o
f

S
e

rp
e

n
t

E
n

c
ry

p
ti

o
n

D
es

ig
n

M
et

ri
cs

F
ir

st
F

ul
ly

-P
ip

el
in

ed
Se

co
nd

St
re

am
-B

as
ed

T
hi

rd
P

ar
ti

al
ly

-P
ip

el
in

ed
(2

P
ar

al
le

l
an

d
29

Se
qu

en
ti

al
)

N
um

be
r

of
G

at
es

N
A

-S
im

ul
at

or
s

fa
ile

d
to

pr
od

uc
e

re
su

lt
s

du
e

to
th

e
de

si
gn

si
ze

an
d

si
m

ul
at

io
n

co
m

pl
ex

it
y.

11
48

85
N

A
N

D
s

22
21

21
N

A
N

D
s

N
um

be
r

of
O

cc
up

ie
d

Sl
ic

es
12

29
1

Sl
ic

es
(6

4%
)

19
19

8
Sl

ic
es

(9
9%

)
N

um
be

r
of

Sl
ic

e
F

lip
F

lo
ps

10
24

9
(2

6%
)

18
64

7
(4

8%
)

N
um

be
r

4
in

pu
t

L
U

T
s

90
41

(2
3%

)
16

97
5

(4
4%

)
To

ta
l

eq
ui

va
le

nt
ga

te
co

un
t

13
98

76
G

at
es

25
77

45
G

at
es

N
um

be
r

of
C

yc
le

s
13

14
N

A
M

ax
im

um
F

re
qu

en
cy

of
D

es
ig

n
12

.1
5

M
bp

s
12

.2
1

M
bp

s
T

hr
ou

gh
pu

t
56

.6
M

H
z

56
.7

M
H

z
M

ea
su

re
d

E
xe

cu
ti

on
T

im
e

5.
51

M
bp

s
N

A
M

ea
su

re
d

T
hr

ou
gh

pu
t

10
.5

3
M

s
10

.4
8

M
s

Parallel Algorithms Development for Programmable 569

Table III. Comparisons Among Similar FPGA Systems Implementing Optimized

Serpent

System Speed Clock Frequency Area
(Mbps) (MHz) (Slices)

Xilinx Virtex XCV 1000 FPGA [13] 77–333 10.2–19.4 5890–6467
Xilinx Virtex XCV 1000 FPGA [12] 431.4 NA 2152

Table IV. Comparisons Among Different Hardware Systems, With Respect to Num-

ber of Clock Cycles, Implementing The Serpent

System Number of Clock Cycles

RC-1000 2nd Stream-based Design 1314
Pentium Pro (32-bit processor) 1738
MorphoSys 1792
LA-64 Superscalar 2269
PA-RISC Based workstation 2415
Ada Boolean on 8-bit processors 11000
Ada bit-slice on 8-bit processors 34000
8-bit machines Boolean Implementation 70339

7. CONCLUSION

Mapping parallel versions of algorithms onto hardware could enormously
improve computational efficiency. Recent advances in the area of reconfigura-
ble computing came in the form of FPGAs and their high-level HDLs such
as Handel-C. In this paper, we build on these recent technological advances
by presenting, demonstrating, and examining a high-level hardware develop-
ment method. The used method creates a functional specification of an algo-
rithm without defining parallelism. Correspondingly, an efficient parallel imple-
mentation is derived in the form of CSP network of processes. Accordingly,
we create diffident parallel implementations in Handel-C. The presented work
included theory and practices about the suggested methodology. In this paper,
we observed a case study from applied cryptography, namely the Serpent algo-
rithm. The encryption block ciphers and key expansions were addressed. The
correctness, conciseness and clarity of the specification is emphasized. The
systematic and flexible refinements of the specification allowed the reasoning
about various implementations with different degrees of parallelism for each
case. The described designs ranged from fully pipelined, partially pipelined, to

570 Damaj

streamed input and output implementations. At this stage, the realization using
Handel-C is presented, emphasizing some code segments which tackled differ-
ent noted implementation pitfalls. Future work includes extending the theoreti-
cal pool of rules for refinement, the investigation of automating the development
processes, and the optimization of the realization for more economical imple-
mentations with higher throughput.

ACKNOWLEDGMENTS

I would like to thank Dr. Ali Abdallah, Prof. Mark Josephs, Prof. Wayne
Luk, Dr. Sylvia Jennings, and Dr. John Hawkins for their insightful comments
on the research which is partly presented in this paper.

REFERENCES

1. Xilinx, Information available from, http://www.xilinx.com
2. Altera, Information available from, http://www.Altera.com
3. Celoxica, Information available from, http://www.celoxica.com
4. S. Stepney, CSP/FDR2 to Handel-C Translation, Tech. Rep. YCS-2002-357, Department

of Computer Science, University of York (June 2003).
5. D. Edwards, S. Harris, and J. Forge, High performance hardware from java, Xilinx

Whitepaper http://www.xilinx.com
6. Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J. Stockwood, Hardware-

software codesign of embedded reconfigurable architectures, in Proceedings of the 37th
Design Automation Conference, Los Angeles, USA (2000).

7. N. Technology, Information available from, http://www.nimble.com
8. S. Network, Information available arom, http://www.systemc.org
9. G. Michaelson, N. Scaife, P. Bristow, and P. King, Nested Algorithmic Skeletons from

Higher Order Functions, Parallel Algorithms and Applications special issue on High
Level Models and Languages for Parallel Processing, 16(2–3):181–206 (August 2001).

10. A. E. Abdallah, Functional Process Modelling, Research Directions in Parallel Func-
tional Programming, Springer, Berlin (1999), pp. 339–360.

11. A. E. Abdallah, Derivation of Parallel Algorithms: From Functional Specifications
to csp Processes, in B. Moller (ed.), Proceedings of Mathematics of Program Con-
struction, Vol. 947 of Lecture Notes in Computer Science, Springer, Berlin (1994),
pp. 67–96.

12. A. E. Abdallah and J. Hawkins, Calculational Design of Special Purpose Parallel
Algorithms, in Proceedings of 7th IEEE International Conference on Electronics, Cir-
cuits and Systems (IEEE/ICECS), IEEE Computer Society Press, Silver Spring, MD
(2000), pp. 261–267.

13. A. E. Abdallah and J. Hawkins, Formal Behavioural Synthesis of Handel-c Paral-
lel Hardware Implementation for Functional Specifications, in Proceedings of the 36th
Annual Hawaii International Conference on System Sciences, IEEE Computer Society
Press, Silver Spring, MD (2003), pp. 278–288.

14. C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, Englewood Cliffs,
NJ (1985).

Parallel Algorithms Development for Programmable 571

15. A. E. Abdallah, Synthesis of Massively Pipelined Algorithms for List Manipulation, in
L. Bouge, P. Fraigniaud, A. Mignotte, Y. Robert (eds.), Proceedings of the European
Conference on Parallel Processing, EuroPar’96, LNCS 1024, Springer, Berlin (1996),
pp. 911–920.

16. J. Hawkins and A. Abdallah, Synthesis of a Highly Parallel JPEG Decoder Implemen-
tation from its Functional Specification, in Proceeding of IFIP Working Conference on
Distributed and Parallel Embedded Systems, Kluwer, Dordrecht (2004).

17. A. E. Abdallah, G. Simiakakis, and T. Theoharis, Formal Development of a Reconfig-
urable Tool for Parallel dna Matching, in Proceedings of 7th IEEE International Con-
ference on Electronics, Circuits and Systems (IEEE/ICECS), IEEE Computer Society
Press, Silver Spring, MD (2000), pp. 268–272.

18. I. Damaj, Higher-level Hardware Synthesis of the Kasumi Cryptographic Algorithm,
J. Comput. Sci. Technol. 22(1):60–70 (2007).

19. I. Damaj, Parallel Algorithms Development for Programmable Logic Devices, Adv.
Eng. Softw. 37(9):561–582 (2006).

20. S. Thompson and Haskell, The Craft of Functional Programming, 2nd Ed. Addison-
Wesley, Reading, MA (1999).

21. D. J. Russel, Fad: A Functional Analysis and Design Methadology, Ph.D. thesis, The
University of Kent at Canterbury, United Kingdom (August 2000).

22. I. Ltd., OCCAM 2 Reference Manual, Prentice-Hall International, Englewood Cliffs,
NJ (1988).

23. J. Peng, S. Abdi, and D. Gajski, Automatic Model Refinement for Fast Architec-
ture Exploration, in Proceedings of the The Asia-Pacific Design Automation Conference,
Bangalore, India (2002), pp. 332–337.

24. J. Bowen, M. Fränzle, E. Olderog, and A. Ravn, Developing Correct Systems, in Proc.
5th Euromicro Workshop on Real-Time Systems, IEEE Computer Society Press, Silver
Spring, MD (1993), pp. 176–187.

25. J. Bowen, C. A. R. Hoare, H. Langmaack, E. Olderog, and A. Ravn, A ProCoS
II project final report: ESPRIT Basic Research Project 7071, Bull. Eur. Assoc. Theor.
Compu. Sci. (EATCS), 59:76–99 (1996).

26. S. Abdi and D. Gajski, Provably Correct Architecture Refinement, Technical Report
CECS0329, Center for Embedded Computer Systems at University of California Irvine,
Irvine-USA (September 2003).

27. K. Claessen, Embedded Languages for Describing and Verifying Hardware, Ph.D.
thesis, Chalmers Univesity of Technology and Göteborg University, Sweden (April
2001).

28. J. Launchbury, J. Lewis, and B. Cook, On Embedding a Microarchitectural Design
Language within Haskell, in Proceedings of the 4th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ACM Press, New york (1999),
pp. 60–69.

29. J. Matthews, J. Launchbury, and B. Cook, Specifying Microprocessors in Hawk, in
Proceedings of the International Conference on Computer Languages, IEEE, 1998, pp.
90–101.

30. J. O’Donnell, Hydra: Hardware Description in a Functional Language using Recur-
sion Equations and High Order Combining Forms, in G. J. Milne (ed.), The
Fusion of Hardware Design and Verification, North-Holland, Amsterdam (1988),
pp. 309–328.

31. Y. Li and M. Leeser, HML: An Innovative Hardware Design Language and its Trans-
lation to VHDL, in Proceedings of the Conference on Hardware Design Languages,
Bangalore, India (1995).

572 Damaj

32. D. Barton, Advanced Modeling Features of MHDL, in In International Conference on
Electronic Hardware Description Languages, Las Vegas, Nevada (1995).

33. S. Johnson and B. Bose, DDD: A System for Mechanized Digital Design Derivation,
Tech. Rep. 323, Indiana University, Indiana (1990).

34. R. Sharp, Higher-Level Hardware Synthesis, Ph.D. thesis, Robinson College University
of Cambridge, Cambridge (November 2002).

35. M. Sheeran, muFP: A Language for VLSI Design, in Proc. ACM Symposium on LISP
and Functional Programming, ACM Press, New york (1984), pp. 104–112.

36. G. Jones and M. Sheeran, Circuit Design in Ruby, in Proceedings of the Formal Meth-
ods for VLSI Design, North-Holland (1990), pp. 13–70.

37. T. Cheung and G. Hellestrand, Multi-level equivalence in design transformation, in
Proceedings of International Conference on Computer Hardware Description Languages,
Chiba Japan (1996), pp. 559–566.

38. I. Page and W. Luk, Compiling Occam into Field-programmable Gate Arrays, in W.
Moore, W. Luk (eds.), FPGAs, Oxford Workshop on Field Programmable Logic and
Applications, Abingdon EE&CS Books, 15 Harcourt Way, Abingdon OX14 1NV, UK,
1991, pp. 271–283.

39. H. Jifeng, I. Page, and J. Bowen, Towards a Provably Correct hardware implemen-
tation of Occam, in G. Milne, L. Pierre (eds.), Correct Hardware Design and Verifica-
tion Methods (CHARME’93), Vol. 683 of Lecture Notes in Computer Science, Springer,
Berlin (1993), pp. 214–225.

40. C. T. Library, CSP/FDR2 to Handel-C translation, http://www.celoxica.com/tech-
lib/files/CEL-W0309221A18-133.htm

41. R. Anderson, E. Biham, and L. Knudsen, Serpent: A Proposal for the Advanced
Encryption Standard, in Proceedings of the First Advanced Encryption Standard (AES)
Conference, Ventura, CA (1998).

42. A. Elbirt and C. Paar, An FPGA Implementation and Performance Evaluation of the
Serpent Block Cipher, in Proceedings of the 2000 ACM/SIGDA 8th International Sym-
posium on Field Programmable Gate Arrays, ACM Press, New York, USA (2000), pp.
33–40.

43. P. Bora and T. Czajka, Implementation of the SERPENT Algorithm using ALTERA
FPGA Devices, Public Comments on AES Candidate Algorithms, Round 2 (October
2000).

44. A. Yip, W. Chetwynd, and B. Paar, An FPGA-based Performance Evaluation of the
AES Block Cipher Candidate Algorithm Finalists, IEEE Trans. Very Large Scale In-
tegr. (VLSI) Syst. 9(4):545–557 (2001)

45. K. Gaj and P. Chodowiec, Fast Implementation and Fair Comparison of the Final
Candidates for Advanced Encryption Standard using field Programmable Gate Arrays,
Lect. Notes Compu. Sci. 2020:84–100 (2001).

46. B. Gladman, Implementation Experience with Aes Candidate Algorithms, in Proceed-
ings of the 2nd AES Candidate Conference, Rome, Italy (1999).

47. V. Journot, Evaluation of Serpent, one of the Aes Finalists on 8-bit Microcontrollers,
in Proceedings of the 3rd AES Candidate Conference (2000).

48. R. Anderson, E. Biham, and L. Knudsen, Information available from,
http://csrc.nist.gov/encryption/aes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

