
DOI: 10.1007/s10766-007-0044-3
International Journal of Parallel Programming, Vol. 35, No. 6, December 2007 (© 2007)

AsynchronousTyped Object Groups
for Grid Programming

Laurent Baduel,1,2 Françoise Baude,1 and
Denis Caromel1

Received May 31, 2006; accepted March 23, 2007

This article presents an object-oriented mechanism to achieve group com-
munication in large scale grids. Group communication is a crucial feature
for high-performance and grid computing. While previous work on collec-
tive communications imposed the use of dedicated interfaces, we propose
a scheme where one can initiate group communications using the standard
public methods of the class by instantiating objects through a special object
factory. The object factory utilizes casting and introspection to construct a
“parallel processing enhanced” implementation of the object which matches
the original class’ interface. This mechanism is then extended in an evolution
of the classical SPMD programming paradigm into the domain of clus-
ters and grids named “Object-Oriented SPMD”. OOSPMD provides interpro-
cess (inter-object) communications via transparent remote method invocations
rather than custom interfaces. Such typed group communication constitutes a
basis for improvement of component models allowing advanced composition
of parallel building blocks. The typed group pattern leads to an interesting,
uniform, and complete model for programming applications intended to be
run on clusters and grids.

KEY WORDS: Java middleware; Group communication; object-oriented par-
allelism; SPMD programming.

1INRIA – I3S CNRS, University of Nice Sophia-Antipolis, 2004 route des Lucioles,
B.P. 93, Sophia-Antipolis Cedex, 06902, France. E-mail: laurent.baduel@sophia.inria.fr

2To whom correspondence should be addressed.

573

0885-7458/07/1200-0573/0 © 2007 Springer Science+Business Media, LLC

574 Baduel, Baude, and Caromel

1. INTRODUCTION

1.1. Context

Many distributed applications deal with intensive computations and
management of huge amounts of data which have to be transferred and
processed on multiple resources, e.g. on computing grids, in order to
improve the performance or scale the number of processing units involved
in the application. Typical examples include simulations applied to scien-
tific and engineering fields, or data acquisition and analysis from distrib-
uted measurement instrumentation and sensors.

In recent years many grid middleware platforms and toolkits have
been developed (e.g. Globus,(1) Legion,(2) Unicore,(3) Condor-G,(4)

HiMM(5)). These middleware platforms typically use unicast communica-
tion mechanisms implemented on top of reliable protocols. Performance
of programs on distributed memory parallel hardware infrastructures are
highly dependent of the efficiency of interprocess communications, and
performance could be improved by relying on one-to-many or many-to-
many communication mechanisms.(6) In the particular case of grids, some
experiments have already proven that applications can strongly benefit
from collective communication mechanisms.(7,8) Overall, this requires that
the decision to apply collective communication mechanisms is taken by
the programmers (be they programming the end-user application or the
middleware itself). The challenge is thus to provide both expressive and
efficient mechanisms for collective communications, while minimizing the
burden on programmers in using them. This is difficult in a grid envi-
ronment as they are heterogeneous by nature. In the past few years the
interest in using Java for both portable and high-performance comput-
ing has increased. Java provides an object-oriented programming model
with support for concurrency, garbage collection, and security. It features
multithreading and Remote Method Invocation (RMI)(9) (an object-ori-
ented version of Remote Procedure Call (RPC)(10)). In the Java world the
RMI mechanism is the standard point-to-point communication mecha-
nism and is adequate for client–server interactions via synchronous remote
method calls. In a high-performance computing context, however, asyn-
chronous and collective communication mechanisms are necessary, mak-
ing RMI unsuitable. Programming high-performance applications requires
the definition and the coordination of parallel activities, hence a library
for parallel programming should provide not only point-to-point but col-
lective communication primitives on groups of activities. This calls for a
way to represent and manipulate such groups. For instance, according to
the Object Group design pattern,(11) a group is a local surrogate for a set
of objects distributed across networked machines to which the execution

Asynchronous Typed Object Groups 575

of a task can be assigned. The Object Group pattern specifies that when
a method is invoked on a group, the runtime system sends the method
invocation request to the group members, waits for one or more member-
replies on the basis of a policy, and returns the result back to the client.
Groups are usually dynamic, meaning the set of group members can con-
tinuously change.

1.2. Contribution and Structure of the Article

This article advances the current state of the art with a new high
level and transparent group communication mechanism for object-oriented
parallel and distributed programming environments. Other attempts to
provide a solution for both parallel and distributed programming within
an object-oriented approach exist.(12–14) Our design, even if it has been
achieved in the context of the ProActive library goes farthest with respect
to the fulfillment with object-orientation. Shortly put, any distributed
object can become a member of a typed group, without additional con-
straint; a communication towards a group is designed and appears as a
smooth extension of a point-to-point remote method invocation on a dis-
tributed object. As a consequence of this design, getting a new SPMD
programming style but fully object-oriented is only a small step away.

ProActive(15) is a 100% Java library for parallel, distributed, concur-
rent computing with security and mobility. RMI is by default used as
the transport layer. Besides remote method invocation services, ProActive
features transparent remote Active Objects, asynchronous two-way com-
munications with transparent futures, high-level synchronization mecha-
nisms, migration of Active Objects with pending calls and an automatic
localization mechanism to maintain connectivity for both “requests” and
“replies”. This work reports on an extension of standard point-to-point
communications, as previously implemented in ProActive, to a model of
groups of Active Objects with group communication mechanisms.

At the programming level, groups can ease software development
since they simplify the implementation of some high-level computing
models, such as master-slave, pipeline, and work-stealing. At the commu-
nication level groups can reduce the communication overhead for several
reasons. First, the delivery of the same content to a collection of receiv-
ers can benefit from the group abstraction since specific optimizations can
be applied even if the underlying transport layer is based on unicast com-
munication. A first example of optimization is the serialization of param-
eter objects. Indeed, the network transfer of objects requires serialization
before sending them. Since serialization may take significant processing
time, sending the same object to the members of the group is significantly

576 Baduel, Baude, and Caromel

improved if the same serialized copy of the object is used for a unicast
transfer to each member. Using a thread pool to perform parallel method
invocations constitutes a second optimization. Finally, group communica-
tion can be implemented on top of a multicast transport layer for better
performance. This means the default communication layer (RMI) can be
changed. Indeed,(16) proves that it is possible to use a multicast commu-
nication layer. In particular, it presents the performance of the ProActive
group communication mechanism, the subject of the present article, using
the Tree-based Reliable Multicast Protocol (TRAM) included in the Java
Reliable Multicast Service (JRMS v1.1). Implementation specifics are not
the focus of this work, therefore optimizations will not be discussed fur-
ther. This article focuses on presenting the principles underlying a “typed
group” mechanism, and its suitability in the programming of a wide range
of parallel and distributed applications and tools. In particular, we present
in detail one application of the typed group mechanism to define a new
SPMD programming style we name Object-Oriented SPMD.

The article is structured as follows: Section 2 reviews the main paral-
lel programming features provided by the ProActive platform. This is the
basis for the typed group communication mechanism defined in Section 3.
Section 4 then describes how a fulfilled object-oriented Single Program
Multiple Data (SPMD) parallel programming model is built, grounded on
the typed group mechanism. Section 5 describes a few cases where this
mechanism shows significant benefits, thus justifying its relevance. Section
6 summarizes the work and presents conclusions.

2. THE ProActive MIDDLEWARE

ProActive is an LGPL Java library for parallel, distributed, and con-
current computing also featuring mobility and security in a uniform
framework. With a small core set of simple primitives, ProActive provides
a comprehensive API which simplifies the programming of applications
that are distributed on Local Area Networks (LANs), clusters, or grids.

As ProActive is built on top of the standard Java API,3 it does not
require any modification to the Java execution environment, nor does it
make use of a special compiler, pre-processor or modified virtual machine.

2.1. Base Model

A distributed or concurrent application built using ProActive is com-
posed of a number of medium-grained entities called active objects. Each

3Mainly Java RMI and the Reflection API.

Asynchronous Typed Object Groups 577

active object has its own thread of control and is granted the ability to
decide in which order to respond to the incoming method calls that are
automatically stored in a queue of pending requests. Method calls sent to
active objects are asynchronous with transparent future objects and syn-
chronization is handled by a mechanism known as wait-by-necessity.(17)

When a method is called on an active object, it returns immediately (as
a thread cannot execute methods on another active object). A future
object, which is a placeholder for the result of the methods invocation,
is returned. From the point of view of the caller, there is no difference
between the future object and the object that would have been returned
if the same call had been issued to a local, non-active object. The calling
thread can then continue executing its code as if the call had been per-
formed synchronously. The role of the future object is to block this thread
if it invokes a method on the future object and the result has not yet been
set (i.e. the active object on which the call was received has not yet per-
formed the call and placed the result into the future object): the wait-by-
necessity mechanism is this inter-object synchronization policy. Contrary
to classical RMI, all method call parameters sent to an active object are
passed by deep-copy. A deep-copy consists of cloning an object along with
the objects to which it refers. If either of these referred objects themselves
contain objects then a deep copy copies those objects as well, and so on
until the entire graph is traversed and copied. There is a short rendez-vous
at the beginning of each asynchronous remote call, which blocks the caller
until the call has reached the context of the callee.

Mobility of active objects is the ability to relocate, dynamically at
runtime, the components of a distributed application. The ProActive
library provides a way to migrate any active object from any JVM to
any other through the migrateTo(. . .) primitive which can either be
called from the object itself or from another active object through a pub-
lic method call. Migration is a useful to provide load balancing or to build
agent-oriented applications in which autonomous agents navigate through
the network to collect data and finally return to present them.

2.2. Mapping Active Objects to JVMS: Nodes

Another extra service provided by ProActive (compared to RMI, for
instance) is the capability to remotely create remotely accessible objects.
For that reason, there is a need to identify JVMs, and to add a few ser-
vices. Nodes provide those extra capabilities: a node is an object defined
in ProActive whose aim is to gather several active objects into a logical
entity. It provides an abstraction for the physical location of a set of active
objects. At any time, a JVM hosts one or more nodes. The traditional way

578 Baduel, Baude, and Caromel

to name and handle nodes is to associate them with a URL giving their
location, for instance rmi://lo.inria.fr/node. Let us consider some
Java class named MyClass. The instructions:
MyClass a1 = (MyClass) ProActive.newActive (“MyClass”,
params, myNode);
MyClass a2 = new MyClass(params)
create a new active object a1 of type MyClass on the JVM identified
by “rmi://lo.inria.fr/node”, and a regular Java object a2 of type
MyClass. The object a1 can be compared to a2 which has been locally
instantiated using traditional Java syntax. To any down stream processing
code expecting an object of class MyClass, a1 and a2 will appear to be
identical. Now all calls to that remote active object will be asynchronous,
and subject to wait-by-necessity:

a1.foo (. . .); // Asynchronous call
v = a1.bar (. . .); // Asynchronous call
. . .

v.f (. . .); // Wait-by-necessity: wait until v gets its
value
Compared to traditional futures, wait-by-necessity offers two important
features: (1) futures are created implicitly and systematically, (2) futures
can be passed to other remote processes.

Note that an active object can also be bound dynamically to a node as the
result of a migration. In order to help in the deployment phase of ProActive
components, and make the code more independent from the target hardware
configuration, an external XML file can instead be used to make the association
between logical node names used in the code and their real location: this is the
concept of virtual nodes as entities for mapping active objects, as introduced
in Ref. 18. Those virtual nodes are described externally through XML-based
deployment descriptors which are then read by the runtime system when the
ProActive environment is started. The goal is to be able to deploy an appli-
cation anywhere without having to change the source code, all the necessary
information being stored in those descriptors. As such, deployment descrip-
tors provide a means to abstract from the source code of the application any
reference to software or hardware configuration. It also provides an integrated
mechanism to specify external processes (e.g. JVM) that must be launched and
the way to do it.

3. GROUP COMMUNICATION

The RMI model only provides synchronous point-to-point communi-
cation. The communication model of ProActive enhances RMI by adding

Asynchronous Typed Object Groups 579

asynchronism, futures, automatic synchronization and wait-by-necessity.
Despite these improvements, parallel and distributed applications often
need more advanced communication strategies, such as group communica-
tion. These applications need the ability to combine many objects (remote
or local) to communicate with them in one go. Such operations must be
more efficient than replication of simple point-to-point communication,
while still preserving similar behavior. In addition we want to maintain
transparency regarding group communication, not only at the sending of
method invocations but also while the gathering of replies.

3.1. The Typed Group Model

Alternate approaches for parallel and distributed computing in Java
include the use of more dedicated and explicit parallel programming
frameworks, such as parallel and distributed collections(16) which hide the
presence of parallel processes, or implementations of MPI-like libraries in
an SPMD programming style.(20) As defined in Ref. 21, the group mecha-
nism we propose is more general, as it enables the construction of parallel
programming models, while providing group communication to distributed
applications originally not designed to be parallel.

The group communication mechanism is built on the ProActive’s sim-
ple mechanism for asynchronous remote method invocation with auto-
matic futures for collecting replies. As this last mechanism is implemented
using standard Java, the group mechanism is itself platform independent:
it requires no changes to the JVM, no preprocessing or compiler modi-
fication, as with the rest of ProActive the library. A group communica-
tion operation must be thought of as a replication of multiple ProActive
remote method invocations towards all the active objects within the group.
Of course, the aim is to incorporate optimizations into the group mecha-
nism implementation in such a way as to achieve better performance than
a sequential execution of N individual remote method calls. In this way,
our mechanism is a generalization of the remote method call mechanism
already used in ProActive, built upon RMI, however nothing prevents an
implementation of this group communication strategy from using other
transport strategies.

The availability of such a group communication mechanism simplifies
the programming of applications with similar activities running in parallel.
It is natural to group together similar activities because they are likely to
receive the same data or the same instructions through method invocations.
In an object-oriented framework, this idea of similar activities is represented
by all members of a group implementing a common interface, or extending
a common superclass. Indeed, from the programming point of view, using a

580 Baduel, Baude, and Caromel

group of active objects of the same type, subsequently called a typed group,
takes exactly the same form as using only one active object of this type.
The multi-communication to each member of a group is abstracted from
the code and is implicit for a grouped active object — only the functional
(i.e. common interface) aspects are then visible in the code.

The construction of such groups is possible due to the ProActive
library’s use of reification techniques: the class of an object that we want
to make “active”, and thus remotely accessible, is reified at the meta-level,
at runtime. Method calls to an active object are executed transparently
through a stub which is type compatible with the original object. The
stub’s role is to consider and manage the call as a first class entity and
apply to it the required semantics: if it is a call to a single remote active
object, then the standard asynchronous remote method invocation of Pro-
Active is applied; if the call is to a group of objects, then the semantics of
group communication are applied.

3.2. Summary of the Group Communication API

Given a Java class, one can initiate group communications using the
standard public methods of the class together with the classic “dot” (i.e.
object.method()) notation; in this way group communications remain
typed. Furthermore, groups are automatically constructed to handle the
result of collective operations, providing an elegant and effective way to
program gather operations.

Here is an example of a typical group creation using the Java class
MyClass presented earlier:

// A group of type “MyClass” and its 3 members are cre-
ated at once on the

// specified nodes, parameters are specified in params,
Object[][] params = {{. . . }, {. . . }, {. . . }};
MyClass agroup = (MyClass) ProActiveGroup.newGroup(“My-
Class”, params, {node1,node2,node3});

Elements can be included in a typed group only if their class matches
or extends the class specified during group creation. Note that we allow
polymorphic groups. For example, an object of class NewClass (New-
Class extending MyClass) can be included in a group of type MyClass.
However based on Java typing, only the methods defined in MyClass can
be invoked on the group. Groups can also be dynamically modified, add-
ing or removing members, or extracting a sub-group from a typed group.

Method invocation on a group has an identical syntax to standard
method invocation:

agroup.foo(. . .); // A group communication

Asynchronous Typed Object Groups 581

3

2

1

future 1 future 2 future 3

remote node 1

Active Object Aremote node 3

agroupxg

Active Object
group

result group

Local node

remote node 2 Active Object A

Active Object A

Fig. 1. Method call on group.

Such a call is propagated to all members of the group using mul-
tithreading: a method call on a group transforms into a method call on
each of the group members. If a member is a ProActive active object, the
method call will be asynchronous, and if the member is a standard Java
object, the method call will be a standard Java method call (within the
same JVM). By default, the parameters of the invoked method are broad-
cast to all the members of the group.

An important observation of the group mechanism is that the result
of a typed group communication can also be a group. The resulting group
is transparently built at invocation time, with a future for each member of
the caller group. It will be dynamically updated with the incoming results,
thus gathering results as shown in Fig. 1 (see “result group”). The wait-by-
necessity mechanism is also valid on groups: if all replies are waiting then
the caller blocks, however as soon as one reply arrives in the result group
the method call on this result is executed, such as in the following exam-
ple:
AnotherClass xg = agroup.foo(); // xg is a typed group of
“AnotherClass”
xg.bar(); // This is also a collective operation

A new bar() method call is automatically triggered on a reply
from the call agroup.foo() as soon as this reply comes back in the
dynamically formed group xg. The instruction xg.bar() completes when
bar() has been called on all members: this constitutes a local synchroni-
zation point from the point of view of the initiator of the group method
call, i.e., certifying that all peers in the group agroup have executed the
method foo(). Another remark is that collected results which have been
gathered through the xg group can subsequently be merged. This is sim-
ilar to achieving a global reduction. The reduction operator can be any

582 Baduel, Baude, and Caromel

user defined method (such as bar() in the above example). Moreover,
the operator can be applied as soon as each result comes back. Even
if the reduction operation is not executed in parallel, its runtime cost
can be overlapped by the transmission delay of the not-yet-arrived results.
Besides, the mechanism provides some primitives to enable a finer treat-
ment of synchronizations. For instance: waitOne, waitN, waitAll,
etc. Here is an example:

AnotherClass xg = agroup.foo(); // To wait and capture the
first result:
AnotherClass x = (AnotherClass) ProActiveGroup.waitAndG-
etOne(xg);

Regarding the parameters of a method call to a group of objects,
the default behavior is to broadcast them to all members. Sometimes only
a specific subset of the parameters, often depending on the rank of the
member in the group, may actually be necessary for the method execution,
making the remainder of the parameters unnecessary. It therefore is neces-
sary to consider a standard mechanism to easily allocate different parts of
the parameter set to different members of the group.

The typed group communication provides a way to scatter the param-
eters of a method call between the members of the group. A common
way to achieve the scattering of global parameters is to use the member’s
rank within the group to select the appropriate parameter subset for the
member’s method execution. The natural extension of this idea to typed
groups is that an object group is created where the type of the group is
a “parameter” object and the group of parameter objects is then interpo-
lated with a method call to a group of active objects, such that the nth
active object method call in the group is passed the nth parameter object
from the parameter group.

Like any other object, a group of parameters of type Param can
be passed instead of a single parameter of type Param specified for a
given method call. The default behavior regarding parameter passing for
a method call on a group is to pass a deep copy of the group of type
Param to all members.4 Thus, in order to scatter this group of elements
of type Param instead the programmer must apply the static method set-
ScatterGroup of the ProActiveGroup class to the group. In order to
switch back to the default behavior, the static method unsetScatter-
Group is available.

4If the members of the group of type Param are in fact active objects or groups, then
only copies of the references are made. The group collecting such members does not con-
tain a copy of those active objects or groups but only references to them.

Asynchronous Typed Object Groups 583

The control of diffusion (broadcast) and distribution (scatter) is very
fine. It can be specified parameter by parameter. Non-group object are
always broadcasted. As presented in the code below, distribution and
diffusion of data can be performed in the same group communication.

// Broadcast the object a and the groups bg and cg to
all the

// members of the group agroup:
agroup.foo(a, bg, cg);

// Change the distribution mode of the parameter group
cg:
ProActiveGroup.setScatterGroup(cg);

// Broadcast the object a and the group bg but
// scatter the members of cg onto the members of ag:

agroup.foo(a, bg, cg);

If the parameter group is bigger than the target group the excess
members of the parameter group will be ignored. Conversely, should the
target group be larger than the size of the parameter group, then the mem-
bers of the parameter group will be reused in a round-robin (cyclic) fash-
ion. Note that this parameter dispatching mechanism is in many ways a
very flexible one. It provides:

• automatic sending of a group to all members of a group (default),
• the possibility to scatter parameters to groups in a cyclic man-

ner(setScatterGroup),
• the possibility to mix non-group, group, cyclic-scatter group as argu-

ments in a given call.

All of this is achieved without any modification to the method signature.

3.3. Exceptions and Failures

The failure model provides a mechanism to handle the failure of a
method execution or of a method invocation. In the Java framework fail-
ures and errors are expressed with Exceptions. We can distinguish two
kinds of exceptions: the exceptions raised during the method execution
and the exceptions raised by the system or the middleware. The first class
of exceptions are to be expected while the second should not, as they rep-
resent errors in the system or middleware which (in general) is assumed
to be stable and error free. In case of a failure of any call the standard
approach taken by the JVM is to stop the call and propagate at most one
exception. However, since groups are transparent for the functional aspect
(method invocation) and rely on communicating with all the members,

584 Baduel, Baude, and Caromel

the failure of one call should not prevent other calls from terminating.
Furthermore, multiple failures could arise during a single group commu-
nication operation. Consequently, we define a more suitable mechanism of
managing exceptions of any kind that may occur during group communi-
cations:

• exceptions are not directly propagated, but are transparently caught
and stored for later handling. A structure is introduced in order to
store raised exceptions, and inspect them at any time (before the
call completes, or after). If a member of a group communication
raises an exception, this exception is stored in the result group
at the exact place where the result is expected. Exceptions are
stored in an object named ExceptionInGroup that contains a
reference to the object on which we tried to invoke the method
which triggered the exception. This allows identification of the
object that (possibly) experienced a failure. ExceptionInGroups
are collected into an ExceptionGroupList that extends Run-
timeException, which can be iterated over. For instance:

// xg may contain exceptions
AnotherClass xg = agroup.foo();
// Gets the Group interface
Group group _xg = ProActiveGroup.getGroup(xg);
ExceptionGroupList el = group xg.getException-
GroupList();
. . . // Iterates on the exceptions

• The group communication system does not remove a failed mem-
ber from a group. It is the programmer’s responsibility to do that.
A method invocation on a group, therefore, ignores the members
that are Exceptions. The call is only propagated to valid mem-
bers. In order to maintain the ordering property, a null reference
is placed in the result group at the same index as the exception
member.

// The call to bar() is not relayed on the exceptions
contained in xg
ThirdClass yg = xg.bar(); // yg may contain null mem-
bers

The group communication system assumes that it is not able to
resolve the exceptions itself (i.e. determine if the member is lost, momen-
tarily unavailable, or if the exception is an expected behavior). It only
avoids the propagation of errors; i.e. invalid method invocations on a

Asynchronous Typed Object Groups 585

failed group member. Besides, group method calls never critically fail: if
the active object is disconnected from the network its call will result in
an ExceptionGroupList object containing all communication errors; if
the caller object disappears (crash or disconnection) once the call has been
performed, the method call will be executed on the remote objects even so
the caller is absent to collect results. It is the responsibility of the applica-
tion to program its behavior in case of faults. For instance, assume that
the application must stop to wait for the result of a group method call,
in case any one call fails. It is possible to program this based upon the
iterative use of one of the synchronization primitives mentioned before, as
waitOne., so as to be aware of the occurrence of any exception as soon
as possible.

3.4. Benchmarks

Figure 2 plots the average time (in milliseconds) to perform one asyn-
chronous method invocation on a group of objects, with different sizes for
the group. The group members are distributed on 16 machines (a cluster
of 933 MHz Intel Pentium III processors interconnected with a 100 Mb/s
Ethernet network). The curves represent the performance depending on
the number of threads used to make the calls. The more threads we use,
the smaller the delay to the group communication operation. The four
upper curves are associated with a fixed number of threads. The lowest is

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 50 100 150 200 250 300 350 400 450 500

)s
m

ni(
noitarud

egare va

number of objects in the group

1 thread
2 threads
4 threads
8 threads

adaptive threadpool

Fig. 2. Adaptative thread pool.

586 Baduel, Baude, and Caromel

associated with a dynamic number of threads. It shows better performance
because the number of threads is at any moment automatically and trans-
parently adjusted to the number required.

By default we associate to a group an adaptive pool of threads
in which the member/thread ratio may be adapted by the programmer
depending of the requirement of its application. The best ratio for effi-
cient group communications may depend on the group size, the size of
exchanged data, the frequency of communication, etc.

An additional number of threads is also maintained. There are two
interests of this. First, one may want to maintain a fixed number of
threads for a particular purpose: for instance maintaining only one thread
in order to emulate a mono-threaded sequential service. Second, additional
threads allow to early benefit of multithreading in small sized groups. So
the size of the thread pool varies as follows:

if ratio �= 0 : nbThreads = (nbGroupMembers / ratio)

+ additionalThreads

0 is a special value for the ratio. It means that the thread pool size is no
longer depending on the group size: it is no more dynamic, so:

if ratio = 0 : nbThreads = additionalThreads

We also leave the possibility to the programmer to define his own
thread pool’s size adaptation by redefining the adaptation method.

Figure 3 presents the average time (in milliseconds) to perform one
asynchronous method invocation depending on the amount of data to
send (with objects used as parameters). The group contains 80 objects
distributed on the same 16 machines. The upper curve shows the per-
formance without any operation optimization. The curve in the middle
plots the performance obtained by optimizing the reification operations.
The last curve represents the performance obtained by optimizing the reifi-
cation operations and the serialization. The gap between the two upper
curves represents the time spent performing multiple reifications of the
same method invocation. As the number of group members remains the
same during the whole experiment, the benefit of the optimized reification
is constant (one operation instead of 80), thus explaining the fixed gap size
between these two curves. In contrast, the optimized serialization becomes
more effective depending on the parameters size. Joint optimization pro-
vides even better performance, with up to a 3.9 speed up factor in the
example presented in Fig. 3.

Asynchronous Typed Object Groups 587

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500 4000

)s
m

ni(
noitarud

egareva
common ops with unique serialization

common ops
no common ops

number of Objects used as broadcasted parameters

Fig. 3. Factorization of common operations.

To build large applications, ProActive provides hierarchical groups: a
group of objects that is built as a group of groups. This mechanism helps
in the data structuring of the application and makes it much more scal-
able. A hierarchical group is easily built by adding group references to
a group. This operation is simple because groups appear as single typed
objects, and thus can be added into another typed group. Type compati-
bility is the only condition for one group to be added into another group.
Here is an example showing the creation of a hierarchical group:

// Two groups
MyClass ag1 =(MyClass)ProActiveGroup.newGroup(“MyClass”,
. . .);
MyClass ag2 =(MyClass)ProActiveGroup.newGroup(“MyClass”,
. . .);

// Get the group representation
Group gA = ProActiveGroup.getGroup(ag1);

// Then, add the group ag2 into ag1
gA.add(ag2);

// ag2 is now a member of ag1

Note that one can merge two groups, rather than add them in a hier-
archical way. This is provided through the addMerge() method of the
Group interface.

588 Baduel, Baude, and Caromel

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 200 300 400 500 600 700 800 900 1000

)s
m

ni(
noitarud

egareva

number of nodes

one−way call
asynchronous call
synchronous call

Fig. 4. Hierarchical group on Grid’5000.

By default, groups are local, but it is possible to make them remotely
accessible. A remotely accessible group is similar to a service: a message is
first addressed to the service, and then forwarded to the group members.
ProActive provides an easy way to transform any object into a remotely
accessible object thanks to the turnActive() method. As such, a typed
group may be turned into an active object, called an “active group”. In
this way a group earns all the features of an active object. It becomes
remotely accessible, is served by a FIFO message queuing policy, and can
be migrated.

The Grid’5000 project aims at building an experimental grid platform
gathering nine geographically distributed sites in France, heterogeneously
combining up to 5000 processors. Figure 4 presents the performance of
communication in a hierarchical group deployed on the Grid’5000 plat-
form. During these tests, each of the nine sites hosted one subgroup. The
nine subgroups were then added into a hierarchical group created on one
site.

The “one-way call” curve plots the time for a method call without
result to reach the subgroups. This time is constant whatever the number
of nodes, just because the caller has only to be blocked until the call has
reached all subgroups whatever the total number of sites in the Grid (but
the number of subgroups remain the same in the entire experiment). The
“asynchronous call” curve plots the time for all the subgroup members to

Asynchronous Typed Object Groups 589

receive the method call, and includes the operation of building the result
group and all the futures since the method used returned a result. It can
be seen that the time remains constant despite the increasing number of
member nodes. The reason for this is that there are 10 – 60 nodes per sub-
group on each site. At this scale the time for a group communication on a
local LAN is negligible in contrast to site-to-site communication latencies.
Finally the “synchronous call” curve plots the time for the communication
to fully complete; it means the time for all the members to return a result
and for all the subgroups to notify the hierarchical group. The results are
more sensitive to the number of nodes because they are directly linked to
the performance of the slowest computer in the benchmark.

Overall, this benchmark demonstrates that a typed group communica-
tion can be made scalable from the caller point-of-view perceived perfor-
mances.

4. SPMD PROGRAMMING

The SPMD5 parallel programming paradigm is a common way to
organize a parallel program to be run on clusters of workstations, par-
allel machines, and, more recently, on grids. A single program is writ-
ten and loaded onto each node of a parallel computer. Each copy of
the program runs independently, other than for the coordination events.
Each copy of the program (process) owns a rank number which acts
as a unique ID. The specific path through the code is in part selected
by this unique ID. Traditional SPMD languages typically do not pro-
vide implicit data transmission semantics, but rather communication pat-
terns like explicit message-passing implemented as library primitives. This
simplifies the task of the compiler, and encourages programmers to use
algorithms that exploit locality. Data on remote processors are accessed
exclusively through explicit library calls. The most famous environments
implementing an SPMD model are PVM (Parallel Virtual Machine) and
MPI (Message Passing Interface), both relying on explicit message-passing.

4.1. Adding Object Orientation to the SPMD model: Context

and Related Works

4.1.1. Explicit Message-passing Based Object-oriented Approaches

In the 1990’s, due to the increasing success of object-oriented pro-
gramming, many research groups have experimented with the idea of com-

5SPMD stands for Single Program Multiple Data.

590 Baduel, Baude, and Caromel

bining the usage of an object-oriented programming language (such as
C++ or Java) and MPI or PVM for writing and running parallel and dis-
tributed applications. The MPI-2 specification collects the notions of the
MPI standard as suitable class hierarchies in C++, defining most of the
MPI library functions as class member functions. This specification has
been further extended in Object-Oriented MPI (OOMPI)(22) in order to
be able to deal with the transmission of objects. More precisely, OOMPI
is a class library specification that encapsulates the functionality of MPI
into a functional class hierarchy to provide a simple, flexible, and intuitive
interface. OOMPI provides the capability for sending the data that is con-
tained within objects. Since the data contained within an object is essen-
tially a user-defined structure, OOMPI provides a means to build MPI
user-defined data types corresponding to object data and to communi-
cate that data in the same manner as communicating primitive data types.
These approaches have been further developed with the success of Java
and have now led to two main classes of message-passing SPMD within
Java:

• a wrapping of the native MPI implementation library within the
object-oriented language (e.g. mpiJava(23), or JavaMPI(24) where
wrappers are automatically generated)

• an MPI-like implementation of a message-passing specification, writ-
ten using the object-oriented language itself, and available as a
library such as MPIJ(25), or MPJ(26) in which notions such as com-
municators, datatype, etc., are modeled as classes.

By 2000–2002, these approaches were considered as a first phase in a
broader venture to define a more Java-centric high performance message-
passing environment. The main aim was to succeed in reconciling both
performance and portability, while not departing from the core goal of
offering MPI-like services to Java programs.

4.1.2. Remote Method Invocation Based Approaches

To reproduce SPMD parallelism model in a pure object-oriented way
we rely on the following association: by relating a ProActive’s group
of active objects to an SPMD model’s group of parallel ‘machines’, we
associate an active object ‘thread of execution’ with each ‘machine’ in
the parallel computation. As noted in Ref. 12, this SPMD style can even
be combined with a client/server model so as to yield a mixed style. We
think this is very appropriate to one application of grid computing: the
coupling of a parallel object-oriented SPMD computation to an exter-
nal and remote application that is in charge of (for instance) steering

Asynchronous Typed Object Groups 591

and visualization. All mechanisms based on remote method invocation
for communication among activities take for granted that this enables the
exchange of any typed data, by automatic marshaling-unmarshaling. This
is clearly better suited to an object-oriented paradigm in comparison to
explicit message-passing in which send and receive operations must be
explicitly programmed in matched pairs.

One such approach based on Java remote method invocation, but
generalized to support communication between more than two parties, is
the object-based Collective Communication in Java.(20) CCJ specifically
aims at adding collective operations to Java’s object model, implemented
on top of RMI. Parallel activities are expressed as thread groups and
not as object groups (in fact, activities in Java are expressed by threads
which are orthogonal to objects; so, in CCJ the two concepts remain sepa-
rated, whereas our approach unifies the concept of a thread and an object
through the concept of active object6). As threads may belong to several
groups, this implies that any method of the CCJ API (e.g. barrier,
broadcast, reduce) aiming at executing an MPI-like collective oper-
ation must have the reference of the thread group as a parameter. This is
similar to passing the communicator as a parameter in any MPI commu-
nication. In CCJ all threads in a group belong to the same program and,
in particular, any collective operation must be called on all threads in the
implied group. Despite its effort, CCJ fails to fully embrace a full object-
oriented model. CCJ actually has to be considered more as a translation
of MPI into the Java framework than an innovative solution to create a
new programming style inheriting from object-oriented programming and
message-passing programming. The set of methods provided by the CCJ
API are static methods which eliminate the possibility of directly using the
interface of the object. Furthermore, CCJ requires the objects in a thread
group to implement specific interfaces and extend a specific class of the
API. This requirement is a significant limitation as it impacts on the appli-
cation conception and eliminates code reuse from existing applications.

Another approach is found in GMI(27), where the underlying com-
puting model is Java RMI, which is extended towards groups. In GMI,
RMI concurrency-related problems must be explicitly taken into account
by the programmer. GMI is able to perform group method invocation
using the interface of the objects however we may regret the same con-
straint than in CCJ remains: there is an obligation to inherit from specific
classes of the API. Furthermore GMI uses an object-oriented approach
only for the method invocation on a group; the collecting of results is an

6The active object model we promote represents a consensus with respect to such orthog-
onality: each object can be assigned a thread for serving method calls.

592 Baduel, Baude, and Caromel

explicit process that dismisses transparency. Finally GMI lacks of dynam-
icity. First because groups are static, and second because communication
schemes (parameter broadcast or scatter) are defined by the programmer
while writing the program and can not be modified at runtime.

4.2. Object-Oriented SPMD

The proposed active objects group mechanism presented in Section
3 is already a usable and efficient basis for programming communicating
parallel applications using a pure object-oriented paradigm (an example
can be found in Refs. 28,29 for a computational electromagnetism appli-
cation). According to the features this typed group mechanism already
provides only a few SPMD-specific aspects are missing. Their addition
to the basic model is presented in this section. We name the resulting
approach Object-Oriented SPMD (OOSPMD for short) because it pro-
duces an SPMD programming style totally based on object-oriented mech-
anisms: the expression of parallelism, message distribution, data exchange,
and concurrency are available implicitly through the active object model.

4.2.1. Design and Principles

Our approach for parallelism and collective communications is to
group Java active objects into groups, which differs from the approach fol-
lowed in CCJ but is close to GMI. As seen in Ref. 30, we propose a
pure object-oriented SPMD programming model as an extension of the
basic typed group communication mechanism presented in Section 3. It is
extended in two specific ways: (i) the object groups supporting the distrib-
uted computation are further organized into a specific topology by way of
adding an ID for each member in the SPMD group and “neighbor refer-
ences”; and, (ii) collective operations have barrier synchronization provid-
ing a complete SPMD model in line with an object-oriented approach.

Concurrency management of multiple remote method invocations is auto-
matic and transparent when the group consists of active objects: only one
request is served at a time, and the default service policy of method invocation
requests is FIFO (although this can be customized if needed). This allows pro-
grammers to concentrate only on their functional code. Furthermore, based
on the active object paradigm, the ‘main’ method cannot be used to express
and run the core of the parallel task. Instead, the ‘main’ thread is devoted
to support only the sequential servicing of requests. This requires a different
approach to expressing the core of the SPMD task, specifically how the control
flow dedicated to the parallel algorithm is implemented.

Asynchronous Typed Object Groups 593

The SPMD features lacking in our basic typed group communication
mechanism fall into three categories:

• Identification of each member taking part in the parallel computation,
and concept of member position relative to the others; for instance
a neighboring relation among members. It can be expressed with a
basic ranking order or with more complex organizations.

• Expression of the entire program run by each member taking part
in the parallel computation. Among Multiple Programs Multiple
Data (MPMD) paradigms based on object groups, there are some,
like GridRPC on Network Enabled Servers such as NetSolve(31)

or Ninf,(32), where members act in a sense as passive servers only
activated by method calls triggered by clients. On the contrary, in
SPMD computing, all members must be active by their own even
if, for simplicity, they execute the same program. In ProActive, each
active object is a proper activity that enacts the sequential servic-
ing of requests. In our approach, the SPMD program will not be
expressed in a traditional “big loop” but instead as the implicit
result of a succession of service request executed in FIFO order.
As will be emphasized below, this way of expressing the core of an
SPMD program enables reactive, adaptable, and dynamic behaviour
not usually found in the traditional SPMD model.

• Full range of collective operations (communication and global syn-
chronization) among the members. Considering the presentation of
the typed group communications in Section 3, only the expres-
sion of global synchronization barriers is lacking and so will be
addressed in this section.

4.2.2. Summary of the OOSPMD API

An OOSPMD group is defined as follows: it is a group of exclu-
sively active objects where each member has a group proxy reference to
the group itself (see Fig. 5). Each active object in the SPMD group is
also provided with a specific rank in the group. SPMD groups are not
immutable. It is the programmer’s responsibility to ensure that possible
modifications of an SPMD group (add new member, remove member, etc.)
maintain the coherence of the group.

// A group of type “MyClass” and its members are cre-
ated at once by

// an external active object
Object[][] params = {{. . . }, {. . . }};
Node[] nodes = {. . . , . . . , . . . };

594 Baduel, Baude, and Caromel

Each has a reference towards the group itself
The members forming the SPMD group

The ’external’ active object

Fig. 5. An SMPD group.

MyClass ag = (MyClass) ProSPMD.newSPMDGroup("MyClass",
params, nodes);

// The computation on each member may now be started,
i.e.

// invoking a method called e.g compute() defined in
class MyClass ag.compute();

When each group member is created, one of the first actions is com-
monly to get the reference of the group it belongs to, its rank, and so on.
One must be careful to clearly distinguish a classical Java reference to the
object (this), and a ProActive asynchronous reference to it, as an active
object. The latter enables the active object to implement the parallel task.
In OOSPMD, the parallel task on any member of the SPMD group is run
by repetitively invoking asynchronous methods to itself, hence the need to
have a special asynchronous reference.

In our API there is no specific need to manage data exchange
and synchronization explicitly with send- or receive-like operations. This
approach is much simpler, as a member triggers data reception and han-
dling through the asynchronous servicing of methods. In other words
we do not need additional primitives to explicitly manage data exchange
and synchronization. The ordering of the receptions is based on the
FIFO ordered strategy (by default) for serving methods. Consequently, any
method call triggered by other members or even by an active object not
belonging to the group can be served between services of the method calls
sent by a member to itself.

Asynchronous Typed Object Groups 595

Concretely, the parallel task is implemented as iterative asynchronous
calls of a method (e.g. named loop as in the code below) by the member
to itself, so as to maintain an activity. This implies that the reception of
data from other active objects in the system (whether or not they belong
to the SPMD group) is possible only between atomic method services (e.g.
servicing of loop()): indeed, receiving such data is effected by serving the
corresponding request that is next in the request queue. This implies that
any delay in the servicing of loop() is prohibited if the member wants
to receive data from other members. Triggering the next loop pertaining
to the activity must be done through a method call using the asynchro-
nous reference of the member.

// A reference to the typed group I belong to
MyClass a = (MyClass) ProSPMD.getSPMDGroup();

// An asynchronous reference to myself
MyClass me = (MyClass) ProActive.getStubOnThis();
int rank = ProSPMD.getMyRank(); // My rank in the group

// Start the ‘iterative’ loop by sending myself
// an asynchronous method call

me.loop();
// To iterate, loop() again calls me.loop()

Moreover, as in a traditional SPMD program, execution control is
exclusively based on if statements and process ID or rank numbers. In
our approach, switching execution control can also be based on dynam-
ically created groups at any moment at runtime. Such groups can be
derived from existing ones (sub-groups, or group combination for instance)
or according to any kind of properties (rank, fields of the object, etc.).

4.2.3. Topologies

To simplify the access to other activities in the group with which a
given member must communicate according to the parallel algorithm, it
is useful if the SPMD group is further organized according to Cartesian
topologies. We have defined the following topologies: line, plan, ring, cube,
hypercube, torus, torusCube (torus in 3 dimensions) and tetrahedron. Fur-
thermore, in contrast to statically designed topologies, the addition of new
topologies is open. Figure 6 presents possible logical organization given to
a group through such topologies.

Topologies are groups: any existing group may be understood as a
topology. Creating a topology from a group allows access to a specific
set of methods to make it possible to manipulate the neighborhood rela-
tionship between group members. Figure 7 presents the class hierarchy

596 Baduel, Baude, and Caromel

TetrahedronLine Ring Plan Cube Torus Hypercube

Fig. 6. Topologies.

Cube

Plan

Line Ring

Torus
Tetrahedron Hypercube

Topology

Group

TorusCube

Fig. 7. Topologies classes.

of already existing topologies. The Topology abstract class inherits from
the interface Group.7 Topology can be extended to create new topol-
ogies or to redefine the access method to the neighbors. Three dimen-
sional structures (Cube and TorusCube) extend two dimensional ones
(e.g. Plan and Torus) that themselves extends One dimensional struc-
tures (e.g. Line and Ring): width, height and depth are successively
added to go from a 1D to 3D logical representation of activities, organi-
zation and interaction.

A topology is built by copying a group: it is quite similar to a
copy-constructor. References to the group members (and not the members
themselves) contained in the group are copied to the newly created topol-
ogy. The group and the topology become two distinct objects, so the mod-
ifications performed on one object is not reflected on the other. Here is a
topology creation example using the previously obtained SPMD group a

7More precisely, the Topology class extends the ProxyForGroup class that implements
the Group interface.

Asynchronous Typed Object Groups 597

(refer to code above):

// Organize my group as a 2D plan
Plan topology = new Plan(a, aWidth, anHeight);

The topologies provide methods to easily access the neighbors of a
specified activity, for example to access to the activities which are a priori
known to be most intensively interacting with the given activity. The set of
methods depends on the topology. For instance, a Line topology provides
left and right methods while a Cube topology provides left,
right, up, down, ahead, behind, line, and plan. Those meth-
ods ease the conception and the organization of distributed applications
by avoiding long, difficult and error-prone methods which manipulate the
group index in order to emulate a complex structure. Additionally, all
topologies provide a neighbors() method which returns a group com-
posed of the close objects of a given member. For instance, the neigh-
bors() method of Line returns a group composed of the left and right
neighbors; the neighbors method of Plan returns a group composed of
the left, right, up and down neighbors. The notion of “neighborhood” is
strongly attached to the topology. By extending a topology, the program-
mer may reformulate the neighborhood definition to best fit the needs of
the application. Here is a basic example illustrating access and communi-
cation with neighbors:

// Get a reference to my neighbors in the plan
MyClass left = (MyClass) topology.left(me);
MyClass down = (MyClass) topology.down(me);

// One-way communication with neighbors in an asyn-
chronous fashion
left.foo(params);
down.foo(params);

There are two ways to obtain Topology objects. The first one is
to explicitly invoke a constructor with the new operation as previously
illustrated. The second one is to extract a new topology from an existing
one. It is obvious that a plan can be considered as a set of horizontal
or vertical lines, for example. Many topologies provide methods return-
ing topologies. By extracting sets that possibly share a common behavior,
such methods ease the construction of distributed applications. Here is an
example:

// Get a reference to the topology formed by the first
line of the plan
Line line = topology.line(0);

598 Baduel, Baude, and Caromel

// Get a reference to the topology formed by the first
column
Line line = topology.column(0);

As topologies are groups, and any group is also a typed group, all
topologies can be viewed as a typed group: in this case we can also call
it a typed topology. The get By Type method converts the topologies
into typed groups as presented in Section 3. Like a typed group, a typed
topology exposes a common interface of its members. Method invoca-
tions achieve communication with all group members. The group commu-
nication semantics which have already been presented are applied to per-
form such method calls. The following example presents communications
addressed to topologies:

// Convert the topologies into typed topologies
MyClass gplan = topology.getByType();
MyClass gline = line.getByType();

// communicate with the topologies’ members
gplan.foo();
gline.foo();

4.2.4. Synchronization Barriers

The only collective behavior related methods of our OOSPMD API
pertain to global barriers. The standard definition of a global barrier is
that all members in the group (or those enrolled in the barrier, see below)
must not proceed further in their computation until all the members have
reached the barrier. Given the active object model, we propose a slightly
different but more appropriate semantic: from the viewpoint of a member
reaching a barrier, it is effective (i.e. it blocks the member) not immedi-
ately, but in the future: more precisely at the exact moment when the cur-
rent service has terminated. In practical terms, all instructions lying after
the barrier in the current method being served will be executed. Never-
theless, the usual meaning of a global synchronization barrier is respected
but it pertains to the servicing of the next request instead of pertaining to
the next instruction. When encountering a barrier, the service of the first
incoming request from an SPMD group member waiting in the request
queue will be able to proceed on any enrolled member only when all have
reached the barrier. As mentioned earlier, requests originated from “exter-
nal” objects may be served before this.

A suspended activity remains able to receive requests and put them in
queue. In that way, all objects are allowed to communicate with the sus-
pended object. Even if those methods will not be served instantaneously,

Asynchronous Typed Object Groups 599

objects within the group can keep invoking group methods, even if
some objects are still waiting at the barrier. A barrier is limited to its
participants. It means that requests sent by an object not belonging to
the SPMD group involved in the barrier can be served, even if the activ-
ity is blocked by a barrier. Of course, it is the programmer’s responsibil-
ity to take care of this flexibility of being capable of servicing an exter-
nal request, while being currently blocked at a synchronization barrier. It
is important that objects manage inbound method servicing while they are
held at a barrier such that their state is not modified in a way that would
affect their behavior when they are released. In other words, an external
access to an object while it is held at a barrier must not affect the behav-
ior of that object or the object group past the barrier. Such flexibility in
barriers, even if it is an avenue for possible errors if misused can be helpful
to couple different applications together. For instance, consider a visuali-
zation tool to be connected to the SPMD code that computes the values:
the visualization tool could monitor or steer the parallel code in an asyn-
chronous manner, to get the current status or the most recent computed
values, even if this parallel computation is currently blocked due to the
barrier.

We propose three kinds of barriers, two global and one local:

• First, a total barrier, within which a string parameter represents a
unique identity name for the barrier. It is assumed that this blocks
all the members in the SPMD group.
ProSPMD.barrier("MyBarrier");

• A neighbor barrier, involving not all the members of an SPMD
group, but only the active objects specified in a given group. Those
objects, which contribute to the end of the barrier state, are called
neighbors as they are usually local to a given topology. An active
object that invokes the neighbor barrier must be in the group given
as a parameter.
ProSPMD.barrier("bar", neighborsGroup);
It is interesting to notice that the following instruction:
ProSPMD.barrier("bar", ProSPMD.getSPMDGroup());
is identical to a total barrier call. If the neighborhood involved in a
neighbor barrier is the whole SPMD group, then the neighbor bar-
rier becomes a total barrier.

• A method barrier stops the active object that calls it, waiting for a
request on all the specified methods to be served. The order of the
methods does not matter, nor the active objects they come from. As
such, this barrier is purely local, and does not trigger extra mes-
sages to be exchanged as do the two others. For example:

600 Baduel, Baude, and Caromel

ProSPMD.barrier({"foo","bar","gee"});
One may want a sequential treatment of the methods, meaning a
block on the current activity until first foo() has arrived, then
bar(), then gee(). This is achieved by invoking the method bar-
rier in the desired order, as follow:
ProSPMD.barrier({"foo"});
ProSPMD.barrier({"bar"});
ProSPMD.barrier({"gee"});

A method barrier does not need the involvement of the SPMD
group or of a neighbor group. In contrast to the previous barriers
(total and neighbor), the method barrier blocks the servicing of all
requests regardless of their origin (i.e. from a member of the SPMD
group, neighbor group, or otherwise).

Of course, none of these barriers are implemented with an active wait.
Resources are not consumed while waiting. The activity waits for the con-
dition to be satisfied to resume.

4.2.5. Example and Benchmarks

We illustrate OO-SPMD with a concrete example. We choose Jacobi
iterations because it is a simple application and easy to distribute in a tra-
ditional SPMD manner. The algorithm performs local computation and
communication to exchange data. The Jacobi method is a method of solv-
ing a linear matrix equation. Each element is solved by computing the
mean value of the adjacent values. The process is then iterated until it con-
verges to a given threshold. The following code shows the main loop (an
iteration based loop) of a solver. During an iteration, the value at a point
is replaced by the average of the up, down, left, and right neighbor val-
ues. External boundary values are fixed statically at the beginning of the
application and do not change at runtime.

while (!converged) {
for (y=1 ; y < MATRIX HEIGHT-1 ; y++) {

for (x=1 ; x < MATRIX WIDTH-1 ; x++) {
new(x,y) = (old(x,y-1) + old(x,y+1)
+ old(x-1,y) + old(x+1,y))/4;
if (abs(new(x,y) - old(x,y)) < THRESHOLD) {

converged = true;
}
exchange(new,old);

} } }

Asynchronous Typed Object Groups 601

The structure of this code is quite simple, so we use a coarse-grained
data-parallel approach to transform it into a similar parallel code. The
arrays old and new are distributed over nodes taking the form of active
objects. Each active object, named SubMatrix, is responsible for receiv-
ing the boundary values from adjacent sub-matrixes and computing its
own part of the data. As shown in Fig. 8, communications occur at block
boundaries. Each sub-matrix communicates with two, three, or four neigh-
bors, depending on their position (either at a corner, a border, or in the
center of the whole matrix). Communications appear at sub-matrix bound-
aries to send boundary values to neighbors and receive values of neigh-
bors.

4.2.5.1. MPI Jacobi. Using a message passing approach based on asyn-
chronous sends and receives with the MPI library the resulting parallel
code is necessary:

while (!converged) {
internal compute(&converged);
MPI Send(north border, SUBMATRIX WIDTH, MPI DOUBLE,
north, 1,

MPI COMM WORLD, &status);
MPI Recv(border received from north, SUBMATRIX
WIDTH, MPI DOUBLE,

north, 1, MPI COMM WORLD, &status);
// Repeat the same operations (send and receive)
for south, east, west
. . .

boundaries compute(&converged);
exchange(new,old);

} } }

The send and receive operations are repeated for each communication
with a neighbor (up to 4), even if the operations are very similar.

4.2.5.2. OO-SPMD Jacobi. Using our OO-SPMD approach, the code
becomes much more concise. The whole matrix is distributed and under-
stood as a two-dimensional topology using the Plan topology. The neigh-
borhood of any SubMatrix, named neighbors in the example, is
automatically obtained through methods of the Plan topology.

602 Baduel, Baude, and Caromel

... ...

...
Fig. 8. Jacobi distributed algorithm.

me = ProActive.getStubOnThis();
public void jacobiIteration() {

internal compute(); //updates converged
neighbors.send(boundariesGroup);
ProSPMD.barrier({"send", . . . ,"send"});
me.boundaries compute(); //updates converged
me.exchange();
if (!converged) me.jacobiIteration();

}
Synchronization is done by data flow, and the barrier ensures that the

sub-matrix and its neighbors have exchanged their own boundaries val-
ues before computing the whole boundaries. The method calls performed
after the barrier must be asynchronous (put in the queue of the active
object), hence the use of the me active object reference “to self”, other-
wise they would be served immediately, i.e. before the execution of the
barrier. Overall, according to the semantics of the barrier() method,
the data (i.e. parameter of send) will have been exchanged before the bar-
rier will be released, guarantying that any group member gets the data
in order to compute the boundaries values (boundaries compute()).
Data communications to all neighbors is performed using a scatter group
(the group of boundaries boundariesGroup): as the real parameter of
the send method is a scatter group, it is transparently scattered to each
member of the neighbors group. As for the MPI version, the construction

Asynchronous Typed Object Groups 603

of the structures containing boundaries values was not shown in the exam-
ple code. It only consists of building a group containing the boundaries.

An interesting property of our model is that it remains reactive. This
means that any part or any member of an OOSPMD application may also
serve incoming method call requests incoming from another application.
This is allowed by the fact that the parallel task is expressed as asynchro-
nous calls to a method (jacobiIteration() for instance): an external
request is thus able to come in between requests addressed to the active
object. We think this flexibility is very appropriate to one of the many pos-
sible applications of grid computing: the coupling of a parallel object-ori-
ented SPMD computation and an external and remote application that is
in charge of, for instance, steering or visualization.

The benchmark presented in Fig. 9 used a cluster of 16 933 MHz
dual-Pentium III 512MB (SDRAM) — 256 Kb L2 cache CPUs with Li-
nux RedHat kernel 2.4.20, interconnected with a 100 Mb/s Ethernet. For
the C/MPI version we used gcc 3.3.2 and MPICH 1.2.5.2. For the Java
version, we used the Sun Java Virtual Machine 1.5.0.

The graphic presents the average duration in milliseconds of one
Jacobi iteration depending of the amount of data contained on each node,
in millions of double. In Java one double is encoded on 8 bytes. Of course,
the C language with MPI remains more efficient than Java with RMI. But
the performance ratio of 3.3 (average) is maintained despite the growth
of data (see the curve labeled “ratio”). It is interesting to notice that 3.3

 0

MPI
OO SPMD

data size on each node (in millions of double)

D
MPS

−
O

O/ava J
dna

IP
M/

C
ne e

wteb
oitar

)s
m

ni(
noitareti

eno
f o

noitarud
egareva

 6

 5

 4

 3

 2

 1

 0
 30 25 20 15 10 5 0

 3500

 3000

 2500

 2000

 1500

 1000

 500

ratio

Fig. 9. Performances of C/MPI and Java/OOSPMD versions.

604 Baduel, Baude, and Caromel

is also the ratio of performance between Java and C for the sequential
versions. Our approach thus allows an efficient distribution and is scal-
able regarding data. For 29M of doubles (i.e. 221 MB sub-matrix), speedup
of the C/MPI version is 15.41 and duration of one iteration is 1061 ms;
speedup of the Java/OO-SPMD is 15.23 and duration of one iteration is
3094 ms.

In conclusion OOSPMD is a new programming style that inherits
from both object-oriented and SPMD programming styles. In addition to
the typed group mechanism, OOSPMD introduces the notion of a SPMD
typed group offering particular features: neighborhoods, topologies, and
dedicated barriers. This new style implies that applications that are to be
run on clusters or grids would need to be rewritten or at least deeply
modified which would require software development effort. Given this con-
straint, this new programming style is most applicable to new applica-
tions. The ProActive platform(15), however, provides an alternative way to
incorporate a legacy SPMD (MPI-based) code into an active object based
application. It relies onto a classical approach by having an active object
playing the role of a wrapper of the embedded MPI code, and an API
to be used within the MPI code to trigger data send and receive to and
from the wrapper (resulting in only minor modifications in the existing
MPI code). Doing this, the wrapped legacy MPI code can potentially be
incorporated into a larger set of active objects.

5. EXAMPLES

The objective of this section is to illustrate the applicability of the
typed group mechanism on some non-trivial and realistic applications. We
do not detail them, but give the key idea at which point the use of this
mechanism proved to be relevant. The first two examples are applications
in the usual sense, that are scientific, computation intensive, so parallel.
The third one illustrates its use within the definition of a framework (pres-
ently, the definition of a grid software component model). In this case, the
typed group mechanism is hidden to programmers, but is still relevant.

Let us notice that the Jacobi OOSPMD version described in Section
4.2.5 was presented to specifically illustrate the new SPMD programming
style. Besides, other applications were programmed without requiring the
usage of an OOSPMD typed group, but only simple typed group. We con-
centrate on one of them pertaining to scientific computing, named Jem3D
in the sequel, and on another one pertaining to financial risk computing,
named PicsouGrid in the sequel.

Asynchronous Typed Object Groups 605

5.1. Jem3D: Simulation of Electromagnetism Wave Propagation

in 3D

Jem3D numerically solves the 3D Maxwell equations modeling time
domain electromagnetic wave propagation phenomena. It relies on a finite
volume approximation method designed to deal with unstructured tetra-
hedral discretization of the computation domain (see Ref. 33 for more
details). A standard test case for which an exact solution of the Maxwell
equations exists (therefore allowing a precise validation of Jem3D with
regards to both numerical kernels and the parallelization aspects) consists
in the simulation of the propagation of an eigenmode value in a cubic
metallic cavity. For this test case, the underlying tetrahedral mesh is built
by defining a Cartesian grid discretization of the cube and then dividing
each element of this grid in six tetrahedra, where the local calculation of
the electromagnetic fields is performed. More precisely at each time step,
the resulting flux (i.e. the contribution of each tetrahedron to the elec-
tromagnetic fields) is evaluated: on each tetrahedron, it’s the result of the
combination of the elementary fluxes computed through all its four facets.

In the sequential version, after each step, the local values calculated
in a tetrahedron are passed to its neighbors, and a new local calculation
starts. In the parallel and distributed version, the cube is divided into sub-
domains which can be placed over different machines in order to have par-
allelism. Inside a sub-domain, the calculation behaves like in a domain
except that tetrahedra located on the boundary of a sub-domain have
to communicate their results to ones located in a different address space
through their border faces, using remote calls.

Jem3D is written completely in Java on top of ProActive.(28,29) Sub-
domains are active objects and communication between them is done
through the group communication mechanism exclusively. Each communi-
cation between sub-domains aims at sending a linked list whose elements,
one for each border face shared between a given pair of sub-domains, con-
tain one array of three doubles. Consequently, each sub-domain has a ref-
erence to a typed group of sub-domains with which it share tetrahedron
faces (the border faces). To send all elements to all sub-domains in a sin-
gle group communication, the linked lists are collected as a group, of type
scatter.

Experiments have been conducted using different mesh sizes and num-
ber of nodes, and compared with an equivalent MPI/Fortran version.
Regarding the ProActive version, we experimented the one where the stan-
dard RMI protocol is used as a transport protocol, and an other one,
where an optimized implementation of RMI (Ibis) is used. The perfor-
mances below were obtained on the Distributed ASCI Supercomputer 2

606 Baduel, Baude, and Caromel

0

100

200

300

400

500

600

700

800

900

2 4 6 8 10 12 14 16

)s(
e

mi
T

Number of nodes

51x51x51 Fortran
51x51x51 ProActive/Ibis

51x51x51 ProActive/RMI
81x81x81 Fortran

81x81x81 ProActive/Ibis
81x81x81 ProActive/RMI

0

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16

pudeepS

Number of nodes

51x51x51 Fortran
51x51x51 ProActive/Ibis

51x51x51 ProActive/RMI
81x81x81 Fortran

81x81x81 ProActive/Ibis
81x81x81 ProActive/RMI

Fig. 10. Execution time and speedup for the Java and FORTRAN.

(DAS2-2).8 The nodes are composed of Dual Pentium III CPU running
a 1 GHz with 1 GB or more memory, running Red Hat Linux and linked
with fast-Ethernet. Two remote sites of the DAS-2 are connected through
10 Gbits/s connections. We used the Sun JDK 1.4.2. for all our experi-
ments.

First the ratio between the sequential execution time of the Java and
FORTRAN versions is around 2.3 which we believe is good. Consid-
ering the distributed version, whose results can be seen in Fig. 10, the
Java ProActive version is, to no surprise, still slower than the FORTRAN
one. However, whereas the ratio of execution time ProActive RMI vs.
FORTRAN was almost all the time around 3.5, we achieved a much bet-
ter performance with ProActive Ibis, lowering this ratio to around 2.5,
very close to the sequential one.

5.2. PicsouGrid: Option Pricing in Finance

PicsouGrid is a software architecture, built using ProActive, with the
aim to offer a grid aware architecture for financial risk analysis, focus-
ing on options, one of the main instruments of financial risk manage-
ment.(34) The grid solution we introduced(35) has as main goal to create a
grid based set of distributed computing services, started at boot-time and
remaining up, ready to quickly process any client request, and fault-toler-
ant, in order to fulfill requests even in non-reliable environments.

Consequently, a hierarchical structure was adopted: a server (acting
as an entry point to the PicsouGrid) controls a set of sub-servers, which
in turn control a large number of workers. Sub-servers are collected as a
typed group. Each sub-server controls a set of workers, also managed as
a typed group. Many risk analysis are based on Monte Carlo simulations,

8A detailed description of its architecture can be found at www.cs.vu.nl/das2.

Asynchronous Typed Object Groups 607

and need to run at least a fixed number of simulations to achieve the
required accuracy. To achieve these stochastic computations as fast as pos-
sible, and in a reliable manner, the adopted solution consists in dividing
the number of tasks given the number of sub-servers; then each sub-server
sends tasks to workers until it has collected enough results. This trans-
lates into a group communication, first from the server to the sub-servers,
second to each sub-server to its workers, with group of futures to collect
the results. In case of failure of any member, it is immediately replaced by
a new one that replaces it in the group. The replacing member is imme-
diately given a piece of work through a point-to-point ProActive stan-
dard communication, and the corresponding group of futures is updated
accordingly.

We have evaluated PicsouGrid with a simple European option pric-
ing, on Grid’5000. The number of sub-servers needs to be adapted to the
size of the grid. On one site, one sub-server is enough to manage up to 40
workers, then 2 sub-servers are desirable to manage around 70 processors,
and then 4 sub-servers are desirable to manage more processors. Identi-
fying the best configuration need to be investigated in the future, but at
least, the group based architecture allows to set-up such numbers without
impact on the functional part of the application.

5.3. GCM: A Software Component Model Offering Collective

Interfaces

The software component-oriented approach has gained more and more
interest as an adequate support for grid applications programming, deploy-
ment, and dynamic reconfiguration. The most popular and already used com-
ponent model is Common Component Architecture (CCA), for which several
implementations already exist: DCA, XCAT, LegionCCA, etc.(36) However,
we recently promoted, within the context of the CoreGRID European Net-
work of Excellence, a new one, named GCM in the sequel. GCM builds upon
the hierarchical component model named Fractal.(37,38)

A Fractal component is formed out of three parts:

• A content that can be recursive. As a component can contain other
components, the model is hierarchical, and this property, unique to
Fractal, dramatically enhances code reuse and structuration.

• A set of controllers that provide introspection capabilities for mon-
itoring and exercising control over the execution of components.
Dynamic (re-)configuration is the key add-on of components
compared to say objects. Fractal controllers provide a proper
support to this.

608 Baduel, Baude, and Caromel

• A set of interfaces with which the component interacts with other
components, in a RMI like style. These interfaces can be either cli-
ent or server, and are interconnected using bindings.

As ProActive offers many features, such as distribution, asynchronism, and
mobility that would be interesting for Fractal components, an implemen-
tation of the Fractal API was developed on ProActive.(39)

However, parallel computation patterns such as those offered by
skeletons (master-slave, divide-and-conquer, etc) or SPMD models (includ-
ing SPMD codes coupling(40)), exhibit collective behaviors. Such patterns
are needed also in the context of component-based grid programming.(41)

Consequently, creating such patterns as compositions of components
requires the capability to expose the induced collective behaviors at the
level of components. Consequently, the GCM introduces the notion of col-
lective interfaces:(42)

• Multicast: a multicast interface transforms a single invocation into
a list of invocations. Its customization is done along two direc-
tions: selection of the bound components that will receive an invo-
cation, and how invocation parameters are distributed (they are
either broadcasted without modification, or scattered). By default,
the client using such an interface has to expect a list of results.
A third customization direction enables to specify a transformation
function in order to change this standard behaviour, possibly also
changing the type of the result (Fig. 11).

• Gathercast: a gathercast interface transforms a set of invoca-
tions into a single invocation. A gathercast interface coordinates
incoming invocations before continuing the communication flow.
Consequently, it acts as a synchronization barrier besides gathering

Fig. 11. A Multicast interface, showing two possible parameter distributions. (a) Invocation
Parameter and (b) scattered invocation Parameter.

Asynchronous Typed Object Groups 609

the invocation parameters. Its customization is done also along two
directions: selection of the bound components from which it will
receive an invocation, and how the result is propagated back to the
callers (either broadcasted or scattered). Like for the multicast case,
the server bound on such an interface has to expect a list for each
of the invocation parameters. So, a third direction of customization
enables to specify a transformation in order to change the result,
and possibly also the type, of parameters aggregation (e.g. through
a reduction function to yield one single value out of a collected set)
(Fig. 12).

• MxN: The MxN problem(43) pertains to the coupling of two paral-
lel components, one having an M cardinality, the other the N car-
dinality, in such a way that their data is efficiently exchanged, pos-
sibly subject to redistribution. In the GCM, this problem is natu-
rally expressed by connecting the two hierarchical components: on
the client side, a component with M inner components, offering a
gathercast interface, and on the server side, a component with N
inner components, offering a multicast interface. Redistribution of
data is configured through the respective collective interfaces con-
trollers. We are working on an optimization of the binding between
the gathercast and multicast interfaces to avoid the possible bottle-
neck of the collective interface at the level of the two composite
components, and consequently improve the efficiency of data redis-
tribution (see Fig. 13).

Fig. 12. A Gathercast interface, showing one parameter aggregation.

610 Baduel, Baude, and Caromel

Fig. 13. An optimized MxN interface, replacing the gathercast-multicast pair by M
multicast interfaces directly bound to N gathercast interfaces to express data redistribution.

It is obvious that the implementation of collective interfaces, specially
the multicast, can reuse the existing mechanism for typed group commu-
nications: the capabilities to have parameters be broadcast or scattered,
and the transfer of invocations in parallel to a dynamically formed set of
bound components.(44)

In this framework, components are being given their ‘grid-oriented’
nature by relying on ProActive active objects, and typed groups. This gives
interesting features:

• ease of use, thanks to transparency, and keeping configurability of
the collective behavior of interfaces, without relying on additional
components (as opposed to Ref. 45),

• performance, thanks to asynchronism and group communication
optimizations and the absence of intermediate components,

• while enabling deployment of those parallel and distributed compo-
nents on any grid middleware and platforms, and if needed, on any
heterogeneous combination of them.

6. CONCLUSION

We have presented an original approach to the handling of object
groups, and, more specifically, an elegant and efficient extension to the
classical typed method invocation mechanism applied to groups. This was
done with the general aim to ease parallel and distributed programming

Asynchronous Typed Object Groups 611

which is becoming increasingly complex and demanding with the emergence
of heterogeneous, large-scale distributed systems. This elegant, natural and
somehow transparent extension has been made possible mainly due to the
powerful mechanism that the ProActive library is based upon: a meta-object
protocol which reifies method call towards distributed object. Moreover, the
benchmarks we presented prove the scalability and efficiency of the mecha-
nism. Consequently, the research presented in this article gives strong argu-
ments in favor of meta-level based and object-oriented programming models,
even for high-performance parallel and distributed computing.

The group mechanism can directly be applied within standard object-
oriented parallel and distributed programs, such as those designed with
the active object pattern(28), some of them having been briefly presented in
Section 5. We have also shown that the mechanism can be very useful for
providing more elaborated and structured frameworks i.e. to build parallel
and distributed applications by software composition.

Nevertheless, we focused on the approach that is the most popular
in high-performance computing: the SPMD model. The original object-
oriented SPMD programming solution we define is a smooth and perfectly
integrated extension of the active object principle. We hope to have dem-
onstrated to the programmer that by using it programs can be grounded
on a single concept, the active object. Using this paradigm, the whole
spectrum of applications can be seamlessly targeted. This ranges from
sequential mono-threaded, concurrent and multi-threaded, distributed, up
to parallel and distributed applications.

One of our current works pertains on wrapping a legacy MPI parallel
program within ProActive active objects, and so to achieve the coupling
of MPI codes on the grid thanks to ProActive. A natural perspective is
to also apply this wrapping of a MPI code to expose it as a set of GCM
components: the active object associated to each component would be in
charge of translating interactions from the inside or the outside of the
MPI code into component interface invocations.

One of our broader research perspectives pertains to the a priori not
natural combination of SPMD and component-orientation for program-
ming a single application targeted to be run on a grid: our claim is that
programming for the grid ends up in defining a hierarchical but paral-
lel organization of quasisynchronized pieces of SPMD (usually legacy)
codes. The structure and depth of the software hierarchy should be able
to reflect and adapt to the physical structure and depth (e.g. multi-core
nodes, regrouped on multi-processors PCs, organized within clusters, then,
interconnected through wide area networks). We expect the hierarchical,
typed group of objects software mechanism we defined in this article, and
its smooth extension for supporting OO-SPMD groups to be very useful

612 Baduel, Baude, and Caromel

for this purpose. Indeed, we aim to organize the application into hier-
archical levels of composite, parallel components; each component inter-
acting and synchronizing along the OO-SPMD group associated to the
level it belongs to (and the same at each level of recursion). Moreover,
intra or inter-level effective communications among components can be
adapted to the properties of the underlying grid platform (e.g. if they are
firewalls to protect access to clusters), or to the nature of the communica-
tion link. Indeed, the way the group mechanism presented here has been
implemented is sufficiently flexible to allow it to be ported on any sort of
communication low-level protocol, including multi-point variants as briefly
mentioned in the introduction and detailed in Ref. 16.

REFERENCES

1. The Globus Project, http://www.globus.org.
2. A. Natrajan, A. Nguyen-Tuong, M. A. Humphrey, and A. S. Grimshaw, The Legion

Grid Portal, Concurrency and Computation: Practice and Experience 14(13–15):1365–
1394 (2002).

3. Unicore, http://unicore.sourceforge.net.
4. J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, Condor-G: A Computa-

tion Management Agent for Multi-Institutional Grids, in Proceedings of the 10th Inter-
national Symposium on High Performance Distributed Computing (HPDC-10’01). San
Francisco, California, USA: IEEE Computer Society, pp. 55–63 (Aug. 2001).

5. M. D. Santo, N. Ranaldo, and E. Zimeo, A Broker Architecture for Object-Oriented
Master/Slave Computing in a Hierarchical Grid System, in Proceedings of Parallel
Computing, Dresden, Germany (Sept. 2003).

6. S. Gorlatch, Send-receive Considered Harmful: Myths and Realities of message pass-
ing, ACM Transaction on Programming Languages and Systems, 26(1):47–56 (2004).

7. K. Jeacle, and J. Crowcroft, Reliable High-Speed Grid Data Delivery Using IP Mul-
ticast, in Proceedings of the UK e-Science All-Hands Meeting, Nottingham, United
Kingdom (Sept. 2003).

8. M. Maimour, and C. Pham, An Active Reliable Multicast Framework for the Grids,
in Proceedings of the International Conference on Computational Science, Amsterdam,
The Netherlands, pp. 588–597 (Apr. 2002).

9. Java Remote Method Invocation Specication, Sun Microsystems (Oct. 1998) ftp://ftp.java-
soft.com/docs/jdk1.2/rmi-spec-JDK1.2.pdf.

10. A. D. Birell, and B. J. Nelson, Implementing Remote Procedure Calls, ACM Transac-
tions on Computer Systems, 2(1):39–59 (1984).

11. S. Maffeis, The Object Group Design Pattern, in Proceedings of the Second USENIX
Conference on Object-Oriented Technologies, Toronto, Canada (June 1996).

12. J. Maassen, Method Invocation Based Communication Models for Parallel Program-
ming in Java, Ph.D. dissertation, Vrije Universiteit, Amsterdam, The Netherlands (June
2003).

13. A. S. Grimshaw, W. T. Strayer, and P. Narayan, Dynamic Object-Oriented Parallel Process-
ing, IEEE Parallel & Distributed Technology: Systems & Applications, 1(2):33–47 (1993).

14. C. Pérez, T. Priol, and A. Ribes, PaCO++: A Parallel Object Model for High Perfor-
mance Distributed Systems, In Distributed Object and Component-based Software Sys-

Asynchronous Typed Object Groups 613

tems Minitrack in the the 37th Hawaii International Conference on System Sciences
(HICSS-37), Hawaii, USA 2004, IEEE Computer Society Press, (2004).

15. ProActive, http://www-sop.inria.fr/oasis/ProActive.
16. L. Baduel, D. Caromel, N. Ranaldo, and E. Zimeo Effective and Efficient Communi-

cation in Grid Computing with an Extension of ProActive Groups, in Proceedings of
the Java for Parallel and Distributed Computing Workshop at IPDPS (2005).

17. D. Caromel, Towards a Method of Object-Oriented Concurrent Programming, Com-
munications of the ACM, 36(19):90–102 (1993).

18. F. Baude, D. Caromel, F. Huet, L. Mestre, and J. Vayssiere, Interactive and Descrip-
tor-Based Deployment of Object-Oriented Grid Applications, in 11th IEEE Interna-
tional Symposium on High Performance Distributed Computing (HPDC), Edinburgh,
Scotland: IEEE Computer Society pp. 93–102 (July 2002).

19. V. Felea and B. Toursel, Methodology for Java Distributed and Parallel Programming
Using Distributed Collections, in Proceedings of the Workshop on Java for Parallel and
Distributed Computing at IPDPS, Fort Lauderdale, Florida, USA (Apr. 2002).

20. A. Nelisse, T. Kielmann, H. E. Bal, and J. Maassen, Object-based Collective Commu-
nication in Java, in Joint ACM Java Grande - ISCOPE Conference. Palo Alto, Cali-
fornia, USA: ACM Press, pp. 11–20, (June 2001) iSBN 1–58113-359-6.

21. L. Baduel, F. Baude and D. Caromel, Efficient, Flexible, and Typed Group Communi-
cations in Java, in Joint ACM Java Grande - ISCOPE Conference, Seattle, Waghington,
USA: ACM Press, pp. 28–36 (Nov. 2002).

22. J. M. Squyres, B. C. McCandless, and A. Lumsdaine, Object Oriented MPI: A Class
Library for the Message Passing Interface, in Proceedings of the POOMA conference,
Santa Fe, New Mexico, USA (Feb. 1996).

23. M. Baker, B. Carpenter, G. Fox, S. H. Ko, and S. Lim, mpiJava: An Object-Oriented
Java interface toMPI, in International Workshop on Java for Parallel and Distributed
Computing, IPPS/SPDP, San Juan, Puerto Rico (Apr. 1999).

24. S. Mintchev and V. Getov, Towards Portable Message Passing in Java: Binding MPI,
in Recent Advances in PVM and MPI, Ser. LNCS, no. 1332, Springer Verlag (1997).

25. G. Judd, M. Clement, and Q. Snell, DOGMA: Distributed Object Group Metacom-
puting Architecture, Concurrency: Practice and Experience, 10(11–13):977–983 (1998).

26. B. Carpenter, V. Getov, G. Judd, A. Skjellum, and G. Fox, MPJ:MPI-like Mes-
sage Passing for Java, Concurrency: Practice and Experience, 12(11):1019–1038
(2000).

27. J. Maassen, T. Kielmann, and H. E. Bal, GMI: Flexible and Efficient Group Method Invo-
cation for Parallel Programming, in Sixth Workshop on Languages, Compilers, and Run-time
Systems for Scalable Computers (LCR’02), Washington D.C., USA (Mar. 2002).

28. L. Baduel, F. Baude, D. Caromel, C. Delbé, S. ElKasmi, N. Gama, and S. Lanteri,
A Parallel Object-Oriented Application for 3D Electromagnetism, in Proceedings of the
18th International Parallel and Distributed Processing Symposium (IPDPS), Santa Fe,
NewMexico, USA: IEEE Computer Society (Apr. 2004).

29. F. Huet, D. Caromel, and H. E. Bal, A High Performance JavaMiddleware with a
Real Application, in Proceedings of the Supercomputing conference, Pittsburgh, Pensyl-
vania, USA (Nov. 2004).

30. L. Baduel, F. Baude, and D. Caromel, Object-Oriented SPMD, in CCGrid 2005: IEEE
International Symposium on Cluster Computing and the Grid, Cardiff, United Kingdom
(May 2005).

31. NetSolve, http://icl.cs.utk.edu/netsolve.
32. Ninf-G, http://ninf.apgrid.org.

614 Baduel, Baude, and Caromel

33. S. Piperno, M. Remaki, and L.Fezoui, A Nondiffusive Finite Volume Scheme for the
Three-Dimensional Maxwell’s Equations on Unstructured Meshes, SIAM Journal on
Numerical Analysis, 39(6):2089–2108 (2002).

34. J. Hull. Options, Futures and Other Derivatives. Prentice Hall (2005).
35. S. Bezzine, V. Galtier, S. Vialle, F. Baude, M. Bossy, V-D. Doan, and L. Henrio. “A

Fault-Tolerant and Multi-Paradigm Grid Architecture for Time Constrained Problems.
Application to Option Pricing in Finance in 2nd IEEE Int. Conference on e-Science
and Grid Computing (December 2006).

36. R. Schmidt, M. Head, M. Govindaraju, M. Lewis, and S. Benkner, Design and
Implementation Choices for Implementing Distributed CCA Frameworks in HPC–
GECo/Compframe Joint Workshop at the 15th High Performance Distributed Computing
conference (HPDC-15’06), Paris, France: IEEE Computer Society (June 2006).

37. The Fractal Project, http://fractal.objectweb.org.
38. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The Fractal Com-

ponent Model and Its Support in Java, in Software Practice and Experience, Special
Issue on Experiences with Auto-adaptive and Reconfigurable Systems, Vol. 36, pp. 11–12
(2006).

39. F. Baude, D. Caromel, and M. Morel, From Distributed Objects to Hierarchical
Grid Components, in International Symposium on Distributed Objects and Applications
(DOA), ser. LNCS, no. 2888. Springer Verlag, pp. 1226–1242 (2003).

40. C. Pérez, T. Priol, and A. Ribes, A Parallel CORBA Component Model for Numeri-
cal Code Coupling, International Journal of High Performance Computing Applications,
17(4):417–429 (2003).

41. M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza, D. Puppin,
L. Scarponi, M. Vanneschi, and C. Zoccolo, Components for High Performance Grid
programming in the Grid.it Project, in Component Models and Systems for Grid Appli-
cations, V. Getov and T. Kielmann, eds, Springer, 2005, revised versions of the commu-
nications made at the Workshop on Component Models and Systems for Grid Appli-
cations at ACM International Conference on Supercomputing (June 2004).

42. Proposals for a Grid Component Model, CoreGRID, Programming Model Institute,
Tech. Rep. D.PM.02, Nov 2005, www.ercim.org/bscw/bscw.cgi/d98179/D.PM.02.pdf.

43. F. Bertrand, D. Bernholdt, R. Bramley, K. Damevski, J. Kohl, J. Larson, and
A. Sussman, Data Redistribution and Remote Method Invocation in Parallel Compo-
nent Architecture, in 19th International Parallel and Distributed Processing Symposium
(IPDPS’05) (Apr. 2005).

44. Matthieu Morel Components for Grid computing. PhD Thesis. Univ. of Nice Sophia-
Antipolis (Nov. 2006).

45. A. Mayer, S. McGough, M. Gulamali, L. Young, J. Stanton, S. Newhouse, and J. Dar-
lington, ‘Meaning and Behaviour in Grid Oriented Components,’ in 3rd International
Workshop on Grid Computing at Grid2002, Baltimore, Maryland, USA, pp. 100–111
(Nov. 2002) volume 2536 of LNCS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

