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As feature sizes shrink, transient failures of on-chip network links become
a critical problem. At the same time, many applications require guarantees
on both message arrival probability and response time. We address the prob-
lem of transient link failures by means of temporally and spatially redundant
transmission of messages, such that designer-imposed message arrival proba-
bilities are guaranteed. Response time minimisation is achieved by a heuris-
tic that statically assigns multiple copies of each message to network links,
intelligently combining temporal and spatial redundancy. Concerns regard-
ing energy consumption are addressed in two ways. First, we reduce the
total amount of transmitted messages, and, second, we minimise the appli-
cation response time such that the resulted time slack can be exploited for
energy savings through voltage reduction. The advantages of the proposed
approach are guaranteed message arrival probability and guaranteed worst
case application response time.

KEY WORDS: Networks-on-chip; communication synthesis; transient link
failures.

1. INTRODUCTION

Shrinking feature sizes make possible the integration of millions and soon
billions of transistors on multi-core chips. For example, new technolo-
gies such as Extreme Ultraviolet Lithography promise to deliver feature
sizes of 20 nm.(1) This allows for single-chip implementations of extremely
complex, computation-intensive applications, such as advanced signal
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processing in, for example, the military or medical domains, high-quality
multimedia processing, high-throughput network routing, and high-traffic
web services.

However, these technological capabilities do not come without unprec-
edented challenges to the design community. These challenges include
increased design and verification complexity and high-power density. At
this high-integration level, effects such as capacitive cross-talk, power sup-
ply noise, and neutron and alpha radiation (2,3) lead to non-negligible
rates of transient failures of interconnects and/or devices, jeopardising the
correctness of applications.

Several authors(4–6) have proposed network-on-chip (NoC) architec-
tures as replacements to bus-based designs in order to improve scalabili-
ty, reduce design, verification and test complexity and to ease the power
management problem.

With shrinking feature size, the on-chip interconnects have become a
performance bottleneck.(7) Thus, a first concern, which we address in this
article, is application latency.

The energy consumption of wires has been reported to account for
about 40% of the total energy consumed by the chip.(8) This is a strong
incentive to consider the communication energy reduction by means of
efficient utilisation of the on-chip communication channels. Thus, a second
concern is communication energy.

A third problem arising from shrinking feature size is the increas-
ing rate of transient failures of the communication lines. The reliability of
network nodes is guaranteed by specific methods, which are outside the
scope of this work. In general, 100% reliable communication cannot be
achieved in the presence of transient failures, except under assumptions
such as no multiple simultaneous faults or at most n bit flips, which are
unrealistic in the context of complex NoC. Hence, we are forced to tol-
erate occasional errors, provided that they occur with a rate below an
imposed threshold. Thus, a third concern is to ensure an imposed commu-
nication reliability degree under constraints on application latency, while
keeping energy consumption as low as possible.

We address the three identified problems, namely energy reduction
and satisfaction of timeliness and communication reliability constraints, by
means of communication synthesis. In this context, synthesising the com-
munication means mapping data packets to network links. The selection of
message routes has a significant impact on the responsiveness of applica-
tions implemented on the NoC. The communication reliability is ensured
by deploying a combination of spatially and temporally redundant com-
munication. This however renders the communication mapping problem
particularly difficult.
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The article is structured as follows. The next section surveys related
work. Section 3 introduces the notation used throughout the article and
presents the system model. Section 4 contains the precise formulation
of the problem that we solve in this article. Section 5 outlines our
solution approach. Sections 6, 7 and 8 dive into various specifics of our
approach, while Section 9 presents the experimental results that validate
our approach. The last section draws the conclusions.

2. RELATED WORK

Communication synthesis greatly affects performance and energy
consumption. Closest to our approach, which maps data packets to net-
work links in an off-line manner, is deterministic routing.(9,10) One of
its advantages is that it may guarantee deadlock-free communication and
the communication latency and energy consumption are easier to predict.
Nevertheless, deterministic routing can be efficiently applied only if traf-
fic patterns are known in more detail at design time. Under the assump-
tions that we make in this article, the communication mapping (and the
deterministic routing that results from it) is complicated by the fact that
we deploy redundant communication.

Wormhole routing(11) is a popular switching technique among NoC
designs. However, an analysis that would provide bounds on its latency
and/or energy consumption has yet to be devised. Therefore, we will
assume virtual cut-through switching,(12) whose analysis we present in Sec-
tion 7.

As opposed to deterministic routing, Dumitraş and Mărculescu(13)

have proposed stochastic communication as a way to deal with permanent
and transient faults of network links and nodes. Their method has the
advantage of simplicity, low-implementation overhead, and high robust-
ness w.r.t. faults. However, their method suffers the disadvantages of non-
deterministic routing. Thus, the selection of links and of the number of
redundant copies to be sent on the links is stochastically done at runtime
by the network routers. Therefore, the transmission latency is unpredict-
able and, hence, it cannot be guaranteed. More importantly, stochastic
communication is very wasteful in terms of energy.(14)

Pirretti et al.(15) report significant energy savings relative to Dumitraş’
and Mărculescu’s approach, while still keeping the low-implementation
overhead of non-deterministic routing. An incoming packet is forwarded
to exactly one outgoing link. This link is randomly chosen according
to pre-assigned probabilities that depend on the message source and
destination. However, due to the stochastic character of transmission paths
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and link congestion, neither Dumitraş and Mărculescu, nor Pirretti et al.
can provide guarantees on the transmission latency.

As opposed to Dumitraş and Mărculescu and Pirretti et al., who
address the problem of reliable communication at system-level, Bertozzi
et al.(16) address the problem at on-chip bus level. Bertozzi’s approach
is based on low-swing signals carrying data encoded with error resilient
codes. They analyse the trade-off between consumed energy, transmission
latency and error codes, while considering the energy and the chip area of
the encoders/decoders. While Bertozzi et al. address the problem at link
level, in this article we address the problem at application level, consider-
ing time-constrained multi-hop transmission of messages sharing the links
of an NoC.

In this article, we address all of the three identified stringent prob-
lems: link reliability, latency and energy consumption. We propose a solu-
tion for the following problem: Given an NoC architecture with a failure
probability for its network links and given an application with required
message arrival probabilities and imposed deadlines, find a mapping of
messages to network links such that the imposed message arrival proba-
bility and deadline constraints are satisfied at reduced energy costs.

Our approach differs from the approaches of Dumitraş and
Mărculescu(13) and of Pirretti et al.(15) in the sense that we deterministi-
cally select at design time the links to be used by each message and the
number of copies to be sent on each link.

Thus, we are able to guarantee not only message arrival probabilities,
but also worst-case message arrival times. In order to cope with the unre-
liability of on-chip network links, we propose a way to combine spatially
and temporally redundant message transmission. Our approach to commu-
nication energy reduction is to minimise the application latency at almost
no energy overhead by intelligently mapping the redundant message copies
to network links. The resulting time slack can be exploited for energy min-
imisation by means of voltage reduction on network nodes and links.

3. SYSTEM MODEL

This section introduces the notation used throughout the article and
presents the system model.

3.1. Hardware Model

We describe the system model and introduce the notations based on
the example in Fig. 1. The hardware platform consists of a 2D array of
W × H cores, depicted as squares in the figure, where W and H denote
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Fig. 1. Application example.

the number of columns and rows of the array, respectively. The cores are
denoted with Px,y , where x is the 0-based column index and y is the
0-based row index of the core in the array. The inter-core communication
infrastructure consists of a 2D mesh network. The small circles in Fig. 1
depict the switches, denoted Sx,y , 0 ≤ x < W , 0 ≤ y < H . Core Px,y is
connected to switch Sx,y , ∀0 ≤ x < W , 0 ≤ y < H . The thick lines con-
necting the switches denote the communication links. Each switch, except
those on the borders of the 2D mesh, contains five input buffers: one
for the link connecting the switch to the core with the same index as the
switch, and the rest corresponding to the links conveying traffic from the
four neighbouring switches.

The link connecting switch Sx,y to switch Sx,y+1 is denoted with
Lx,y,N while the link connecting switch Sx,y+1 to switch Sx,y is denoted
with Lx,y+1,S . The link connecting switch Sx,y to switch Sx+1,y is denoted
with Lx,y,E while the link connecting switch Sx+1,y to switch Sx,y is
denoted with Lx+1,y,W . Each link is characterised by the time and energy
it needs to transmit a bit of information.

3.2. Application Model

The functionality of an application is modelled as a set of tasks,
denoted with T = {τ1, τ2, . . . , τN }. Tasks are graphically represented as
circles, as shown in Fig. 1.

Data dependencies among tasks are graphically depicted as arrows
from the sender task to the receiver task, as shown in Fig. 1.
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The task that sends the message is the predecessor of the receiving
task, while the receiving task is the successor of the sender. The set of
predecessors of task τ is denoted with ◦τ , while the set of successors
of task τ with τ ◦. For illustration (Fig. 1), task τ2 has one predecessor,
namely task τ1, and one successor, namely task τ3.

Let us consider a sequence of tasks (τ1, τ2, . . . , τk), k > 1. If there
exists a data dependency between tasks τi and τi+1, ∀1 ≤ i < k, then
the sequence (τ1, τ2, . . . , τk) forms a computation path of length k. We say
that the computation path leads from task τ1 to task τk. Task τi is an
ancestor task of task τj if there exists a computation path from task τi

to task τj . Complementarily, we say that task τi is a descendant task of
task τj if there exists a computation path from task τj to task τi . We do
not allow circular dependencies, i.e. no task can be both the ancestor and
the descendant of another task. In Fig. 1, (τ1, τ2, τ3, τ4) is an example of
a computation path of length 4, and task τ2 is an ancestor of tasks τ3
and τ4.

The set of tasks of an application is partitioned into g partitions. Any
two tasks within the same partition have a common ancestor or a com-
mon descendant or they are in a predecessor–successor relationship. Two
tasks belonging to different partitions have no common ancestor, nor any
common descendant, neither are they in a predecessor–successor relation-
ship.

The task partitions are denoted V1, V2, . . . , Vg. An application
consists of a set � = {�1, �2, . . . , �g} of g task graphs, �i = (Vi, Ei ⊂
Vi × Vi), 1 ≤ i ≤ g. A directed edge (τa, τb) ∈ Ei , τa, τb ∈ Vi , represents
the data dependency between tasks τa and τb, denoted τa → τb.

The application in Fig. 1 consists of three task graphs, namely
�1 = ({τ1, τ2, . . . , τ6}, {(τ1, τ2), (τ2, τ3), (τ3, τ4), (τ1, τ5), (τ5, τ6)}),
�2 = ({τ7, τ8}, {(τ7, τ8)}), and �3 = ({τ9, τ10, τ11}, {(τ9, τ10), (τ10, τ11)}).

Task instantiations (also known as jobs) arrive periodically.
Let � = {πi ∈ R : τi ∈ T } denote the set of task periods, or job

inter-arrival times, where πi is the period of task τi . Tasks belonging to
the same task graph have the same period. For any task τj ∈ T , the fact
that the kth instantiations of tasks τi , for all tasks τi ∈ ◦τj , have completed
their execution is a necessary condition for the kth instantiation of task τj

to start its execution.
Tasks are mapped on cores. All instances of a task are executed by the

same core on which the task is mapped.
Let Map: T →P be a surjective function that maps tasks on the

cores. Map(τi) = Px,y indicates that task ti is executed on the core Px,y .
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Let TPx,y = {τ ∈ T : Map(τ ) = Px,y ∈ P } denote the set of tasks that are
mapped on core Px,y .

The mapping is graphically indicated by placing the circle that repre-
sents the task inside the box that represents the core on which the task is
mapped. In Fig. 1, task τ1 is mapped on core P0,1, task τ2 on core P1,1,
task τ7 on core P2,1, tasks τ5 and τ9 on core P0,0, task τ10 on core P1,0,
tasks τ3, τ6, and τ8 on core P2,0, and tasks τ4 and τ11 on core P3,0.

For any task τi , ∀1 ≤ i ≤ N , let BCETi and WCETi denote its best-
case and, respectively, worst-case execution times on core Map(τi).

The real-time requirements are expressed in terms of deadlines. Let
�T = {δ1, δ2, . . . , δN } denote the set of task deadlines, where δi is the dead-
line of task τi . If the kth job of task τi has not completed its execution
at time k · πi + δi , then the job is said to have missed its deadline. Let
�� = {δ�1 , δ�2 , . . . , δ�g } denote the set of task graph deadlines, where δ�i

is the deadline of task graph �i . If there exists a task τ∈Vj such that its
kth instantiation has not completed its execution at time k ·π + δ�j

, where
π is the period of any task τ∈Vj , then the kth instantiation of task graph
�j has missed its deadline.

In the common case of more than one task mapped on the same core,
a scheduler selects the next task to run based on the priority associated
to the task off-line. Job execution is preemptible, i.e. a higher priority job
may preempt the execution of a lower priority job.

3.3. Communication Model

Communication between pairs of tasks mapped on different cores is
performed by message passing. Their transmission on network links is
done packet-wise, i.e. the message is chopped into packets, which are sent
on links and reassembled at the destination core. Messages are character-
ised by their priority, length (number of bits), and the size of the packets
they are chopped into.

If an output link of a switch is busy sending a packet while another
packet arrives at the switch and demands forwarding on the busy link, the
newly arrived packet is stored in the input buffer corresponding to the
input link on which it arrived. When the output link becomes available,
the switch picks the highest priority packet that demands forwarding on
the output link. If an output link of a switch is not busy while a packet
arrives at the switch and demands forwarding on the free link, then the
packet is forwarded immediately, without buffering. This scheme is called
virtual cut-through routing.(12)

Packet transmission on a link is modelled as a task, called commu-
nication task. The worst-case execution time of a communication task is
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given by the packet length divided by the link bandwidth. The execution
of communication tasks is non-preemptible. The priority of a communica-
tion task modelling the transmission of a packet is equal to the priority
the packet. The packet priority is equal to the message priority which in
turn is assumed to be given by the designer.

3.4. Fault Model

Communication links may temporarily malfunction, with a given prob-
ability. If a data packet is sent on the link during the time the link is in
the failed state, the data is scrambled. We assume that the switches have the
ability to detect if an incoming packet is scrambled. Scrambled packets are
dropped as soon as they are detected and are not forwarded further. Sev-
eral copies of the same packet may be sent on the network links. In order
for a message to be successfully received, at the destination core, at least
one copy of every packet of the message has to reach the destination core
unscrambled. Otherwise, the message is said to be lost.

We define the message arrival probability of the message τi → τj as
the long term ratio MAPi,j = limt→∞

Si,j (t)

�t/πi	+1 , where Si,j is the number
of messages between tasks τi and τj that are successfully received at the
destination in the time interval [0, t), and πi denotes the period of the
sender task. For each pair of communicating tasks τi → τj , the designer
may require lower bounds Bi,j on the ratio of messages that are received
unscrambled at the destination.

Let us assume that switches have the capability to detect erroneous
(scrambled) packets, but they do not have the capacity to correct these
errors. We let α denote the probability of a packet to traverse a network link
unscrambled. A strategy to satisfy the constraints on the message arrival
probability (MAPi,j ≥ Bi,j ) is to make use of spatially and/or temporally
redundant packet transmission, i.e. several copies of the same packet are
simultaneously transmitted on different paths and/or they are resent several
times on the same path. This strategy is discussed in this article.

An alternative strategy to cope with transient faults on the network
links is to add redundant bits to the packets for error correction. Addi-
tionally, extra circuitry has to be deployed at the switches such that they
can correct some of the erroneous packets. In this case, let α denote the
probability of a packet successfully traversing a link, which means that

• the packet traverses the network link unscrambled, or
• the packet is scrambled during its transmission along the link, but the

error correction circuitry at the end of the link is able to correct the
scrambled bits.
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Note that the two strategies are orthogonal, in the sense that the
redundant transmission can be deployed even when error correction capa-
bility is present in the network. In this case, redundant transmission
attempts to cope with the errors that are detected but cannot be corrected
by the correction circuitry. An analysis of the trade-off between the two
strategies is beyond the scope of the article.

In the sequel, we will make use of α, the probability of a packet to
successfully traverse a link, abstracting away whether the successful trans-
mission is due to error correction or not.

3.5. Message Communication Support

In order to satisfy message arrival probabilities imposed by the
designer, temporally and/or spatially redundant communication is deployed.
We introduce the notion of communication supports (CS) for defining the
mapping of redundant messages to network links. For this purpose, we use
the example in Fig. 1. A possible mapping of messages to network links is
depicted in Fig. 2. The directed lines depicted parallel to a particular link
denote that the message represented by the directed line is mapped on that
link. Thus, message τ1 → τ2 is conveyed by link L0,1,E , message τ1 → τ5
by link L0,1,S , message τ7 → τ8 by link L2,1,S , message τ9 → τ10 by link
L0,0,E , message τ5 → τ6 by links L0,0,E and L1,0,E , message τ10 → τ11 by
links L1,0,E and L2,0,E .

Of particular interest are messages τ3 → τ4 and τ2 → τ3. Two iden-
tical copies of the former are sent on the same link, namely link L2,0,E ,
as indicated by the double arrow between task τ3 and τ4 in the figure.
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Fig. 2. Message mapping for the application in Fig. 1.
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Therefore, the transmission of message τ3 → τ4 is temporally redundant. A
more complex case is exemplified by message τ2 → τ3. Identical copies of
the message take different routes. Therefore, the transmission of message
τ2 → τ3 is spatially redundant. One copy is conveyed by links L1,1,E

and L2,1,S , while the second copy is conveyed by links L1,1,S and L1,0,E .
Moreover, the copy travelling along the first route is in its turn replicated
once it reaches switch S2,3 and sent twice on link L2,1,S , as shown by the
double arrow in the figure.

In general, the mapping of the communication between two tasks
τi → τj can be formalised as a set of tuples CSi,j = {(L, n) : L is a link,
n ∈ N}, where n indicates the number of copies of the same message that
are conveyed by the corresponding link L. We will call the set CSi,j the
communication support (CS) of τi → τj .

Let M ⊂ T ×T be the set of all pairs of communicating tasks that are
mapped on different cores ((τa, τb) ∈ M if ∃�i = (Vi, Ei ⊂ Vi × Vi) such
that (τa, τb) ∈ Ei and Map(τi) �= Map(τj ).) A communication mapping,
denoted CM, is a function defined on M that maps each pair of commu-
nicating tasks to one communication support.

In our example, the communication mapping is the following: τ1 → τ2
is mapped on CS1,2 = {(L0,1,E, 1)}, τ1 → τ5 on CS1,5 = {(L0,1,S, 1)},
τ7 → τ8 on CS7,8 = {(L2,1,S, 1)}, τ9 → τ10 on CS9,10 = {(L0,0,E, 1)},
τ10 → τ11 on CS10,11 = {(L1,0,E, 1), (L2,0,E, 1)}, τ5 → τ6 on CS5,6 =
{(L0,0,E, 1), (L1,0,E, 1)}, τ3 → τ4 on CS3,4 = {(L2,0,E, 2)}, and τ2 → τ3
on CS2,3 = {(L1,1,E, 1), (L2,1,S, 2), (L1,1,S, 1), (L1,0,E, 1)}.

Two properties of a communication support are of interest:

• The arrival probability of a message that is mapped on that commu-
nication support, called message arrival probability of the CS, denoted
MAP, and

• The expected energy consumed by the transmission of the message on
that support, called expected communication energy of the CS, denoted
ECE.

The values of MAP and ECE can be computed by means of simple proba-
bility theory. We will illustrate their computation using the CS supporting
message τ2 → τ3, CS2,3. For simplicity, in this example we assume that the
message consists of a single packet and the energy consumed by the trans-
mission of the packet on any link is 1.

The MAP of CS2,3 is given by P(V ∪ W), where V is the event that
the copy sent along the path L1,1,S → L1,0,E successfully reaches core P2,0,
and W is the event that the copy sent along the path L1,1,E → L2,1,S

successfully reaches core P2,0.
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P(V ) = α2.

The probability that both temporally redundant copies that are sent on
link L2,1,S get scrambled is (1 −α)2. Thus, the probability that the packet
successfully reaches core P2,0 if sent on path L1,1,E → L2,1,S is

P(W) = α · (1 − (1 − α)2).

Thus, the MAP of CS2,3 is

P(V ∪ W) = P(V ) + P(W) − P(V ∩ W)

= α2 + α · (1 − (1 − α)2) − α3 · (1 − (1 − α)2).

The expected communication energy is the expected number of sent
bits multiplied by the average energy per bit. The energy per bit, denoted
Ebit , can be computed as shown by Ye et al.(17)

The ECE of CS2,3 is proportional to

E[SentS1,1 ] + E[SentS2,1 ] + E[SentS1,0 ],

where SentS denotes the number of packets sent from switch S and
E[SentS ] denotes its expected value. We assume that no packet is lost
en-route between the source core and the switch associated to it. In our
example, E[Sent1,1] = 2, i.e. two packets are sent by switch S1,1, one along
link L1,1,S and the other along link L1,1,E . Hence, the expected number of
packets sent by the switch associated to the source core is deterministically
known and given by the communication support. Obviously, a switch that
does not receive any valid copy of a packet, does not forward any. Hence,
the expected number of packets forwarded by a switch is

E[SentS ] = E[SentS |RS ] · P(RS),

where RS is the event that at least one copy of the packet successfully
reaches switch S, and E[SentS |RS ] is the expected number of copies of
the packet that are forwarded from switch S given that at least one
copy successfully reaches switch S. In our example, E[Sent2,1|R2,1] = 2
and E[Sent1,0|R1,0] = 1. The probability that a packet successfully reaches
switch S2,1, P(R2,1), is equal to α, the probability that the packet traverses
link L1,1,E unscrambled. Analogously, P(R1,0) = α. Hence,

ECE2,3 ∼ 2 + 2 · α + 1 · α = 2 + 3α.
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The proportionality constant is Ebit ·b, where Ebit is the energy per bit and
b is the number of bits of the packet.

4. PROBLEM FORMULATION

This section gives the formulation of the problem that we solve in this
article.

4.1. Input

The input to the problem consists of:

• The hardware model, i.e. the size of the NoC, and, for each link, the
energy-per-bit, the bandwidth, and the probability of a packet to be suc-
cessfully conveyed by the link; and

• The application model, i.e. the set of task graphs �, the set of task
and task graph deadlines �T and ��, respectively, the mapping of tasks
to cores, the set of task periods �, the best-case and worst-case execu-
tion times of all tasks on the cores on which they are mapped, the task
priorities and the amounts of data to be transmitted between communi-
cating tasks;

• The communication model, i.e. the packet size and message priority for
each message (alternatively, our approach can automatically assign mes-
sage priorities according to the message criticality);

• The lower bounds Bi,j imposed on the message arrival probability
MAPi,j , which is the expected fraction of successfully transmitted
messages, for each pair of communicating tasks τi → τj .

4.2. Output

The output of the problem consists of the communication mapping
CM, such that the total communication energy is minimised.

4.3. Constraints

The application has to satisfy the following constraints:

• For each pair of communicating tasks τi → τj , such that tasks τi and τj

are mapped on different cores, the message arrival probability MAPi,j is
greater than or equal to the imposed lower bound Bi,j (MAPi,j ≥ Bi,j ,
∀τi, τj ∈ T : τi ∈ ◦τj ∧ Map(τi) �= Map(τj )).

• All deadlines are met.
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Fig. 3. Approach outline.

5. APPROACH OUTLINE

The outline of our approach to solve the problem is shown in
Fig. 3. First, for each pair of communicating tasks (message), we find
a set of candidate communication supports (line 2, see Section 6), such
that the lower bound constraint on the message arrival probability is
satisfied. Second, the space of candidate communication supports is
explored in order to find sol, the selection of communication sup-
ports that result in the minimum cost min cost (line 4).1 The worst-case
response time of each explored solution is determined by the response
time calculation function that drives the design space exploration (line 5,
see Section 7). If no solutions are found that satisfy the response time
constraints (min cost = ∞), the application is deemed impossible to imple-
ment with the given resources (line 7). Otherwise, the solution with the
minimum cost among the found solutions is selected. Voltage selection
is performed on the selected solution in order to decrease the overall
system energy consumption (line 9), and the modified solution is returned
(line 10).

The next section discusses the construction of the set of candidate
communication supports for an arbitrary pair of communicating tasks.
Section 7 describes how the response time calculation is performed, while
Section 8 outlines how the preferred communication supports representing
the final solution are selected.

1See Section 8 for a precise definition of the cost of a solution. Intuitively, a low cost
corresponds to a solution characterised by large time slack (long intervals between the
finishing time of a task and its deadline).
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6. COMMUNICATION SUPPORT CANDIDATES

This section describes how to construct a set of candidate communi-
cation supports for a pair of communicating tasks. First, we introduce the
notions of path, coverage, and spatial, temporal, and general redundancy
degree of a CS.

A path of length n connecting the switch corresponding to a source
core to a switch corresponding to a destination core is an ordered
sequence of n links, such that the end point of the ith link in the sequence
coincides with the start point of the i + 1th link, ∀1 ≤ i < n, and the
start point of the first link is the source switch and the end point of the
last link is the destination switch. We consider only loop-free paths. A
path belongs to a CS if all its links belong to the CS. A link of a CS is
covered by a path if it belongs to the path.

The spatial redundancy degree (SRD) of a CS is given by the mini-
mum number of distinct paths belonging to the CS that cover all the links
of the CS. For example, the CSs depicted in Figs. 4(a), (b) both have a
SRD of 1, as they contain only one path, namely path (L0,0,N , L0,1,E ,
L1,1,E , L2,1,N , L2,2,N , L2,3,E). The CS shown in Fig. 4(c) has spatial
redundancy degree 2, as at least two paths are necessary in order to cover
links L1,1,N and L1,1,E , for example paths (L0,0,N , L0,1,E , L1,1,E , L2,1,N ,
L2,2,N , L2,3,E) and (L0,0,N , L0,1,E , L1,1,N , L1,2,E , L2,2,N , L2,3,E).

The temporal redundancy degree (TRD) of a link is given by the
number of redundant copies to be sent on the link. The TRD of a CS is
given by the maximum TRD of its links. For example, the TRD of the CS
shown in Fig. 4(b) is 2 as two redundant copies are sent on links L1,1,E ,
L2,1,N , L2,2,N , and L2,3,E . The TRD of the CSs shown in Fig. 4(a), (c)
is 1.

The general redundancy degree (GRD) of a CS is given by the sum of
temporal redundancy degrees of all its links. For example, the GRD of the
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Fig. 4. Communication supports.
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Fig. 5. Energy-efficiency of CSs of SRD 1 and 2.

CS shown in Fig. 4(a) is 6, the GRD of the CSs shown in Fig. 4(b), (c)
is 10.

It is important to use CSs of minimal GRD because the expected
communication energy (ECE) of a message is strongly dependent on the
GRD of the CS supporting it. To illustrate this, we constructed all CSs of
SRD 2 and GRD 10–13 for a message sent from the lower-left core to the
upper-right core of a 4 × 4 NoC. We also constructed all CSs of SRD 1
and GRD 10. For each of the constructed CS, we computed their MAP
and ECE. In Fig. 5, we plotted all resulting (MAP, ECE) pairs. Note that
several different CSs may have the same MAP and ECE and therefore one
dot in the figure may correspond to many CSs. We observe that the ECE
of CSs of the same GRD do not differ significantly among them, while
the ECE difference may account to more than 10% for CSs of different
GRD.

The algorithm for the candidate set construction proceeds as shown
in Fig. 6. Candidate CSs with SRD of only 1 and 2 are used. The justifi-
cation for this choice is given later in the section.

We illustrate how to find the minimal GRD for a message based on
the example depicted in Fig. 4. We consider a 4 × 4 NoC, and a message
sent from core P0,0 to core P3,3. The message consists of just one packet,
the probability that the packet successfully traverses any of the links is
α = 0.99, and the imposed lower bound on the MAP is B = 0.975.

We look first at CSs with SRD of 1, i.e. consisting of a single path.
We consider only shortest paths, that is of length 6. Obviously, a lower
bound on GRD is 6. If we assign just one copy per link, the message
arrival probability would be α6 ≈ 0.941 < 0.975 = B. We try with a
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Fig. 6. Construction of candidate CS set.

GRD of 7, and regardless to which of the six links we assign the redun-
dant copy, we get a MAP of α5 · (1− (1−α)2) ≈ 0.95 < 0.975 = B. Hence,
we are forced to increase the GRD once more. We observe that there are
five links left with a TRD of 1. The probability to traverse them is α5 ≈
0.95, less than the required lower bound. Therefore it is useless to assign
one more redundant copy to the link that now has a TRD of 2 because
anyway the resulting MAP would not exceed α5. Thus, the new redundant
copy has to be assigned to a different link of the CS of GRD 8. In this
case, we get a MAP of α4 ·(1−(1−α)2)2 ≈ 0.96, still less than the required
bound. We continue the procedure of increasing the GRD and distrib-
uting the redundant copies to different links until we satisfy the MAP
constraint. In our example, this happens after adding four redundant cop-
ies (MAP= α2 · (1 − (1 − α2))4 ≈ 0.9797). The resulting CS of SRD 1 and
GRD 10 is shown in Fig. 4(b), where the double lines represent links that
convey two copies of the same packet. Thus, the minimal GRD for CSs of
SRD 1 is N1 = 10. There are 20 distinct paths between core P0,0 and core
P3,3 and there are 15 ways of distributing the four redundant copies to
each path. Thus, 15 ·20 = 300 distinct candidate CSs of SRD 1 and GRD
10 can be constructed for the considered message. They all have the same
message arrival probability, but different expected communication energies.
The ECEs among them vary 1.61%.

Similarly, we obtain N2, the minimal GRD for CSs of SRD 2. In
this case, it can be mathematically shown that larger message arrival prob-
abilities can be obtained with the same GRD if the two paths of the
CS intersect as often as possible and the distances between the intersec-
tion points are as short as possible. (14) Intuitively, intersection points
are important because even if a copy is lost on one incoming path, the
arrival of another copy will trigger a regeneration of two packets in the
switch where the two paths intersect. The closer to each other the intersec-
tion points are, the shorter the packet transmission time between the two
points is. Thus, the probability to lose a message between the two inter-
section points is lower. Therefore, in order to obtain N2, we will consider
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CSs with many intersection points that are close to each other. For our
example, the lowest GRD that lets the CS satisfy the MAP constraint is
N2 = 10 (MAP = α6 · (2 − α2)2 ≈ 0.9793). This CS is shown in Fig. 4(c).
The minimum number of needed redundant copies in order to satisfy the
MAP constraint is strongly dependent on α and the imposed lower bound
on the MAP, and only weakly dependent on the geometric configuration
of the CS. Therefore, typically N2 = N1 or it is very close to N1.

In conclusion, N1 and N2 are obtained by progressively increasing the
GRD until the CS satisfies the MAP constraint. The redundant copies
must be uniformly distributed over the links of the CS. Additionally, in the
case of CSs with SRD 2, when increasing the GRD, links should be added
to the CS such that many path intersection points are obtained and that
they are close to each other.

The following reasoning lies behind the decision to use CSs with
SRD of only 1 and 2. First, we give the motivation for using CSs with
SRD larger than 1. While, given a GRD of N , it is possible to obtain
the maximum achievable message arrival probability with CSs of SRD 1,
concurrent transmission of redundant message copies would be impossible
if we used CSs with SRD of only 1. This could severely affect the message
latency or, even worse, lead to link overload. CSs with SRD 2 are only
marginally more energy hungry, as can be seen from the cluster of points
in the lower-left corner of Fig. 5. Usually, the same MAP can be obtained
by a CS of SRD 2 with only 1–2% more energy than a CS of SRD 1.

While the previous consideration supports the use of CSs with SRD
greater than 1, there is no reason to go with the SRD beyond 2. Because
of the two-dimensional structure of the NoC, there are at most 2 different
links that belong to the shortest paths between the source and the desti-
nation and whose start points coincide with the source core. Thus, if a CS
consisted only of the shortest paths, the message transmission would be
vulnerable to a double fault of the two initial links. Therefore, CSs with
SRD greater than 2, while consuming more energy for communication,
would still be vulnerable to a double fault on the initial links and hence
can only marginally improve the MAP. If we did not restrict the CS to
the shortest paths, while overcoming the limitation on the MAP, we would
consume extra energy because of the longer paths. At the same time,
latency would be negatively affected. Thus, for two-dimensional NoC, we
consider CSs of SRD of only 1 and 2.

7. RESPONSE TIME CALCULATION

In order to guarantee that tasks meet their deadlines, in case no
message is lost, response times have to be determined in the worst case.
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Let us consider the example depicted in Fig. 7(a). Solid lines depict
data dependencies among the tasks, while the dotted lines show the actual
communication mapping to the on-chip links. The two CSs are CS1,2 =
{(L0,0,E, 1)} and CS1,3 = {(L0,0,E, 1), (L1,0,N , 1), (L0,0,N , 2), (L0,1,E, 2)}.
Packet sizes are such that message τ1 → τ2 is chopped into 2 packets,
while message τ1 → τ3 fits into a single packet.

Based on the application graph, its mapping and the communication
supports, we construct a task graph as shown in Fig. 7(b). Each link L

is regarded as a processor PL, and each packet transmission on link L is
regarded as a non-preemptive task executed on processor PL. The shad-
ings of the circles denote the processors (links) on which the tasks (pack-
ets) are mapped. Tasks τ4 and τ5 represent the first and the second packet
of the message τ1→τ2. They are both dependent on task τ1, as the two
packets are generated when task τ1 completes its execution, while task
τ2 is dependent on both task τ4 and τ5 as it can start only after it has
received the entire message, i.e. both packets, from task τ1. Both tasks τ4
and τ5 are mapped on the “processor” corresponding to the link L0,0,E .
Task τ6 represents the packet of the message τ1 → τ3 that is sent on link
L0,0,E and task τ7 represents the same packet once it reaches link L1,0,N .
Tasks τ8 and τ9 are the two copies of the packet of the message τ1 → τ3
that are sent on link L0,0,N .

We are interested in the worst-case scenario w.r.t. response times.
In the worst case, all copies of packets get scrambled except the latest
packet. Therefore, the copies to be sent by a core on its outgoing links
have to wait until the last of the copies arriving on incoming links of the
core has reached the core. For example, tasks τ10 and τ11, modelling the
two copies of the message τ1 → τ3 that are sent on the link L0,1,E , depend
on both τ8 and τ9, the two copies on link L0,0,N . Also, task τ3 depends
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Fig. 7. Application modelling for response time analysis.
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on all three copies, τ7, arriving on link L1,0,N , and τ10 and τ11, arriving
on link L0,1,E .

The modified model, as shown in Fig. 7(b), is analysed using the
dynamic offset based schedulability analysis proposed by Palencia and
Harbour.(19) The analysis calculates the worst-case response times and
jitters for all tasks.

8. SELECTION OF COMMUNICATION SUPPORTS

As shown in Section 6 (see also line 2 in Fig. 3), we have deter-
mined the most promising (low energy, low number of messages) set of
CSs for each transmitted message in the application. All those CSs guar-
antee the requested MAP. As the next step of our approach (line 4 in Fig.
3) we have to select one particular CS for each message, such that the
solution cost is minimised, which corresponds to maximising the smallest
time slack. The response time for each candidate solution is calculated as
outlined in Section 7 (line 5 in Fig. 3).

The design space is explored with a Tabu Search based heuristic.
Tabu Search is a heuristic introduced by Glover(19). It has been success-
fully used for various system level design problems, such as yield max-
imisation problems,(20) FIR filter design,(21) mapping and scheduling of
task graphs on SoCs,(22) and latency-area trade-offs for NoCs.(23) Several
researchers have compared Tabu Search with other optimisation heuristics,
such as Simulated Annealing and Genetic Algorithms and shown the supe-
riority of Tabu Search with regard to optimisation time and quality of
results (22,24–27).

We use an extended variant of Tabu Search, which is described in this
section. The variant is not specific to a particular problem. After explain-
ing the heuristic in general, we will become more specific at the end of the
section where we illustrate the heuristic in the context of communication
mapping.

We define the design space S as a set of points (also called solutions),
where each point represents a configuration that satisfies the imposed
constraints. A move from one solution in the design space to another solu-
tion is equivalent to assigning a new value to one or more of the param-
eters that characterise the system. We say that we obtain solution s2 by
applying the move m on solution s1, and we write s2 = m(s1). Solution s1
can be obtained back from solution s2 by applying the negated move m,
denoted m (s1 = m(s2)).

Solution s′ is a neighbour of solution s if there exists a move m such
that solution s′ can be obtained from solution s by applying move m. All
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Fig. 8. Design space exploration algorithm.

neighbours of a solution s form the neighbourhood V (s) of that solution
(V (s) = {q : ∃m such that q = m(s)}).

The exploration algorithm is shown in Fig. 8. The exploration starts
from an initial solution, labelled also as the current solution (line 1)
considered as the globally best solution so far (line 2).

The cost function is evaluated for the current solution (line 3). We
keep track of a list of moves T M that are marked as tabu. A solution will
leave the tabu list after a certain number of iterations (the tabu tenure).
Initially the list is empty (line 4).

We construct CM, a subset of the set of all moves that are possi-
ble from the current solution point (line 7). Let N (CM) be the set of
solutions that can be reached from the current solution by means of a
move in CM.2 The cost function is evaluated for each solution in N (CM).

2 If CM is the set of all possible moves from crt sol then N (CM) = V(crt sol).
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Let m ≤ m′ if cost(m(crt sol)) ≤ cost(m′(crt sol)). A move in CM is selected
(line 8) as follows.

If ∃m ∈ CM such that m ≤ m′∀m′ ∈ CM ∧ cost(m(crt sol)) ≤
global best, then move m is selected. Else, if ∃m ∈ CM\ TM such that
m ≤ m′∀m′ ∈ CM\TM, then move m is selected. Else, m ∈ TM such that
m ≤ m′∀m′ ∈ TM is selected.

The new solution is obtained by applying the chosen move m on the
current solution (line 11). The reverse of move m is marked as tabu such
that m will not be reversed in the next few iterations (line 12). The new
solution becomes the current solution (line 15). If it is the case (line 16),
the new solution becomes also the globally best solution reached so far
(lines 17–18). However, it should be noted that the new solution could
have a larger cost than the current solution. This could happen if there are
no moves that would improve on the current solution or all such moves
would be tabu. By this, the heuristic has the potential to escape from local
minima. Placing the reverse of the most recent moves into the list TM
of tabu moves also avoids cycling that could occur if the move returns
to a recently visited solution. The procedure of building the set of candi-
date moves and then choosing one according to the criteria listed above is
repeated. If no global improvement has been noted for the past W itera-
tions, the loop (lines 10–23) is interrupted (line 10). In this case, a diversi-
fication phase follows (line 25) in which a rarely used move is performed
in order to force the heuristic to explore different regions in the design
space. The whole procedure is repeated until the heuristic iterated for a
specified maximum number of iterations (line 9). The procedure returns
the solution characterised by the lowest cost function value that it found
during the design space exploration (line 28).

Two issues are important when tailoring the general tabu search based
heuristic described above for particular problems.

First, there is the definition of what is a legal move. On one hand, the
transformation of a solution must result in another solution, i.e. the result-
ing parameter assignment must satisfy the set of constraints. On the other
hand, because of complexity reasons, certain restrictions must be imposed
on what constitutes a legal move. For example, if any transformation were
a legal move, the neighbourhood of a solution would comprise the entire
solution space. In this case, it is sufficient to run the heuristic for just one
iteration (max iterations = 1) but that iteration would require an unrea-
sonably long time, as the whole solution space would be probed. Nev-
ertheless, if moves were too restricted, a solution could be reached from
another solution only after applying a long sequence of moves. This makes
the reaching of the far-away solution unlikely. In this case, the heuristic



146 Manolache, Eles, and Peng

would be inefficient as it would circle in the same region of the solution
space until a diversification step would force it out.

The second issue is the construction of the subset of candidate moves.
One solution would be to include all possible moves from the current solu-
tion in the set of candidate moves. In this case, the cost function, which
sometimes can be computationally expensive, has to be calculated for all
neighbours. Thus, we would run the risk to render the exploration slow.
If we had the possibility to quickly assess which are promising moves, we
could include only those in the subset of candidate moves.

For our problem, the design space is the Cartesian product of the sets
of CS candidates for each message (constructed as shown in Section 6).
Because all CS candidates guarantee the requested MAP, all points in the
solution space satisfy the MAP constraint of the problem (Section 4.3).
A point in the design space is an assignment of communication supports
to messages (see Section 3.5). A move means picking one pair of commu-
nicating tasks and selecting a new communication support for the message
sent between them.

In order to speed up the exploration, we pick only “promising” moves
to be included in the set of candidate moves CM. Thus,

1. we look at messages with large jitters as they have a higher chance to
improve their transmission latency by having assigned a new CS; and

2. for a certain message τi → τj , we consider only those candidate CSs
that would decrease the amount of interference of messages of higher
priority than τi → τj . (By this we remove messages from overloaded
links.)

The value of the cost function that drives the response-time minimisa-
tion, evaluated for an assignment of communication supports to messages
CM, is:

cost(CM) =






∞, ∃τ ∈ T : WCRTτ > δτ∨,

∨∃�i ∈ � : WCRT�i
> δ�i

,

maxτ∈T
WCRTτ

δτ
, otherwise,

(1)

where T is the set of tasks and WCRT and δ denote worst-case response
times and deadlines, respectively. The worst-case response time of a task is
obtained as shown in Section 7.

In the case of the cost function in Eq. (1), we make the conserva-
tive assumption that voltage and frequency are set system-wide for the
whole NoC. This means that, at design time, an optimal voltage and/or
frequency is determined for the whole NoC. The determined values for
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voltage and frequency do not change during the entire execution time
of the application. For such a scenario, if we decrease the system-wide
voltage (or frequency), the worst-case response times of all tasks would
scale with the same factor. Therefore, in the definition of the cost func-
tion (Eq. (1)) we use the max operator, since the width of the interval in
which the response time is allowed to increase is limited by the smallest
slack (largest

WCRTτi

δτi
) among the tasks.

In a second scenario, we can assume that voltage and/or frequency
may be set core-wise. This means that, at design time, an optimal voltage
and/or frequency is calculated for each core. These voltages and frequen-
cies do not change during the whole execution time of the application.
The cost function would become

cost(CM) =






∞, ∃τ ∈ T : WCRTτ > δ∨,

∃�i ∈ � : WCRT�i
> δ�i

,
∑

p∈P

maxτ∈Tp

WCRTτ

δτ
, otherwise,

(2)

where p is a core in P , the set of cores of the NoC, and Tp is the set of
tasks mapped on core p.

In a third scenario, we assume that voltage and/or frequency may
change for each core during operation. Then they may be set task-wise
and the cost function becomes

cost(CM) =






∞, ∃τ ∈ T : WCRTτ > δ∨,

∨∃�i ∈ � : WCRT�i
> δ�i

,
∑

τ∈T

WCRTτ

δτ
, otherwise.

(3)

9. EXPERIMENTAL RESULTS

We report on three sets of experiments that we ran in order to assess
the quality of our approach.

9.1. Latency as a Function of the Number of Tasks

The first set investigates the application latency as a function of the
number of tasks. About 340 applications of 16–80 tasks were randomly
generated. The applications are executed by a 4 × 4 NoC. The probabil-
ity that a link successfully conveys a data packet is 0.97, and the imposed
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Fig. 9. Application latency versus number of tasks.

lower bound on the message arrival probability is 0.99. For each applica-
tion, we ran our communication mapping tool twice. In the first run, we
consider CSs of SRD 1, i.e. packets are retransmitted on the same, unique
path. In the second run, we consider CSs of SRD 1 and 2, as described
in Section 6. Figure 9 depicts the averaged results. The approach that uses
both spatially and temporally redundant CSs leads to shorter application
latencies than the approach that just re-sends on the same path.

9.2. Latency as a Function of the Imposed Message Arrival

Probability

The second experiment investigates the dependency of latency on the
imposed message arrival probability. About 20 applications, each of 40
tasks, were randomly generated. We considered the same hardware plat-
form as in the first experiment. For each application, we considered 17
different lower bounds on MAP, ranging from 0.94 to 0.9966. The aver-
aged results are shown in Fig. 10. For low bounds on MAP, such as
0.94, almost no transmission redundancy is required to satisfy the MAP
constraint. Therefore, the approach combining spatially and temporally
redundant communication fares only marginally better than the approach
that uses only temporal redundancy. However, for higher bounds on the
MAP, the approach that combines spatially and temporally redundant
transmission has the edge. In the case of bounds on the MAP larger
than 0.9992, spatial redundancy cannot satisfy the constraint anymore,
and therefore the temporally redundant transmission becomes dominant
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and the approach combining spatial and temporal redundancy does not
lead to significant latency reductions anymore.

9.3. Latency as a Function of the Size of the NoC

and Communication Load

The third experiment has a double purpose. First, it investigates the
dependency of latency reduction on the size of the NoC. Second, it
investigates latency reduction as a function of the communication load
(bits/time unit). About 20 applications of 40, 62 and 90 tasks were ran-
domly generated. The applications with 40 tasks run on a 4 × 4 NoC,
those with 62 tasks run on a 5 × 5 NoC and those with 90 tasks run on
a 6 × 6 NoC. For each application, we considered communication loads
of 1–4 bits/time unit. The averaged latency reductions when using the
optimal combination of spatial and temporal redundancy, compared to
purely temporal redundancy, are depicted in Fig. 11. We observe that for
low-communication loads, the latency reduction is similar for all three
architectures, around 22%. However, at loads higher than 3.4 the relatively
small number of links of the 4 × 4 NoC get congested and response times
grow unboundedly. This, however, is not the case with the larger NoCs.
Latency reduction for a load of 4 is 22% for a NoC of 6 × 6 and 12%
for 5 × 5.



150 Manolache, Eles, and Peng

0

5

 10

 15

 20

 25

1  1.5 2  2.5 3  3.5 4

R
el

at
iv

e 
la

te
nc

y 
re

du
ct

io
n 

[%
]

Amount of communication per time unit [bits / abstract time unit]

4x4 NoC
5x5 NoC
6x6 NoC

Fig. 11. Application latency versus NoC size and communication load.

9.4. Optimisation Time

Figure 12 depicts the histogram of the optimisation time for all
benchmarks that are used in this section, as measured on a desktop PC
with an AMD Athlon processor clocked at 1533 MHz. On average, the
optimisation time is 912 s. We note that the optimisation time for a large
majority of benchmarks is smaller than 1000 s, while 5.6% of all bench-
marks took between 1000 and 2000 s to optimise, and the optimisation of
8.7% of benchmarks took longer than 2000 s.

9.5. Exploiting the Time Slack for Energy Reduction

The presented experiments have shown that, by using an optimal
combination of temporal and spatial redundancy for message mapping,
significant reduction of latency can be obtained while guaranteeing
message arrival probability at the same time. It is important to notice
that the latency reduction is obtained without energy penalty, as shown
in Section 6. This means that for a class of applications using the pro-
posed approach it will be possible to meet the imposed deadlines, which
otherwise would not be possible without changing the underlying NoC
architecture. However, the proposed approach gives also the opportunity
to further reduce the energy consumed by the application. If the obtained
application response time is smaller than the imposed one, the resulting
slack can be exploited by running the application at reduced voltage. In
order to illustrate this, we have performed another set of experiments.
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Applications of 16–60 tasks running on a 4 × 4 NoC were randomly
generated. For each application we ran our message mapping approach
twice, once using CSs with SRD of only 1, and second using CSs with
SRD of 1 and 2. The slack that resulted in the second case was exploited
for energy reduction. We have used the algorithm published in(28) for
calculating the voltage levels for which to run the application. For our
energy models, we considered a 70 nm CMOS fabrication process. The
resulted energy consumption is depicted in Fig. 13. The energy reduction
ranges from 20% to 13%. For this experiment, we considered the conserva-
tive scenario in which, at design time, an optimal voltage and/or frequency
is computed for the whole NoC (see Eq. (1) in Section 8). We do not
assume the availability of a dynamic voltage scaling capability in the NoC.
If such capability existed, even larger energy savings could be achieved.

9.6. Real-life Example: An Audio/Video Encoder

Finally, we applied our approach to a multimedia application, namely
an audio/video encoder implementing the H.263 recommendation(29) of
the International Telecommunication Union (ITU) for video encoding
and the MPEG-1 Audio Layer 3 standard for audio encoding (ISO/IEC
11172-3 Layer 3(30)).

Figure 14 depicts the task graph that models the application, while
Fig. 15 shows the application mapping to the NoC cores. The task par-
titioning, mapping, and profiling was done by Hu and Mărculescu.(31)
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The video encoding part of the application consists of nine tasks: frame
prediction (FP), motion estimation (ME), discrete cosine transform (DCT),
quantisation (Q), inverse quantisation (IQ), inverse discrete cosine trans-
form (IDCT), motion compensation (MC), addition (ADD), and variable
length encoding (VLE). Three memory regions are used for frame stores
FS0, FS1, and FS2. The audio encoding part consists of seven tasks:
frame prediction (FP), fast Fourier transform (FFT), psycho-acoustic
model (PAM), filter (Flt), modified discrete cosine transform (MDCT),
and two iterative encoding tasks (IE1 and IE2). The numbers that anno-
tate arcs in Fig. 14 denote the communication amount of the message rep-
resented by the corresponding arc. The period of the task graph depends
on the imposed frame rate, which depends on the video clip. We use
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periods of 41.6 ms, corresponding to 24 frames per second. The deadlines
are equal to the periods.

The application is executed by an NoC with 6 DSPs, 2 CPUs,
4 ASICs, and 2 memory cores, organised as a 4×4 NoC with two unused
tiles, as shown in Fig. 15. The probability that a packet successfully tra-
verses a network link is assumed to be 0.99. The approach combining
spatially and temporally redundant message transmission obtained a 25%
response time reduction relative to the approach deploying only temporal
redundancy. The energy savings after voltage reduction amounted to 20%.
Because of the relatively small design space of this example, the optimi-
sation took only 3 s when combining spatially and temporally redundant
communication supports.

10. CONCLUSIONS

In this article, we addressed the problem of communication energy
minimisation under task response time and message arrival probability
constraints. The total communication energy is reduced by means of
two strategies. On one hand, we intelligently select the communication
supports of messages such that we reduce application response time with
negligible energy penalty while satisfying message arrival probability con-
straints. On the other hand, the execution time slack can be exploited by
deploying voltage and/or frequency scaling on the cores and communica-
tion links. The approach is efficient as it results in energy reductions up
to 20%.
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