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Distributed Jacobi Joint
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A new algorithm is described for distributed joint diagonalization of real
symmetric or complex Hermitian matrices. The approach, which is based on
the Jacobi diagonalization, utilizes distribution of the computational power
and memory space, minimizes the communication costs, and runs on clusters
of personal computers. It further combines two-step load balancing algo-
rithm with a standard Kalman filter to enable quick but low-cost adapta-
tion to resource varying conditions. Theoretical analysis of its performance
shows that the communication costs (when normalized by computational
costs) decline linearly with the number and size of the diagonalized matri-
ces. This is also confirmed by experimental results: the measured speedup
ratio yields 42.2 when jointly diagonalizing 800 matrices of size 400×400 on
a cluster of 50 personal computers.

KEY WORDS: joint diagonalization; distributed Jacobi; distributed load
balancing; diffusion schemes; parallel computing.

1. INTRODUCTION

Joint diagonalization of Hermitian matrices (also known as approximate
joint diagonalization or simultaneous diagonalization) consists of finding a
unique transformation which simultaneously transforms the matrices into
as close to diagonal as possible. This problem has been studied extensively
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over the last decade and has provided solutions to a wide range of scien-
tific and engineering problems. The joint parameter-estimation techniques
which can be reduced to the problem of joint diagonalization cover, for
example, the removal of artifacts and decomposition of compound sig-
nals in the area of biomedical signal processing, direction-of-arrival prob-
lem and crosstalk/interference elimination in the digital communication
systems, identification of principal components in image restoration and
understanding, separation and enhancement of audio and speech signals,
and even theoretical investigation of the electronic structure of molecules,
solids and liquids. Further insight on the applications of joint-diagonaliza-
tion problem is given in Ref. 20.

A large variety of numerical methods for joint diagonalization have
been developed utilizing Jacobi iterations,(4,9) theoretic matrix log-likelihood
functions,(24) Gauss-Newton optimizations(21) and an alternating-directions
algorithm.(26) They all consider the cases with only a few matrices to be diago-
nalized. On the other hand, applications of joint diagonalization to the prob-
lem of blind source separation (BSS) and identification of molecular structures
attracted a lot of attention over the past decade, mainly due to their supe-
rior efficiency.(4,5,8,17,20) These techniques typically require a large number (at
least several tens) of matrices to be processed, in order to suppress the nega-
tive influence of noise. Moreover, the matrices that enter joint diagonalization
can be very large (of order of thousands), especially when separating convolu-
tive mixtures of signals or when investigating the structures of large molecules.
In a typical application of BSS techniques to the convolutive multiple-input–
multiple-output (MIMO) mixing problem, for example, we deal with several
hundreds of matrices consisting of several hundred rows/columns.(18,19) In all
these cases, high-computational complexity of joint diagonalization becomes
an important issue, as it is clear that the joint diagonalization soon meets the
limitations of today’s personal computers.

The problem of joint diagonalization is a natural extension of the
symmetric eigenvalue problem.(15) The latter has been under investigation
for more than a century, and many efficient solutions exist. From among
them, the Jacobi method has maintained the best numerical stability(2,8)

and superior accuracy,(12) but at the cost of a low convergence rate.(13)

There are also many different parallel solutions to single-matrix diagonal-
ization problem for various computational platforms.(3,6,11,15,22) Neverthe-
less, to our knowledge, only one description of a parallel algorithm exists
for the joint diagonalization of several matrices. This approach, presented
in Ref. 17, utilizes the ideas developed for the parallel diagonalization of a
single matrix. As demonstrated in the sequel, it works well only for a small
number of matrices being diagonalized on a multiprocessor (shared mem-
ory) system, where the communication costs are relatively small. When
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jointly diagonalizing several tens of matrices on a distributed system these
ideas lead to inefficient implementations with huge communication costs.

This paper introduces a novel approach to the distributed joint diag-
onalization of a large number of real symmetric or complex Hermitian
matrices. The algorithm is based on the Jacobi diagonalization method(15)

and can be run on the clusters of personal computers. It minimizes the
communication costs, achieves a stable speedup factor, and a good load
balance for all possible input matrices and numbers of processors used.
The paper is organized as follows. Section 2 briefly reviews the Jacobi
diagonalization of a single symmetric matrix, its parallel extension, and
its extension to joint diagonalization. Our novel algorithm is introduced
in Section 3, while Section 4 reveals its theoretical performance analysis.
The experimental results obtained by the proposed method when applied
to the clusters with different number of personal computers are presented
in Section 5. We conclude the paper with a discussion in Section 6.

2. JOINT JACOBI DIAGONALIZATION

Define a set of K symmetric/Hermitian N × N matrices Ak

� = {Ak; k = 1, ..., K} (1)

and suppose they all share a common eigen-structure, i.e. they can all be
diagonalized by the same unitary matrix U:

Dk = UH AkU, (2)

where all N×N matrices Dk are diagonal and H denotes the complex con-
jugate transpose. The idea behind joint Jacobi method is to use successive
orthogonal transformations J in order to reduce the norm of the off-diag-
onal elements(15)

off (�) =
K∑

k=1

√√√√√
N∑

i=1

N∑

j=1

∣∣∣a(k)
ij

∣∣∣
2
, (3)

where a
(k)
ij denotes the (i, j)th element of the matrix Ak.Transformations

J(p, q, c, s) are defined as Jacobi (Givens) rotation matrices equal to iden-
tity matrix but for the following entries:(15)

[
jpp jpq

jqp jqq

]
=
[

c s̄

−s c̄

]
, (4)
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where p and q stand for row and column indices, respectively, (c, s) is a
complex rotation cosine–sine pair with |c|2 + |s|2 = 1, and c̄ and s̄ denote
the conjugate values of c and s, respectively.

For a given pair of indices (p, q), define a 3 × 3 matrix G as(10)

G(p, q) = real

(
K∑

k=1

h(Ak, p, q)H h(Ak, p, q)

)
, (5)

where

h(Ak, p, q) =
[
a(k)
pp − a(k)

qq , a(k)
pq + a(k)

qp , i
(
a(k)
qp − a(k)

pq

)]
. (6)

Then, under the constraint of |c|2 + |s|2 = 1, the value obtained by Eq.
(3) is minimized when(10)

c =
√

x + r

2r
, s = y − iz√

2r(x + r)
, r =

√
x2 + y2 + z2, (7)

where [x, y, z]T is any eigenvector associated with the largest eigenvalue of
G(p, q) and i stands for imaginary unit.

Initialize the matrix U equal to the N×N identity matrix (U = IN×N).
The basic rotation of joint Jacobi diagonalization then comprises:(15)

1. choosing an index pair (p, q) where 1 � p < q � N ;
2. computing a complex cosine–sine pair (c, s) as suggested in (7);
3. replacing Ak with Bk = JH AkJ where J = J(p, q, c, s);
4. replacing U with U = JH U.

Matrices Ak converge toward the diagonal matrix with each Jacobi step.(15)

However, as only the pth and the qth columns and rows are altered in
each step, several steps are required in order to generate all the possible
(p, q) pairs, In the sequel, a cycle covering all possible (p, q) pairs, i.e.
N(N −1)/2 Jacobi rotations that reduce all non-diagonal elements, will be
referred to as a sweep.

3. DISTRIBUTED JOINT JACOBI DIAGONALIZATION

It is natural to implement joint Jacobi diagonalization as a distributed
algorithm based on the ideas taken from the parallel Jacobi diagonalization
of a single matrix. Each Jacobi transformation J(p, q, c, s) only changes
the pth and qth row and column. By choosing pairs (p, q) wisely, sev-
eral Jacobi rotations can be simultaneously applied to a set of matrices Ak.
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Recall, however, that all possible pairs of (p, q) should be generated in
order to guarantee the convergence of Jacobi method. Orderings of indi-
ces which permit N/2 rotations to be carried out simultaneously in every
step and walk through all possible combinations of indices are well known
to the chess tournament players, and are commonly referred to as tourna-
ment orderings.(15) The first three steps of tournament ordering for N = 8
are exemplified in Eq. (8).

sweep step 1: (1, 2), (3, 4), (5, 6), (7, 8),

sweep step 2: (1, 8), (2, 3), (4, 5), (6, 7), (8)

sweep step 3: (1, 7), (8, 2), (3, 4), (5, 6).

The aforementioned ideas for parallel joint diagonalization have
already been outlined in Ref. 17. In the proposed solution, all the matrices
Ak are thought of as having aligned rows and columns (they are placed
one behind the other), whereas the index p is supposed to refer to the
pth columns (rows) of all the matrices Ak. Following the procedure for
parallel Jacobi diagonalization of a single matrix,(15) the columns (rows)
are distributed among the corresponding processing units (PUs). Each PU
performs the Jacobi’s basic step, sends the information about its rota-
tions to all other PUs, receives the information about other rotations from
all other PUs, and updates the columns of matrices Ak. Afterwards, the
indices are shifted according to the tournament ordering. Along with the
indices, the corresponding columns of all the matrices Ak are also trans-
ferred. However, dealing with several hundred matrices, this transfer of
columns creates heavy network traffic and slows down the computation,
especially in heterogeneous distributed systems (see Section 4.1 for details).

The other possible way, as proposed in this paper, is to distribute the
complete matrices among the PUs and let each PU diagonalize its own
subset of matrices. In this case, no network transmission of matrix col-
umns is required as each matrix subset is only assigned to a corresponding
PU. However, to guarantee the generation of a universal transforma-
tion matrix U the rotations J(p, q, c, s) must be constructed globally, i.e.
considering all the matrices Ak. Rewrite (5) as

G(p, q) = real

⎛

⎝
R1(p,q)∑

k=1

h(Ak, p, q)H h(Ak, p, q)

⎞

⎠

+real

⎛

⎝
R1(p,q)+R2(p,q)∑

k=R1(p,q)+1

h(Ak, p, q)H h(Ak, p, q)

⎞

⎠+ · · · +
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real

⎛

⎝
K∑

k=K−RQ(p,q)+1

h(Ak, p, q)H h(Ak, p, q)

⎞

⎠

= G1(p, q) + G2(p, q) + · · · + GQ(p, q) (9)

where Q stands for the number of PUs and each Ri(p, q); i = 1, . . ., Q

with R1(p, q) + R2(p, q) + · · · + RQ(p, q) = K, denotes the number of
matrices being diagonalized by the ith PU. Note that Ri(p, q) may differ
for different pairs of indices (p, q).This proves beneficial when it comes to
load balancing, as described in Section 3.1.

The presented approach still utilizes the local operation property of
Jacobi rotations. Following the tournament ordering, N/2 local matrices
Gi (p, q) can be calculated on each PU prior to their global addition.
However, the whole rotation cycle is now performed locally inside each PU
(no column transfer among the PUs is required). Eigendecomposition of
3×3 G(p, q) matrix is a trivial task and can be performed by a single PU,
as proposed in Fig. 1. Afterwards, the (c, s) pairs are propagated back to
all PUs where local copies of the rotation matrix J(p, q, c, s) are stored.
In this way, robustness to drop-outs of PUs is increased. The cosine–sine
(c, s) pair computations can also be distributed among different PUs. In
this case, all (p, q) index pairs must be first mapped onto Q predefined
and globally known complementary sets that correspond to different PUs.
Each PU then calculates global rotation angles (c, s) for its own set of
(p, q) index pairs and dispatches them back to all other PUs.

3.1. Load Balancing

Running the described distributed algorithm on a cluster of personal
computers with varying PU processing speeds and different connection
capacities, it is essential to achieve efficient load balancing (LB) for all
possible inputs and numbers of PUs used. Namely, additional waiting
times arise as a consequence of the required global synchronizations (as
described in Section 4.2). A smart dynamic distribution of matrices mini-
mizes these waiting times.

In order to refine the granularity of LB, we should redistribute matrix
columns rather than entire matrices. The matrices Akare first concatenated
in a nose-to-tail circular order with the last column of the matrix Ak

adjacent to the first column of the matrix Ak+1(Fig. 2), while the last
matrix AK is made adjacent to the first matrix A1. The number of matrix
columns Pi , processed by the ith PU, is no longer limited to an integer
multiple of N , meaning that the columns of the same matrix may be di-
agonalized by two or even more neighbouring PUs. Referring to Fig. 2,
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Fig. 1. Parallel Jacobi joint diagonalization algorithm for the ith PU; global synchroniza-
tion (summation of global G(p, q) matrix) is described in lines 5–6. Line 12 corresponds to
load balancing algorithm described in Fig. 3.

Fig. 2. Row-wise alignment of matrices (upper plot), and their column-wise distribution
among different PUs (lower plot); Pi denotes the number of matrix columns being processed
by the ith PU, Li and Hi stand for lower and upper limits of memory space assigned to the
local matrices of the ith PU, respectively, while Bi,i+1 denotes the boundary which separates
the matrix columns processed by the ith PU form the columns processed by the (i+1)th PU.
The last matrix AK is supposed connected to the first matrix A1 (for clarity reasons only a
portion of the circular data structure is depicted).

for example, the ith PU processes only approximately a half of the matrix
Ak+3, while the other half is processed by the (i + 1)th PU. The exact
choice of columns to be processed by each PU depends on the current
values of (p, q) pairs and must be changed according to the tournament
ordering (Fig. 1). As a result, a single pair of matrix columns must be
interchanged after each sweep step between each pair of the PUs sharing
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a common matrix. In order to minimize the communication costs, the
number of shared matrices per PU should be kept minimal. On the other
hand, all available network connections should be utilized to allow quick
adaptation to load varying conditions. A good compromise is to allow
each PU to share at maximum two matrices, i.e., to limit the exchange
of shared matrix columns to a ring topology. This allows for rapid two-
step adaptations to resource varying conditions. In the first LB run, all
communication links are used to redistribute the local matrices (i.e. the
matrices not being shared by different PUs), while the second LB run
redistributes the columns of shared matrices across the virtually induced
ring topology.

There are numerous ways how to determine the exact amount of data
to be transferred between different PUs, in order to equalize their loads.
However, taking into account the locality properties of the aforementioned
matrix distribution, the diffusion-based nearest–neighbour algorithms(25)

appear as the most appealing choice. Using the so called first-order diffu-
sion scheme (FOS), for instance, the number of matrix columns to be
transferred after the nth sweep step between the ith and j th PU can be
calculated as:

�
(n)
i,j =

L∑

l=1

δ
(n,l)
i,j (10)

with

δ
(n,l)
i,j =

m
(n)
i,j

t
(n)
i

(
t
(n)
j P

(n,l)
j − t

(n)
i P

(n,l)
i

)
, (11)

where t
(n)
i stands for the effective processing time spent by the ith PU

in the nth sweep step, L denotes the number of LB iterations, P
(n,l)
i =

P
(n,l−1)
i + ∑

j

δ
(n,l−1)
i,j with P

(n,0)
i = P

(n)
i is the number of columns being

processed by the ith PU after the lth iteration step (11), while m
(n)
i,j stands

for the (i, j)th element of generalized diffusion matrix M(n).(14) For het-
erogeneous FOS schemes(25) already showed the optimal diffusion factors
m

(n)
i,j (in terms of convergence rates) can be calculated as:

m
(n)
i,j =

⎧
⎪⎪⎨

⎪⎪⎩

φ
(n)
i,j ω

t
(n)
j

i,j , if i = j − 1 ∨ i = j + 1,

1 −∑
k

m
(n)
k,j , if i = j,

0, else,

(12)
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where ωi,j stands for a weight associated to the communication link
between ith and j th PU, and ωmin, t

(n)

min and t
(n)
max denote the mini-

mal communication weight, and minimal and maximal processing times
in the nth sweep step, respectively. The optimal convergence rate is

achieved when φ
(n)
i,j = min

{
1

t
(n)
i (

∑
k ωi,k+ε0)

, 1
t
(n)
j (

∑
k ωj,k+ε0)

}
, where ε0 =

e(C)ωmin
t
(n)
max

t
(n)

min

sin2( π
2Q

) and e(C) stands for edge connectivity of the corre-

sponding communication graph.(25) The main drawback of FOS schemes
is their slow convergence. Typically, several hundreds iterations of (11)
are needed to attain the optimal load distribution. More optimal sec-
ond-order (SOS), and polynomial diffusion schemes, perform significantly
faster.(14,23) However, they depend on a global knowledge of communi-
cation graph and require more sophisticated load movement algorithms
(using higher-order diffusion schemes, the cases may appear in which a PU
is selected to send out more load than it posses).

In our case, the use of discrete load units prevents the presented diffu-
sion algorithm to balance load completely. Limiting the first LB run to the
exchange of local matrices only, the net transfer across each communica-
tion channel has to be rounded down to the nearest integer multiple of N2

and is additionally limited by the number of local matrices on each PU:

�̃
(n)
i,j = min(Hi − Li,

⌊
�

(n)
i,j

⌋

N2
) (13)

where Li andHi stand for lower and upper limit of memory space assigned
to the local matrices processed by the ith PU, respectively, and we
assumed �̃

(n)
i,j >0, i.e. the load flows from the ith to the j th PU. Now,

assume (10) converges to its final value. Then the largest possible differ-
ence

∣∣∣�̃(n)
i,j − �

(n)
i,j

∣∣∣ between the demanded and net load transfer on chan-

nel (i, j) yields 2N2 matrix elements. Accumulating differences on all the
channels, the load discrepancy for the ith PU yields

∣∣∣P̄ (n)
i − P̃

(n)
i

∣∣∣ � (υi +
1)N2, where P̄

(n)
i denotes the optimal workload distribution in the nth

sweep step, P̃
(n)

i,1 stands for the number of columns left on the ith PU after
the first LB run, while υi is the number of direct neighbours of the ith
PU. Denoting by p̄(n) =

[
P̄

(n)

1 , P̄
(n)

2 , . . . , P̄
(n)
Q

]
the optimal load vector in

the nth sweep step, and by p(n,l) =
[
P

(n,l)

1 , P
(n,l)

2 , . . . , P
(n,l)
Q

]
the actual

load vector after the lth iteration step (11), one can prove the following
inequality:
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∥∥∥p(n,l) − p̄(n)
∥∥∥∞

�
λl

M

(
t
(n)
max

)2

t
(n)

min

∥∥∥p(n,0) − p̄(n)
∥∥∥∞

, (14)

where
∥∥p(n,0) − p̄(n)

∥∥∞ = max
i

(∣∣∣P (n,0)
i − P̄

(n)
i

∣∣∣
)

stands for initial discrepancy

of load vector p(n,0),
∥∥p(n,l) − p̄(n)

∥∥∞ = max
i

(∣∣∣P (n,l)
i − P̄

(n)
i

∣∣∣
)

for the discrep-

ancy of load vector p(n,l), while λM denotes the convergence factor, i.e. the
second largest eigenvalue (in absolute value) of diffusion matrix M(n). Hence,
the first LB run of (10) ends as soon as max

i

(∣∣∣P (n,l)
i − P̄

(n)
i

∣∣∣
)

<N2, i.e. after at

maximum 1
(λM−1)

ln(
N2t

(n)

min(
t
(n)
max

)2‖p(n,0)−p̄(n)‖∞
) iteration steps. In the second LB run,

blocks of 2N matrix elements are transferred across the communication ring,
reducing the differences in workload to max

i

(∣∣∣P (n,l)
i − P̄

(n)
i

∣∣∣
)

<4N . The first

LB run guarantees
∥∥p(n,0) − p̄(n)

∥∥∞ � (υi + 1)N2. Therefore, the second LB

completes after at maximum 1
(λM−1)

ln(
t
(n)

min

N
(
t
(n)
max

)2 ) steps.

Note, however, that the attainment of fair workload after each sweep
step is not always globally optimal. In highly competitive environments,
such as clusters of personal computers, for example, sweep processing
times t

(n)
i change rapidly, while the data transfer costs are relatively high

and can easily outweigh the benefits of rebalancing. A perfect load bal-
ance after each sweep step is, hence, desired only in the presence of stable
workloads, whereas in frequent-load-change scenarios a rapid but coarse
reduction in load imbalance is preferred.

Modelling job arrivals at each PU as an independent identically dis-
tributed (i.i.d.) random process with i.i.d. random processing times, the
ith component of optimal load balancing vector p̄(n) is proportional to

t
(n)
i∑
j t

(n)
j

. For a large Q,
∑Q

j=1 t
(n)
j converges towards normal distribution

and changes in a relative short time interval (with respect to t
(n)
i , which

remains more or less constant between subsequent job arrivals on the ith
PU). Fair load distribution p̄(n) can, hence, be modelled as a short-term
stationary normally distributed random vector, making the vector version
of Kalman filter the most favourable adaptive estimator of globally opti-
mal load vector p̄(n). However, the vector version of Kalman filter requires
the inversion of a Q × Q matrix after each sweep step and induces severe
computational burden, especially for large Q. Suboptimal, but computa-
tionally appealing solution deploys a scalar version of Kalman filter to
locally average the processing times t

(n)
i before using them in the diffusion
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Fig. 3. Pseudocode of two-step load balancing algorithm on the ith PU. The first step (line
3) utilizes all available network connections to redistribute the local matrices. The second step
(lines 4 and 5) redistributes columns of remaining matrices across the virtually induced ring
topology (Fig. 2).

scheme (Fig. 3). In such a case, Kalman filter acts solely as an adaptive
exponentially weighted moving average estimator:

t̄
(n+1)
i = t̄

(n)
i + c

(n)
i (t

(n)
i − t̄

(n)
i ),

c
(n)
i =

(
e
(n)
i + ξmodel

i

)
/
(
e
(n)
i + ξmodel

i + ξmeasure
i

)
,

(15)

where e
(n+1)
i =

(
1 − c

(n)
i

)
+ (e

(n)
i + ξmodel

i ) with e
(0)
i = 0, and ξmodel

i and
ξmeasure
i stand for the model and measurement uncertainty, respectively.

The use of the scalar Kalman filter (15) is further justified in Section 4.2.

4. THEORETICAL PERFORMANCE EVALUATION

In this section, we compare the theoretical performance of the pro-
posed algorithm to the performances of parallel algorithm described in
Ref. 17 and sequential Jacobi joint diagonalization algorithm. All algo-
rithms share the same number of required sweeps. Generally speaking, no
proof of their global convergence rate can be made (there may even be
no transformation U which simultaneously diagonalizes the whole set of
matrices Ak). However, under the assumption that all diagonalized matri-
ces Ak share a common eigen-structure, the quadratic local convergence of
sequential Jacobi algorithm has been proven.(7)



520 Holobar, Ojsteršek, and Zazula

In the sequel, our discussion is limited to a single sweep, while the
basic floating point operation will be referred to as a flop. No distinction
between the real and complex flops will be made. Note, however, that the
flops are implicitly supposed to be complex whenever the Hermitian matri-
ces are diagonalized.

4.1. Communication Complexity and Comparison to Parallel

Algorithm

The transfer of symmetric 3 × 3 Gi (p, q) matrices in (9) represents
no serious network load. Assuming that floating-point data type occupies
br bytes, a total amount of 6brQ bytes for each global addition, i.e. each
Jacobi rotation, is transferred over the network. Exchange of the shared
matrix columns requires at maximum 4QNbr bytes per sweep. Finally,
rebalancing of the PUs’ workload takes additional 2brQ bytes per sweep
step for dispatching processing times t

(k)
i , 4LQbr for mutual exchange of

P
(n,l)
i and brN bytes per transferred matrix column. Having N − 1 steps

per sweep, the total communication costs yield:

C
sweep
distributed =

Q∑

i=1

[N(3N + 1)brεi + 2(N − 1)σi ] + C
sweep
loadbalancing, (16)

where

C
sweep
loadbalancing =

Q∑

i=1

[
2(N − 1)(2L + 1)brεi + SiN

2brεi

+3(N − 1)(2L + 1)σi ] , (17)

stands for communication costs due to load balancing, εi is the average
time required to transfer 1 byte from the ith PU to its neighbours, Si is
the number of local matrices per sweep that are transferred between the
ith PU and its neighbours due to the first LB run, and σidenotes the start-
up time required to initiate the communication activity.

According to (16), the amount of transferred data is independent of
the number of matrices Ak, but increases with their sizes and the number
of PUs. On the other hand, using conventional column (row) shifting as
proposed in Ref. 17, the amount of 2(Q − 1)KNbr + Nbr bytes per sweep
step has to be transferred (without the LB costs). The total communica-
tion costs of such an approach yield:
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C
sweep
parallel =

Q∑

i=1

[N(N − 1)brεi + a(i)KN(N − 1)brεi + a(i)(N − 1)σi ]

+C
sweep
loadbalancing, (18)

where a(i) =
{

1 if i = 0, Q

2 otherwise
Note that no load balancing algorithm was proposed in Ref. 17,

hence, only a general denotation of load balancing costs is used in (18).
Comparison between the costs (16) and (18) for a different number

of N ×N matrices, K, on a different number of PUs, Q, is further shown
by Fig. 4. For the sake of simplicity, all the PUs were assumed to be of
the same computational power, i.e.∀i, γi = 4 · 10−9, where γi stands for
the time required to execute one flop on the ith PU, while a 100 Mbps
network was simulated, which results in εi = 10−7and in time to initi-
ate the network transfer σi = 10−4. With no LB algorithm proposed in
Ref. 17, no costs due to load balancing were taken into account. Figure 4
should, hence, serve only for a comparison of two different matrix distri-
bution strategies.

4.2. Computational Complexity and Comparison to Sequential

Joint Diagonalization

The main computational cost in the sequential Jacobi procedure is
due to the update of the diagonalized matrices. In each Jacobi step we
compute the matrix G(p, q), which requires 12K flops, and update the
matrices Ak, which takes additional 12KN flops. Finally, updating the
matrix U takes 6N flops per Jacobi step. Performing N(N −1)/2 rotations
per sweep, the computational complexity of the sequential Jacobi proce-
dure on only one, for example the ith PU, yields

T
sweep
sequential(N, K) = γi

[
6KN(N − 1) + 6KN2(N − 1) + 3N2(N − 1)

+N(N − 1)

2
β

]
, (19)

where β denotes the computational complexity (in flops) of 3 × 3
eigen-decomposition. The exact choice of eigen-decomposition algorithm
depends on the numerical library used, hence, only a general denotation
of its complexity is used in this paper. In either case this adds very little
to the computational complexity (in the case of symmetric QR algorithm,
for instance, β yields 36(15)).
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Fig. 4. Theoretical comparison of communication costs of joint diagonalization for our
algorithm (grey lines) and the algorithm proposed in Ref. 17 (black lines) versus the num-
ber of processing units (Q) joint diagonalizing: (a) different number (K) of 100 × 100 matri-
ces, (c) 100 matrices of different sizes (N × N ). The corresponding total diagonalization time
speedups are depicted in subplots (b) and (d). All PUs were assumed to be of the same com-
putational power, ∀i, γi = 4 · 10−9 (250 Mflops), while a 100 Mbps network was simulated
(εi = 10−7, σi = 10−4). Costs of load balancing are not depicted.

When running a distributed version of joint Jacobi diagonalization
on clusters of personal computers, the additional waiting times wi arise
as a consequence of the required global synchronizations. Having N − 1
global synchronizations per sweep the computational costs of the ith PU
per sweep reach

T
sweep
i (N, K) = γi

[
3Pi(N − 1)(2N + 1) + N(N − 1) (β + 3N)

2

+ (26+10L) (N − 1)

]
+ wi, (20)
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where L denotes the number of LB iterations in each LB run and

wi =
N−1∑

n=1

(
max

j
(t

(n)
j ) − t

(n)
i

)
, (21)

denotes the waiting time of ith PU per sweep.

Define now the ith optimal speedup factor as a ratio between the
joint computational power of all PUs and the computational power of the
ith PU:

F
opt
i = γi

Q∑

j=1

1
γj

. (22)

The computational complexity of the distributed Jacobi algorithm,
measured on ith PU, approximates:

T
sweep

distributed ≈
⎡

⎣
γi

(
6KN(N−1)+6KN2(N−1)+N(N−1)

(
3N+ β

2

)
+(26+10L)(N−1)

)

F
opt
i

⎤

⎦+wi.

(23)

When K � 1 and N � 1 the achieved speedup factor (a ratio between the
total processing time of sequential and distributed Jacobi algorithm) mea-
sured on the ith PU yields

F distributed
i =

(
T

sweep
distributed +C

sweep
distributed

T
sweep
sequential

)−1

≈

⎛

⎜⎝ 1
F

opt
i

+ wi

T
sweep
sequential

+ 26+10L

(6K+3)N2+6KN
+

br

Q∑
j=1

(Sj +3+ 4L
N

)εj

6KNγi
+

(5+6L)
Q∑

j=1
σj

6KN2γi

⎞

⎟⎠

−1

,

(24)

which comprises

T
sweep
distributed

T
sweep
sequential

≈ 1

F
opt
i

+ wi

T
sweep
sequential

+ 26 + 10L

(6K + 3)N2 + (6K + β/2)N
(25)
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and

C
sweep
distributed

T
sweep

sequential

=
N2br

Q∑
j=1

Sj εj + [3N(N −1)+(4L+2)(N +1)]br

Q∑
j=1

εj +(N −1)(5+6L)
Q∑

j=1
σj

6KN2γ1

[
N − 1

N
+ β

12K
− β

12KN

] .

(26)

Equation (24) clearly reveals that the proposed algorithm converges to
the optimal speedup factor as the number and sizes of the diagonalizing
matrices increase. The importance of smart load balancing strategy is also
clarified, revealing the tradeoff between the waiting times wi and load bal-
ancing costs. In order to further illustrate this tradeoff, the proposed LB
algorithm was applied to simulated clusters of 25 and 50 PUs, arranged
in 2D mesh (with fixed dimension set to 5) and ring topology. Speeds
of PUs were considered inversely proportional to the number of currently
executed jobs. Job arrivals were modelled as independent Poisson random
processes with exponentially distributed job processing times. Different lev-
els of load variability at the same average PU load were simulated by set-
ting the mean job inter-arrival time and job processing time to 0.5, 1, 5
10 and 25 s, respectively. The results, averaged over 10 simulation runs,
are depicted in Fig. 5. In each simulation run, communication weights ωij

were randomly chosen from the interval [1, 10]. The model uncertainty
ξmodel
i in (15) was set to 0.01, while the variance of local sweep processing

time t
(n)
i was used as an estimate of the measurement uncertainty ξmeasure

i .

5. EXPERIMENTAL RESULTS

The presented distributed joint Jacobi diagonalization algorithm was
implemented in Microsoft Visual C++. Communication among different
PUs was carried out using the MPICH implementation(1) of the Mes-
sage Passing Interface, while the VectorSpace C++ Library was used for
matrix computations (the library is accessible online through the URL at
http://www.vector-space.com). The tests were conducted on one single per-
sonal computer, and clusters of 10, 20, 30, 40 and 50 personal comput-
ers. All cluster nodes ran the Windows XP operating system and were
connected to 100 Mbps Ethernet. Technical details about PUs constituting
the clusters are presented in Table I. The average time σi to initiate the
communication activity among two nodes was measured using the mpptest
benchmark(16) and yielded 100.4 μs, while the average times to transfer 32,
128 and 512 bytes of data were estimated to 3.2, 12.5 and 46.2 μs, respec-
tively. No special attention was paid to avoid competition for resources
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Fig. 5. Total diagonalization time speedup depending on the load variability (average job
inter-arrival time on all PUs) and load balancing strategy (number of load balancing itera-
tions G) used when joint diagonalizing 200 of 200 × 200 matrices for: (a) ring topology with
25 PUs, (b) 2D mesh topology with 25 PUs, (c) ring topology with 50 PUs, and (b) 2D mesh
topology with 50 PUs. The results are averaged over 10 simulation runs and normalized by
the sum of available computation power on all PUs in each simulation run. In all simulation
runs, the average PU load was kept constant by setting average job processing time equal to
the average job inter-arrival time.

with other applications. However, the fair initial load distribution was
calculated as the first step in all experiments. First, the computing power
of each node was determined experimentally by measuring the time spent
on multiplying 1000 random matrices of size 100 × 100 on each node
(Table I). Second, the matrices were distributed proportionally to the esti-
mated computing power of each node.

In the first experiment, the time required to diagonalize the same set
of matrices on a different number of PUs was determined. Groups of 200,
400, 600 and 800 random symmetric matrices of size 400 × 400 were gen-
erated. No special care about the eigen-structure of the generated matrices
was taken (note that the joint diagonalization procedure does not rely on
the assumption that all the matrices share the same eigen-structure(8,10)).
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Table I. Declared characteristics and measured computational rates (in Mflops per

second) of PUs constituting test clusters of 1–50 personal computers (PCs). All PCs

ran the Windows XP operating system and were connected with a 100 Mbps net-

work. The measured computational rate of each PU was calculated as a reciprocal

value of the time needed to multiply 1000 random matrices of size 100 × 100.

Sequential Total Computational power
number memory CPU, declared speed (in Mflops per sec.)

1 1.5 GB Intel Pentium 4, 2.0 GHz 283.2
2 500 MB Intel Pentium 4, 1.8 GHz 259.5
3–15 256 MB Intel Pentium 4, 1.6 GHz 231.5
16–26 256 MB AMD Athlon 2000+, 1.6 GHz 135.8
27–39 256 MB Intel Celeron 4, 1.7 GHz 250.0
40 512 MB AMD Athlon 2600+, 2.1 GHz 139.6
41–50 256 MB Intel Celeron 4, 1.7 GHz 252.7

The generalized LB diffusion matrix as defined in (12) was used. The
number of LB iterations in each LB run was set to G = 10. The measured
sweep processing times were averaged using scalar Kalman filter with the
model uncertainty ξmodel

i = 0.01 and measurement uncertainty ξmeasure
i set

equal to the variance of the local processing time t
(n)
i .

All the performance indices were averaged over 10 experimental ses-
sions with randomly allocated cluster nodes and new random matrices
generated in each session. The total execution time and the time spent for
communication between the PUs were measured. Figure 6(a) depicts the
average speed-up factor (the ratio between the time required to diagonal-
ize a particular group of matrices on a single PU and the time required to
diagonalize it on several PUs) achieved by a distributed implementation of
the joint diagonalization depending on the number of PUs. For the sake of
clarity, the computational powers of PUs (Table I) constituting the cluster
were equalized and proportionally scaled processing times are displayed.
Note also the times required to diagonalize different number of matrices
on a single PU are all normalized to 1. The time spent for communica-
tion among PUs during the same experiment is illustrated in Figure 6(b).
To clarify the communication costs, the values are divided by the corre-
sponding total diagonalization time on a single PU (PU 1 in Table I).

In the second experiment, the performance of distributed joint diag-
onalization was measured versus the sizes of matrices. Assuming the size
of matrices varies instead of their number, the same protocol was followed
as in the first experiment. First, groups of 400 symmetric matrices of sizes
100 × 100, 200 × 200, 400 × 400 and 600 × 600 were randomly generated.
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Fig. 6. Performance of the proposed distributed algorithm used for joint diagonalisation of
a different number of 400×400 matrices versus the number of processing units: (a) total diag-
onalization time speedup, (b) the ratio between the time spent for communication among the
PUs and the total diagonalization time. The processing times are scaled in proportion to the
measured computational powers of PUs (Table I), while the times required to diagonalize a
different number of matrices on a single PU are all normalized to 1.

Fig. 7. Performance of the proposed distributed algorithm depending on the number of
PUs when joint diagonalizing 400 matrices of different sizes: (a) total diagonalization time
speedup, (b) the ratio between the time spent for communication among the PUs and the
total diagonalization time. The processing times are proportionally scaled according to the
measured computational powers of PUs (Table I), while the times required to diagonalize
different number of matrices on a single PU are all normalized to 1.

The total execution time and the time spent on communication between
the PUs were averaged over 10 experimental sessions, while, analogously
to the first experiment, new random matrices were generated in each ses-
sion. The results are depicted in Fig. 7.

6. CONCLUSION

The presented approach for distributed joint Jacobi diagonalization
proves to be very efficient. Analytically assessed performance reveals its
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asymptotically optimal speedup factor and, at the same time, demonstrates
its high scalability (no restriction is put on the number of processors
and no zero-padding(11) of the matrices Ak is required). Communication
of local Gi (p, q) matrices among the PUs proves to be a minor cost,
especially when a large number of matrices is diagonalized. Both the
theoretical and experimental results prove the relative contribution of com-
munication activity to the overall costs is proportional to the number of
nodes, but decreases linearly with both the number and the sizes of matri-
ces. Diagonalizing 800 matrices of size 400 × 400 on 50 PUs, the speed-
up factor yields 42.2 and improves with the number of matrices (Fig. 6).
Diagonalizing 400 matrices of size 600 × 600 on 50 PUs the speed-up
ratio drops to 36.1 (Fig. 7) but still increases with the size of matrices.
The processing time by far exceeds the communication costs. Although a
slight increase is noticed when adding new PUs, the relative share of com-
munication costs reduces strongly with both the number and the sizes of
matrices.

Diagonalization of small number of matrices appeared to be less effi-
cient. The reason can be sought in local update of unitary matrix U. In
order to increase the robustness of distributed joint diagonalization, local
copy of entire matrix U is stored and updated by each PU. This adds very
little to computational costs when a large number of matrices is being di-
agonalized, but gets significant in the case of small number of matrices.
An alternative solution would be to distribute the task of updating the
matrix U among all PUs. In such a case each PUs updates only a portion
of matrix U (to guarantee fair workload distribution, the exact number of
columns of U to be updated by the ith PU must be made proportional to
the number of processed matrix columns Pi). This speeds up the diagonal-
ization but makes it vulnerable to the drops-outs of the cluster nodes.

Finally, adaptive diffusion-based load balancing strategy introduced
in this paper relies on the experimentally determined computing power of
cluster nodes and exhibits very low and adaptable communication costs.
Each PU communicates only with its direct neighbors, commuting infor-
mation about its sweep processing time t

(n)
i . Under steady conditions (no

multitasking on PUs), optimal load balance is achieved after only a few
initial sweep steps, while in dynamic conditions, an adaptive averaging of
the measured processing times using the standard Kalman filter limits the
load balancing costs. Although heuristic and suboptimal, scalar Kalamn
filter proved to be an efficient and computationally appealing solution
(Fig. 5). Moreover, globally optimal load balance was achieved in our
studies only after approximately 10 iterations per LB run, proving that
slow convergence of the FOS schemes is of minor concern in our case.
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Theoretical explanation of this phenomenon is beyond the scope of this
paper and will be investigated in the future work.
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3. M. Bečka, G. Oška, and M. Vajteršic, Dynamic Ordering for Parallel Block-Jacobi
SVD Algorithm, Parall. Comput. 28:243–262 (2002).

4. A. Belouchrani and K. M. Amin, Blind Source Separation Based on Time-Frequency
Signal Representation, IEEE Trans. Signal Process. 46:2888–2898 (1998).

5. B. Boashash, Time-Frequency Signal Analysis and Processing, Prentice Hall PTR,
Englewood Cliffs, NJ (2001).

6. R. P. Brent and F. T. Luk, The Solution of Singular-Value and Symmetric Eigenvalue
Problems on Multiprocessor Arrays, SIAM J. Sci. Stat. Comput. 6:69–84 (1985).

7. A. Bunse-Gerstner, R. Byers, and V. Mehrmann, Numerical Methods for Simultaneous
Diagonalization, SIAM J. Matrix Anal. Appl. 14:927–949 (1993).

8. J. F. Cardoso, Perturbation of Joint Diagonalizers, Technical. report 94D023, Signal
Department Telecom Paris, (1994).

9. J. F. Cardoso and A. Souloumiac, Blind Beamforming for Non-Gaussian Signals, IEE
Proc. F 6:362–370 (1993).

10. J. F. Cardoso and A. Souloumiac, Jacobi Angles for Simultaneous Diagonalization,
SIAM J. Mater Anal. Appl. 17:161–164 (1996).

11. E. M. Daoudi and A. Lakhouaja, Exploiting the Symmetry in the Parallelization of
the Jacobi Method, Parall. Comput. 23:137–151 (1997).

12. J. W. Demmel and K. Veselic, Jacobi Method is More Accurate Than QR, Techni-
cal report 468, Department of Computer Science, Courant Institute of Mathematical
Science, New York University (1989).

13. J. W. Demmel, Trading Off Parallelism and Numerical Stability, Technical report
CRPC-TR92422, Center for research on Parallel Computation, Rice University, Hu-
ston (1992).

14. R. Diekmann, A. Frommer, and B. Monien, Efficient Schemes for Nearest Neighbor
Load Balancing, Parall. Comput. 789–812 (1999).

15. G. H. Golub and C. F. Van Loan, Matrix Computation, 3rd Ed., The Johns Hopkins
University Press, Baltimore (1996).

16. W. Gropp and E. Lusk, Reproducible Measurements of MPI Performance Characteristics,
in Proc. 6th European PVM/MPI User’s Group Meeting on Recent Advances in Parallel
Virtual Machine and Message Passing Interface, Barcelona, Spain pp. 26–29 (1999).

17. F. Gygi, J. L. Fattebert, and E. Schwegler, Computation of Maximally Localized
Wannier Functions Using a Simultaneous Diagonalization Algorithm, Comput. Phys.
Commun. 155:1–6 (2003).



530 Holobar, Ojsteršek, and Zazula
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