International Journal of Parallel Programming, Vol. 35, No. 1, February 2007 (© 2006)
DOI: 10.1007/s10766-006-0023-0

FEADS: A Framework for Exploring
the Application Design Space
on Network Processors

Rajani Pai’ and R. Govindarajan'?

Received November 23, 2005; accepted September 7, 2006

Network processors are designed to handle the inherently parallel nature
of network processing applications. However, partitioning and scheduling
of application tasks and data allocation to reduce memory contention
remain as major challenges in realizing the full performance potential of a
given network processor. The large variety of processor architectures in use
and the increasing complexity of network applications further aggravate the
problem. This work proposes a novel framework, called FEADS, for auto-
mating the task of application partitioning and scheduling for network pro-
cessors. FEADS uses the simulated annealing approach to perform design
space exploration of application mapping onto processor resources. Fur-
ther, it uses cyclic and r-periodic scheduling to achieve higher throughput
schedules. To evaluate dynamic performance metrics such as throughput
and resource utilization under realistic workloads, FEADS automatically
generates a Petri net (PN) which models the application, architectural
resources, mapping and the constructed schedule and their interaction. The
throughput obtained by schedules constructed by FEADS is comparable to
that obtained by manual scheduling for linear task flow graphs; for more
complicated task graphs, FEADS’ schedules have a throughput which is
upto 2.5 times higher compared to the manual schedules. Further, static
scheduling of tasks results in an increase in throughput by upto 30%
compared to an implementation of the same mapping without task scheduling.

KEY WORDS: Cyclic scheduling; design space exploration; network processor;
programming model; performance Evaluation; petri Nets.

Department of Computer Science and Automation, Supercomputer Education and
Research Centre, Indian Institute of Science, Bangalore 560 012, India.
>To whom correspondence should be addressed. E-mail:{rajani, govind}@csa.iisc.ernet.in

1

0885-7458/07/0200-0001/0 © 2006 Springer Science+Business Media, LLC

2 Pai and Govindarajan

1. INTRODUCTION

Network processors provide a cost-efficient yet flexible solution for
developing applications that process packets at high data rates. With
increasing network traffic, the demand for higher performance, typically
specified in terms of line rates, is on the increase. Network devices
of today need to handle OC-48 lines rate or higher, where OC-48
(Optical Carrier 48) is a fiber optic network line with a SONET rate of
2488.32 Mbit/s or 48 times the basic SONET signal transmission rate. The
performance requirement of network processors depends on where in the
network they are being used. While applications at the edge of the net-
work are expected to handle low data rates with more processing done per
packet, those at the core need to perform a small set of simple tasks at
high data rates.

Network processing applications consist of a single loop for packet
processing. Most packets in network traffic do not exhibit interdependencies
and can therefore be processed independently. Network processors are
designed to exploit this inherently parallel nature of applications. Most
architectures consist of multiple processing elements connected in a pipe-
lined'® or multiprocessing fashion,® ') with communication between
processors taking place either through memory or through special-purpose
registers.®1) Each processing element supports multithreading, which
hides large memory latencies by allowing multiple outstanding memory
accesses from a processing element. Also, dedicated hardware may be
available for compute-intensive tasks like encryption and checksum com-
putation. Different types of memory are used, such as DRAMs for stor-
ing received packets, SRAMs for storing routing tables, and various other
lower capacity memory elements for communication between processing
elements. Not only do architectural features vary widely across proces-
sor families, but differences also exist within each processor family thus
exacerbating portability issues. A generic network processor architecture is
shown in Fig. 1.

It is the responsibility of the programer to assign processing tasks
and data to the available resources as well as to schedule these tasks
so as to meet the performance requirements of the application. It has
been observed that the critical factors in programing network proces-
sors are partitioning of tasks onto processors and threads, scheduling
of resources, assignment of data to memory elements, and data transfer
management."'? Additionally, other constraints like size of the instruction
store and capacities of the memory elements need to be considered during
binding of tasks to resources. Further, scheduling multiple instances of the

A Framework for Exploring the Application Design Space 3

Memory PE PE | PE
) { X) {
Interconnection Network
I X) {
Memory PE PE | - PE
— m pipeline stages
i) § I p1p g
Interconnection Network
Memory PE PE - PE

n processing elements

Fig. 1. Generic network processor architecture.

application might yield better throughput than a single instance as will be
shown in Section 4.2.2.

This is because the initiation interval for the schedule has to be an
integral value, and if the minimum initiation interval computed for a given
schedule is fractional, then it is rounded up to the next integral value.
Thus considering n instances, where n is chosen such that the computed
minimum initiation interval is an integral value, may improve the over-
all throughput. This is similar to the r-periodic schedule discussed in
Ref. 20. Hence the number of instances required to arrive at the optimal
throughput needs to be determined.

The above functions, generically referred to as mapping and schedul-
ing of tasks in this work, become increasingly more complex as larger net-
work applications are mapped onto newer and different processor families.
It is imperative to automate this process to explore the design space and
choose the most suitable mapping of an application to the given architec-
ture and find an optimal schedule for the mapping. However, the mapping
and scheduling process can only provide an estimate for (packet) through-
puts, which are static in nature, under constant packet arrival assumption.
To get a better picture of the performance of scheduling and mapping
schemes, it is necessary to obtain dynamic performance metrics, such as
packet throughput and utilization of various resources (e.g., micro-engines,
DRAM, and SRAM) under realistic workloads, such as packet traffic
modeled using Poisson distribution. Such dynamic performance metrics
also reveal bottleneck resources and insights for remapping and schedul-
ing. Hence the performance results obtained from the performance module

4 Pai and Govindarajan

can be fed back to the scheduler module to further tune the scheduling
and mapping process. In order to accomplish this, it is necessary to auto-
mate this process of obtaining dynamic performance metrics as well.

In this paper, we propose FEADS, a framework for exploring the
application design space on network processors, which can evaluate vari-
ous alternatives in application partitioning, scheduling and mapping onto
the network processor architecture and choose the best alternative. We
address these issues by partitioning the application into tasks based on
whether they utilize the processor or memory, thus yielding tasks of finer
granularity. The application is represented as an Annotated Directed Acy-
clic Graph (ADAG) where nodes represent the fine-grain tasks performed
on a packet. For example, a node in an ADAG may represent the lookup
task performed by packet forwarding applications.

The design space of mapping the tasks to resources is explored using
simulated annealing.(!? The mapping scheme can take into account var-
ious constraints such as code store size, communication options, and
their latencies. It explores whether pipelined or parallel, or a combina-
tion of these mappings is better. Once a mapping is finalized, the tasks
are scheduled using cyclic scheduling method (software pipelining). We
use a variant of decomposed software pipelining method.?! Further, we
consider unrolling of the task flow graph to obtain better throughput. This
is similar to r-periodic scheduling.?”> We propose a simple heuristic to
estimate the number of instances required. To obtain the dynamic per-
formance metrics, we use the Petri net (PN) model developed in Ref.(®)
for performance evaluation of network applications on network proces-
sors. A salient feature of the PN model is that it models the applica-
tion, the architecture, the mapping and schedule derived by FEADS, and
their interaction in detail. The PN model is automatically generated by
our PN _Generate tool. The PN generated changes whenever the architec-
ture, application, schedule or the mapping changes. The generated PN is
simulated using CNET,?® a PN simulator tool, and performance metrics
are obtained.

The throughput obtained by the mapping generated by FEADS for
the applications under consideration — IPv4, NAT, and IPSec — is com-
parable to that obtained by a manual binding of tasks to resources as in
Ref.(®). Further, enforcing static scheduling of tasks, as opposed to sched-
uling packets immediately upon arrival, results in an increase in through-
put by 30%. In the case of IPSec, with code size constraints imposed on
the mapping, the mapping and schedule produced by FEADS results in
27% higher throughput than the manual mapping. Further studies with
more complicated task graphs showed that our framework yields upto 2.5
times higher throughput as compared to a manual binding under code

A Framework for Exploring the Application Design Space 5

size constraints. This clearly indicates that with the growing complexity of
network applications and increasing resource constraints, manual binding
cannot adequately meet the line speeds required by these applications.

The rest of the paper is organized as follows. First, a discussion on related
work is presented. In Section 3, a brief description of various processors in
the IXP family of network processors is presented. Section 4 presents FE-
ADS, a framework which performs task partitioning and scheduling. Section
5 presents the experimental results. Finally, Section 6 concludes the paper.

2. RELATED WORK

Kulkarni et al., studied the performance impact of partitioning on
different network processor architectures.!®) An IP forwarding router
application was implemented on the IXP1200 and Motorola C-5 network
processors. The application was partitioned at the logical cutting points
revealed by the application, such as packet receive, header processing, and
packet transmit. It was observed that inefficient partitioning negatively
impacted the throughput by more than 30%, and localization of computa-
tion related to the memories increased the available bandwidth on internal
buses by a factor of two.

Several methodologies for the design space exploration of network
processors have also been proposed. Specifically, Blickle er al,(V) and
Thiele e al.,'® use a genetic algorithm to explore the design space of net-
work processors. Given an application, flow characterization and available
resources, they bind and schedule the tasks of the application onto the
resources. The objective function considers the cost of implementing the
given mapping in hardware. Once a set of optimal points are obtained,
simulation can be performed to select the best architectural configuration
for the given application and flow characterization. Their work looks at
the problem from an architectural design perspective, as reflected by their
objective function, while we approach it from an application design view-
point. Moreover, common features of network processors like the avail-
ability of multiple threads on a processing engine are not considered by
them while binding tasks to resources. They also do not accommodate the
fact that some tasks can be bound to more than one resource at a given
time, such as a processor thread and memory element, as is the case with
memory-bound tasks. Further, they have used an evolutionary approach
to explore the solution space, while we use simulated annealing since we
found that it covers the solution space more effectively and arrives at a
better solution.

Weng and Wolf®?? construct an ADAG of the application using
runtime traces and use this to perform design space exploration. An

6 Pai and Govindarajan

ADAG is a directed acyclic graph whose nodes are annotated with
their processing and memory requirements, while the edges are anno-
tated with the number of bytes of communication between the nodes
connected by the edge. They use a randomized algorithm to perform
mapping of nodes to processors and memories. The system through-
put is determined by modeling the processing time for each processing
element in the system based on its workload, the memory contention
on each memory interface, and the communication overhead between
pipeline stages.Memory contention is modeled using a queuing network
approach. At the end of the mapping process, the best overall mapping
is reported. It should be noted that their model considers a network
processor architecture with fixed binding of processors to memory and
communication elements, and hence does not take into account the avail-
ability of multiple memory modules for binding even after the processor
has been selected. Since we use a simulated annealing approach, we believe
that our framework will explore the design space more thoroughly as com-
pared to multiple randomized mappings, where each solution point is inde-
pendent of the other.

Franklin and Datar® propose an algorithm which employs a greedy
heuristic to schedule tasks derived from multiple application flows on pipe-
lines with an arbitrary number of stages. Tasks may be shared, and different
bandwidths may be associated with each of the application flows. However,
memory contention is not modeled. They have observed that task parti-
tioning results in greater flexibility in assigning tasks to the hardware pipe-
line, but with a corresponding increase in the complexity of implementing
the partitioning and larger inter-task communication costs. Sharing of tasks
common to different flows also leads to better throughput, since memory
contention is reduced. The task graph is partitioned at arbitrary points to
achieve load balancing across processors, while in our work, we start with
a more clearly demarcated set of processing, memory and communication
tasks. The demarcation of task boundaries with memory and communica-
tion task enables us to easily take into account the memory and communi-
cation costs and possible thread context switching.

The Shangri-la system proposed by Chen et al.,? consists of a pro-
graming language, a compiler for optimizing network programs using both
traditional and specialized optimization techniques, and a runtime system
which identifies hot code paths and improves their mapping to process-
ing resources. Aggregation of tasks from different pipe stages is done so
as to minimize communication cost. Pipeline aggregate duplication is used
to improve the throughput of the slowest pipe aggregate if its through-
put is much less than the other pipeline aggregates. We have found that

A Framework for Exploring the Application Design Space 7

scheduling multiple instances of the application achieves the same result
as duplication of individual pipe stages.

Click! and NP-Click('® provide a programing abstraction to spec-
ify network applications. Click is a software architecture comprising of
packet processing modules called elements. To build a router configura-
tion, the user connects a collection of elements into a graph. Packets move
from element to element along the graph’s edges. NP-Click!® builds on
this framework to provide an abstraction of the underlying hardware and
data layout that exposes enough architectural detail to write efficient code
for that platform, while hiding less essential architectural complexity. In
either case, elements have to be rewritten for portability. Also, the tasks
under consideration involve many memory accesses internally and hence
it is difficult to model contention for memory. We have used an ADAG
with tasks of finer granularity which can be generated from an application
specified using either of these abstractions.

Ennals et al.,® describe transformations that can be performed on
network processing applications such as pipelining tasks and merging pipe-
lined tasks. Since their work mainly deals with task partitioning, it is
orthogonal to our work.

3. IXP FAMILY OF NETWORK PROCESSORS

Figure 2 shows a block diagram of the Intel 2400 network proces-
sor,® which consists of an Intel XScale core and eight microengines. The
Intel XScale core initializes and manages the chip and is used for control
plane functions like exception handling. The microengines (MEs) are 32-
bit programable processors specialized for network processing, which han-
dle the data plane processing for the packets. Each ME supports eight
threads and allows zero-overhead context switching.

Media Switch Scratchpad SRAM SRAM DRAM Intel
Fabric (MSF) Memory Controller 0 Controller 1 Controller XScale
Core

t t t Intel XScale
Hash PCI Controller CAP NN NN Core
Unit ME ME —P ME ME

NN

Peripherals
l NN NN
NN
’ME H ME ’ ME

ME Cluster 0 ME Cluster 1

ME ‘ Performance
Monitor

Fig. 2. Block diagram of IXP2400.®)

8 Pai and Govindarajan

The memory architecture of the IXP2400 consists of SRAM, DRAM,
scratch memory, local memory, and next neighbor registers. Typically,
packets are stored in DRAM memory, while the SRAM memory stores
route lookup tables. 16 KB of low-latency scratchpad memory is also pro-
vided, which along with SRAM memory can be used for communica-
tion between MEs. There are separate SRAM and DRAM controllers for
interfacing the external memories. Next neighbor (NN) registers can be
used for communication between adjacent MEs. Communication between
NNs is unidirectional, as shown in Fig. 2. Additionally, each ME con-
sists of 640 words of local memory, which can be used for communication
between hardware contexts. Specialized hardware like the hash and crypto
units are also available on processors in the IXP family.

As can be seen, there is a wide variety of options for mapping
communication and processing tasks. Moreover, the resource used for
communication and hence the latency is constrained by the proces-
sor onto which adjacent tasks in the task flow graph are bound. The
size of the solution space under consideration implies that the func-
tion of mapping tasks to processors and memory modules should be
automated.

Other processors in the IXP family include the IXP1200, the IXP2800,
and the IXP2850. These processors have a similar structure, but the num-
ber of MEs, memory controllers and the specialized hardware differ. The
IXP1200 consists of six MEs with four threads per ME.® It has only one
SRAM controller, one DRAM controller and no next neighbor registers
for communication. The IXP2800, on the other hand, has 16 MEs dis-
tributed over two clusters, four SRAM controllers and three DRAM con-
trollers.19 Other features, however, remain identical to the IXP2400. The
IXP2850 is similar to the IXP2800, but additionally consists of two crypto
units which implement cryptographic algorithms in hardware.(!!)

Due to these dissimilarities in the architecture of processors in the
IXP family, the binding done for one processor might not lead to an opti-
mal solution for the others. Task partitioning and performance evaluation
techniques therefore need to consider the various resources available on
each processor in order to utilize them effectively.

4. FRAMEWORK FOR TASK SCHEDULING AND PARTITIONING

Figure 3 depicts the design of FEADS, a framework for task schedul-
ing and performance evaluation for a given architectural specification. The
details of the different components of the entire framework are described
in detail below.

A Framework for Exploring the Application Design Space 9

Architectural specification

Network application

code — 5| ADAG generation
module

Dynamic performance

evaluation

I
'
'
'
'
i
0 Scheduler module
'
'
'
'
'
'
'

Fig. 3. Proposed design for the framework.

4.1. ADAG Generation Module

The application to be scheduled can be specified using a framework
like Click or NP-Click. An ADAG for this task flow graph is generated,
along with various constraints like resources that the tasks can be mapped
onto and instruction store requirements of tasks. Task nodes in the ADAG
are explicitly classified into processing, memory, communication, or appli-
cation-specific tasks meant for the hash or crypto units. The nodes of the
ADAG are considered to be atomic and cannot be split further. Based on
the type of node, it is either annotated with the processing requirements in
terms of the number of cycles or the memory requirements in terms of the
number of bytes to be transferred. Memory nodes are also annotated with
information about the type of memory — SRAM or DRAM — that they
need to access. Similar constraints can also be imposed on the binding of
other nodes. Since we use nodes of finer granularity than those provided
by Click or NP-Click, we model the memory contention and communica-
tion costs with greater accuracy and hence obtain a better schedule.

An example ADAG is shown in Fig. 4. Processing nodes are denoted
by P, memory nodes by M, and communication nodes by C. Communi-
cation nodes are annotated with the number of bytes of communication
needed by the two adjacent nodes. For example, the communication from
nodes a to b requires 32 bytes, and is represented by node e in Fig. 4. The
annotations for node « indicate that it requires 10 clock cycles for execu-
tion and should be bound to a ME. Similarly, node b transfers 32 bytes
of data and should be bound to SRAM (S). Node ¢ should be bound to
DRAM (D).

In this work, we do not concentrate on the ADAG generation mod-
ule. We assume that an ADAG representation of the application forms an
input to FEADS. For the example network applications considered in this
paper, viz., IP forwarding (IPv4), Network Address Translation (NAT),
and IP Security (IPsec) (refer to Section 5.1 for a detailed discussion on

10 Pai and Govindarajan

(o
o

Fig. 4. Nodes in an ADAG.

these applications), we have shown the ADAGs in Fig. 5. The generation
of the ADAG for an application is left for future work.

4.2. Scheduler Module

The ADAG and architectural specification serve as inputs to the
scheduler, which performs mapping of ADAG nodes onto the appropri-
ate resources. The architecture of the processor on which the application
is to be scheduled is specified as a pair consisting of the type of resource
and number of resources of that type available. The overall design and
implementation of the scheduler module is shown in Fig. 6. The outer
loop estimates the number of instances which would result in optimal
per instance throughput and performs a mapping and scheduling of the
estimated number of instances using simulated annealing. Details are dis-
cussed in Section 4.2.2. PN_Generate is a part of Dynamic Performance
Evaluation module. The inner loop uses simulated annealing to generate
a mapping for the given ADAG. For each mapping, the tasks are sched-
uled and the schedule length is obtained. We use schedule length as the
static performance metric for comparing different mappings. The simulated
annealing algorithm and the other modules are described in the following
subsections.

4.2.1. Task Mapping

Simulated annealing'? is used to explore the task mapping space.
Mapping is done using Algorithm 1. The schedule length for a mapping is

A Framework for Exploring the Application Design Space 1

O~~~
D —— DRAM
S —— SRAM

—O—-O—-O—O

(a) IPv4

P —— Processor

WWH—‘ O—~(O—C—~O—~(D——O —
D —- DRAM
L.—.—.—.—.—.—.—. OO OSOROSON O

(b) NAT

P —— Processor

O~ —

S —— SRAM
H -- HASH
OO0 000

(¢ IPSec
Fig. 5. ADAGs for IPv4, NAT, and IPSec.

used as the objective function. Starting with an initial binding,
successive mappings for a given temperature are incrementally derived.
The incremental change in the mapping for a task to a given resource
is a function of the temperature under consideration. At higher temper-
atures, there can be larger changes in the binding of tasks to a resource
in terms of the distance from the previous mapping. As the temperature
decreases, the amount of perturbation allowed also reduces. When a map-
ping changes, some of the bindings previously associated with commu-
nication tasks might no longer be valid due to changes in the bindings
of tasks which they connect and hence the mapping has to be repaired.
For each mapping thus obtained, a schedule is constructed as described
in Section 4.2.3. A mapping with lower schedule length is uncondition-
ally selected for annealing, while mappings with higher schedule length are
selected with probability

12 Pai and Govindarajan

ADAG
Arch. spegification l

Estimate instances

A

Initial mapping

A

Generate mapping
for current
temperature

A
Decrease temp.
N/

/
PN_Generate

Fig. 6. Overall design of scheduler module.

—(currSchedLen — prevSchedLen)
exp ,
kT
where k is the Boltzmann constant and 7 the current temperature. After
every iteration of the inner loop, the temperature is reduced and the pro-
cess is repeated. Use of simulated annealing for exploring the design space
is acceptable since the mapping and scheduling need to be done only once
when the processor is programmed.

4.2.2. Scheduling Multiple Instances

Mapping a single instance of the application might result in some
resources being idle. For example, for the ADAG shown in Fig. 7(a), a sin-
gle instance resulted in a schedule shown in Fig. 7(b) with a throughput
of 0.5. However unrolling the ADAG multiple times and cyclic schedul-
ing the unrolled ADAG can result in higher throughput. Scheduling two
and three instances of the ADAG results in an II (Initiation Interval) of

A Framework for Exploring the Application Design Space 13

Algorithm 1 Algorithm for Mapping using Simulated Annealing
prevBinding = Generateinitialbinding
prevSchedLen = schedule(prevBinding)
for T = initialTemp to finalTemp do
for j =1to N do
newBinding = f(prevBinding, T)
newSchedLen = schedule(newBinding)
if newSchedLen < prevSchedLen or random(0, 1) >
exp(—(currSchedLen — prevSchedLen)/(k « T)) then
prevBinding = newBinding
prevSchedLen = newSchedLen
end if
end for
T=T-1
end for

three and four, respectively, which corresponds to a throughput of %:0.67
and %=O.75 packets per cycle, respectively, as shown in Fig. 7(c) and (d).
A further increase in the number of instances does not yield any improve-
ment in throughput since all the PEs are saturated.

Replicating instances of the application is equivalent to loop unroll-
ing and results in better resource utilization and per instance through-
put. Since incoming packets are independent of each other, only resource
dependencies need to be considered while scheduling instances of tasks
across loops. The minimum initiation interval (MII), governed only by
resource dependencies for k instances of the ADAG, is given by

] T
MII — max ("z *nTy *latf—D ’
f nR¢

where f the resource type,

nTy the number of tasks bound to resource f, and
laty the latency of resource f.

The throughput of a schedule with such II is Ik_I and the average II

per instance is % Since we want to obtain maximum throughput with

minimum amount of unrolling, the lower bound for the II of the unrolled
and pipelined loop schedule is computed as

ixnTrx*lat,
(e ([5R])
min

i i

: ¢y

14 Pai and Govindarajan

X
Y Y X
z n=2
% X Throughput = 1/2 = 0.5
Z

(a) ADAG (b) Scheduling a Single Instance
X X
Y Ixt
Y |Ix1 |
] - e - —— - g - z X2
Y1
Ly — X n=3 X
m=4
Y1 a2
Throughput = 2/3 = 0.67 Throughput = 3/4 = 0.75
71 Y | x1 & Y x
AR A N I A B - VA X2
S —— z — Y1
Y1
I 71 Y2
71 Zz
(C) Scheduling Two Instances (d) Scheduling Three Instances

Fig. 7. Scheduling Multiple Instances of an ADAG.

where i the number of instances,

f the resource type,

nT; the number of tasks bound to resource f,
late the latency of resource f, and

nR¢ the number of resources of type f.

We use the concept of r-periodic scheduling®? to determine the opti-
mal number of application instances to be scheduled. In this scheme, the
schedule of two consecutive iterations of a loop may not be the same,
but will repeat every r iterations. In our case, » determines the number of

A Framework for Exploring the Application Design Space 15

instances of the application to be scheduled. When multiple instances of
the application are to be scheduled, the ADAG is replicated and the nodes
are mapped onto the resources and scheduled.

From the equation it can be seen that multiples of the resource
with the largest occupancy yield the best theoretical lower bound and
hence these can be used as starting points for further exploration in our
design. It might not always be possible to obtain a schedule with an II
equal to the computed lower bound because our mapping might result
in some additional communication tasks being bound to some of these
resources. For example, if tasks X and Y operate on some common data,
but are bound to two different MEs, a communication task with addi-
tional latency is generated as part of the mapping. Also, since some tasks
might be bound to more than one resource, the actual schedule length
might differ from the computed one.

4.2.3. Task Scheduling

For each mapping, FEADS constructs a valid schedule. Since cyclic
or software pipelined schedules!® yield a better throughput than block
schedules, FEADS considers only cyclic schedules. In cyclic scheduling,
successive iterations of the ADAG are overlapped. A specific form of
cyclic scheduling, modulo scheduling, schedules different instances of a
node, corresponding to different iterations, exactly II cycles apart. The
throughput achieved by such a schedule is ﬁ Hence cyclic scheduling
attempts to minimize the II. Consider the ADAG in Fig. 7(a) with the
available resources being three processing engines (PE) and one memory
element. Assume the PEs are non-pipelined. Nodes x and z require two
cycles each for execution, while node y takes one cycle. Cyclic scheduling
results in the schedule shown in Fig. 7(b). The throughput of this schedule
is % packets per cycle. Note that in this schedule instances corresponding
to three iterations overlap in an II.

To construct an r-periodic cyclic schedule for a given II (computed
using Eq. 1), and the mapping obtained using the simulated annealing. we
use decomposed software pipelining algorithm.?!) We have used the First
Row Last Column (FRLC) algorithm for decomposed software pipelining
in our implementation. Here the row numbers denote the cycles of execu-
tion and the column numbers denote the iteration. Since there are no loop
carried dependences in our graph, the set of Strongly Connected Compo-
nents (SCC) is empty. We generate the new Loop Data Dependence Graph
(LDDG) by removing all edges which do not connect the SCCs, as per
the algorithm. We then perform list scheduling!” on this newly generated
LDDG. The row number for each task is determined by the cycle at which

16 Pai and Govindarajan

it starts execution. The II for the pipelined loop is given by the number of
rows as computed by the FRLC algorithm.

4.3. Performance Evaluation Module

A dynamic performance evaluation technique is incorporated into
FEADS to study the performance of the statically generated sched-
ule under realistic workloads. A PN model of the application mapping
and schedule on the given processor is generated for dynamic perfor-
mance evaluation. This is similar to the technique used by Weng and
Wolf?? wherein a performance model of the architecture under consid-
eration is used to compute the throughput due to a given binding using
queuing-network approach.

A Dbrief description of PN models in general and their use in modeling
applications mapped onto network processors in particular is given in the
following subsections. We also describe the scheme used by our framework
to automate the generation of these models for use by the CNET simula-
tor?® for PNs.

4.3.1. The Petri Net Model

The PN is a mathematical modeling tool which is commonly used to
model concurrency and conflicts in systems. Circles represent places, boxes
represent the timed transitions. Timed Petri nets (TPN) are an extension
to PN where a finite firing time is associated with transitions. The TPNs
have been used in modeling multithreaded processors. The main advan-
tage in using TPN for processor modeling is the added ability to capture
the latency of operations like memory access and processor execution at a
high level of abstraction.

The PN model generated by our framework models the architecture
as well as the application in great detail. An example model of a single
microengine in IXP2400 running the IPv4 application is shown in Fig. 8.
For clarity only a part of the model which captures the flow of packets
from the external link to DRAM through the MAC is shown. The fir-
ing time of a timed transition is assumed to be deterministic. The places
UE, THREAD, UE_.CMD_Q, DRAM_Q, CMD_BUS, represent various
resources available and thus model the processor architecture, and the
timed transitions UE_PROCESSING and RFIFO_DRAM represent the
specific tasks. The time taken by these transitions model the time taken
by these tasks in the specific unit. Thus the PN model is able to capture
the processor architecture, applications and their interaction in detail. A

A Framework for Exploring the Application Design Space 17

INPUT_LINE
IPORT
LINE_RATE
RMACMEM
THREAD
REIFO MAC_FIFO I/ X >

UE_RFIE

UE _PROCESSING

MEM_R1

SWAP_OUT

WAIT_CMDBUSI

RFIFO_ DRAM

DRAM_XFER

Fig. 8. PN model for a single microengine in IXP2400 running IPv4.
more detailed explanation of the model is given in Ref.() The PN models
forNAT and IPSec are given in Fig. 9.
4.3.2. The PN_Generate Tool

The dynamic performance of the mapping and schedule generated by
the scheduler module is evaluated using the PN model discussed in the

18 Pai and Govindarajan

HASH_PROC

LineRate

MEM_R2

MAC_FIFO

MEM_R3

UE_PROC1

UE_PROC2

UE_PROC2

DRAM_XFER

(a)

MEM_R2

LineRate

From
DRAM

MAC_FIFO

CRYPTO_PROC To DRAM

UE_PROC1

UE_PROC2

DRAM_XFER

Fig. 9. PN models for a single ME in IXP2400 running NAT and IPSec.

A Framework for Exploring the Application Design Space 19

previous subsection. This model is simulated using the CNET simulator
for PNs.2® We generate the PN model of the application mapping onto
the processor and this forms the input to the CNET simulator. We tra-
verse the ADAG and generate transitions for each node. Resources to
which the task is bound are acquired during the beginning of a timed
transition and released when the transition fires. Dummy transitions are
generated between two places to pause between transitions and hence
impose the computed static schedule on the model.

For the example shown in Fig. 8, if the task UE_PROCESSING takes
10 cycles for execution, its transition for the CNET simulator is generated
as

No.UE_PROCESSING : D % 10{UE, UE_RFIFO/MEMR1},

where D indicates deterministic firing time. Terms to the left of the/corre-
spond to input places and represent resources that the transition needs for
execution and those to the right correspond to output places and repre-
sent resources released by the task upon completion. In generating the PN,
the tool makes use of the mapping generated by the simulated annealing
method, and an appropriate resource is used as an input place. Similarly,
the number of instances and the cyclic schedule generated by our schedul-
ing method is used by the PN_Generate tool.

The binding, scheduling, and verification stages have been made
generic enough to allow FEADS to be used for application mapping on
other processors in the IXP family. Only some small modifications to the
architectural description file need to be made, specifying the change in the
number and type of available resources.

5. RESULTS

In this section, first, we present our experimental setup, including a
brief description of the application programs considered in our study. The
subsequent sections discuss performance results of FEADS.

5.1. Experimental Setup

We evaluated the schedules generated by FEADS for three network
processing applications — IPv4, IPSec, and NAT. A brief description of
each application and the sizes of their ADAGs are given in below.

IPv4: The TP forwarding is a fundamental operation performed by the
router. The IPv4 uses the header of the packet to determine the destina-
tion address. A lookup is performed based on the destination address in

20 Pai and Govindarajan

Table 1. Time Taken by FEADS
for Different Benchmarks

Exec. Time
Application (in Sec.)
IPv4 24.7
NAT 33.0
IPSec 30.9

the IP to determine the destination port number and the next hop address.
The lookup table is stored in the SRAM. The time to live field in the
IP header is decremented and the cyclic redundancy checksum (CRC) is
recomputed. The packet is then forwarded to the next hop. The ADAG
in this case consists of 23 nodes, five of which are memory nodes.

NAT: The NAT is a method by which many network addresses and their
TCP/UDP ports are translated into a single network address and its
TCP/UDP ports. A translation table stores the corresponding translation
from the private IP address and port number to the globally visible router
IP address and a unique port number. The translation table is stored in
SRAM. The ADAG for NAT consists of 31 nodes, with seven memory
nodes.

IPSec: The IPSec protocol is used to provide privacy and authentication
services at the IP layer. IPSec supports two protocols depending on the
level of security. A 32-bit connection identifier, referred to as a Security
Parameter Index (SPI), contains a shared key used for encryption and
the algorithm used for encryption. We assume that the SPI is stored in
SRAM. The ADAG for IPSec consists of 29 nodes, six of which are mem-
ory nodes.

We consider the ADAGs for these applications (IPv4, IPSec and
NAT) as input to the FEADS. These ADAGs are shown in Fig. 5. The
sizes of the ADAGs themselves vary from seven to 11 nodes, excluding
the communication nodes which may be introduced during mapping. Due
to the small sizes of the ADAGs under consideration, converging to a
solution using simulated annealing takes less than 30s of runtime on a
standard PC (Pentium 4 with 1 GB RAM operating at 3 GHz) even while
considering multiple instances of the ADAG. The execution time of the
FEADS framework for the different benchmarks are shown in Table 1.

We do not consider other benchmark applications for the following
two reasons. First, the ADAGS for other applications are not readily avail-
able and, at this point, we do not have a tool to generate the same auto-
matically. Second, most of the network processing applications show very
similar behavior, at least within the class of header processing and payload

A Framework for Exploring the Application Design Space 21

processing applications, in terms of their program flow, accessing SRAM,
and DRAM memory, application specific units, etc. Hence we consider the
ADAGS for IPv4, NAT, and IPSec as representative of commonly used
network processing applications.

The IPv4 and NAT were scheduled on an IXP2400 processor, while
IPSec was scheduled on IXP2850 since it uses crypto units for packet pro-
cessing. The clock speed for IXP2400 is 600 MHz and that for IXP2850
is 1400 MHz. In all cases, we assume packet arrival is exponential distrib-
uted® with a mean arrival corresponding to a 5Gbps line for IPv4 and
NAT, and over a 10 Gbps line for IPSec. In all experiments, we use mini-
mum size packets (64 bytes) as is customary in the evaluation of network
processors'?) as this corresponds to the performance of the system under
denial of service (DoS) attacks.®

The results for various scenarios that we evaluated are presented in
the following subsections.

5.2. Naive versus FEADS Mapping

First, we compare FEADS with a naive binding scheme in which all
tasks for a given instance of the application are bound to a single ME.
Multiple instances are bound to different MEs in a round robin fashion.
This results in an even distribution of tasks across microengines with no
communication cost among the tasks. This is similar to the task assignment
policy followed in Ref.(). The tasks were scheduled using decomposed soft-
ware pipelining. Note that although we call this scheme as Naive, only the
binding is naive; the scheduling of tasks (within a ME) is still software pipe-
lined. Thus a comparison of FEADS with the Naive scheme brings out the
benefits of task binding performed by FEADS.

As the number of instances are increased, the throughput for both
FEADS and naive mapping improves upto a certain extent (refer to
Fig. 10). Beyond this the throughput fluctuates as the number of instances
increases. This happens due to the ceil function described in Eq. 1. We
see that the FEADS mapping achieves a higher throughput (7% in IPv4,
4% in NAT, and 9% in IPSec) compared to naive mapping. When fewer
instances of the application are scheduled, FEADS performs much better
than the naive mapping as the latter loads only a few microengines while
the others are left idle. As the number of instances are increased, both
naive and FEADS mapping perform comparably. This is because tasks are

3The performance of FEADS under bursty traffic has been evaluated and reported in
Section 5.4.

Pai and Govindarajan

Instances

IPSec

Fig. 10. Comparison of FEADS Mapping with Naive Mapping.

22

[
> [
2 " 5 5
©
z (] N 7] z
N @ .
& °, B8 S ®
» © & lat cE »
e = 2 sl 04
< [i =7 g
w [= R [} i
L -0 £ F
O O
2383038303830 T EL: g 288 3
GO moNNNN - — o o i o - <=} © [ToE o
~~
® (sdqo)indybnoayy 2 (sdqo)ndybnoayy £ (sdgo)indybnouayy

A Framework for Exploring the Application Design Space 23

more evenly balanced across all resources and the schedule thus obtained
is equal in length to that computed by FEADS.

5.3. Scheduled versus Immediate Execution

We have evaluated the mapping generated by the FEADS framework
with and without imposing the static schedule generated by the cyclic
scheduler on the PN model.

In the former case, arriving packets are held in the receive buffer until
it is time to schedule the packet. Scheduling of packets happens at mul-
tiples of II time steps. In the case of immediate execution, packets are
scheduled as soon as they arrive. The PN model generated by the sched-
uler model was simulated using the CNET®? simulator. The throughput
and buffer requirements (in RFIFO) in either case were obtained from the
model. The results for the two cases is shown in Fig. 11, and the buffer
requirements are compared in Fig. 12. Static scheduling of tasks results in
14% higher throughput on an average. Specifically, it achieves an improve-
ment of 16% in IPv4, 13% in NAT, and 14% in IPSec over immediate
scheduling. Note that the performance improvement is consistent across
applications for all instances. Although the buffer requirement of FEADS
schedule is higher than that of Immediate schedule, the maximum buffer
requirement is still less than 64 packets in all cases. This corresponds to
a buffer size of 4 KB, which is quite common. When we consider pack-
ets of size larger than 64 bytes at the same line rate, the interarrival
time between packets is higher and hence the buffer requirements will be
smaller.

5.4. Performance of FEADS under Bursty Traffic

Further, we evaluated the performance of FEADS for bursty traffic,
wherein packets over the line arrive in bursts with periods of idle time.
Specifically, the bursty traffic is is modeled as an aggregate of different
substreams.(!>) Each substream is assumed to be of constant packet size
with finite ON/OFF periods. In the ON time each sub stream generates
packets of constant size and specified line rate and restarts the packet gen-
eration after the OFF period. The arrival rate in the ON period within a
substream is equal to (packetsize)/(linerate) . The ON and OFF times
of each sub stream are Pareto distributed with a probability distribution
function f(x) given by

fx) =ap®/x* T,)

24

Pai and Govindarajan

(a) [JFEADS FEADS-Immed
m
o
o
o
N
e
=
o
<
o
=
)
£
e
=
9 10 11 12 13 14 15 16 17 18 19
Instances
IPv4
(b) 225 - []FEADS FEADS-Immed
m
o
o)
O
=
>
o
<
o
=}
)
S
e
=
11 12 13 17 18 19
Instances
NAT
© []FEADS FEADS-Immed
6.50
. 6.00 4
N 550 -
_g' 5.00 A
(D 450
= 4.00 A
g_ 3.50 4
& 3.00 A
) 2.50 A
3 2001
= 1.50
|'E 1.00 1
0.50 A
0.00 = = =
10 11 12 13 14
Instances
IPSec

Fig. 11. Comparison of scheduled versus immediate execution.

A Framework for Exploring the Application Design Space 25

254

Buffer Size (Packets)
N
o

a o
o o O O
PR

Instances

Fig. 12. Buffer requirements for scheduled versus immediate execution.

where o represents the shape parameter and g represents the scale param-
eter. The shape parameter o takes a value between 1 and 2. The scale
parameter 8 is the ON/OFF time. The total line rate of the bursty traf-
fic can be controlled by the line rates of the individual substreams and the
the ON periods.

It has been shown that the traffic generated using the above method-
ology is bursty and similar to the traffic commonly encountered by rou-
ters.!9 The above traffic generator is modeled using PN. The resultant
traffic generated is used as the input to the network processor. The per-
formance results under the bursty traffic are shown in Fig. 13. We observe
a similar trend in performance as in the earlier case. Specifically, FEADS
achieves an improvement of 26% in IPv4, 21% in NAT, and 17% in IPSec
on the average.

5.5. Imposing Code Size Constraints

Next we study the effect of code size constraints on the binding
of tasks to resources. Imposing code size constraints limits mapping the
entire application to a single microengine. Thus, in this case, a naive bind-
ing might not result in an even distribution of tasks. The throughput
obtained by the naive binding scheme as compared to FEADS is shown
in Fig. 14 for a code store constraint of 50 instruction words per ME. We
observe that FEADS results in an increase in the throughput by 53% in
the best case for IPSec and 12% on an average over all applications under
consideration. The IPSec consists of a larger number of processing tasks
than other applications and hence a naive binding does not exploit the
available microengines and threads effectively.

Pai and Govindarajan

26

[] FEADS 4 Naive

3.75 1

Instances

IPv4

T TGS

T TN

18 19

17

16

T T

15

TN

Naive

%

[CJFEADS

TS

(b) 555

3.00
— 275

28328583288
NN~ -« -0 oo
sdqo)ndybnouay

Instances

NAT

Naive

[JFEADS A

I himhhhhweSy

IIEETTITNHHiuHiihhHiihHnrwe.y

TS

SIS

TS

MOOOOOOEhhhhhiH TS

ST

6.50 -

—~
3

00
4.50

T
o 9
S ©v
@ o o

6.00
5.50 1
4.00

)

(sdgo)in

o~
Bnou

.00

£ 150

1

Instances

IPSec

Throughput with bursty traffic.

.13

Fig

27

RN

19

M M H H S Ehinssesy

TG

18

17

16

15

I

14

13

12

1"

7] FEADS

10

9

0
8
£g
£z
17
£

Instances
1Pv4
77 FEADS

aive

ARSI

[J Naive FEADS

[Naive

OO S hHEhHEhhhhhhrsirhh.

(@) 350 -

A Framework for Exploring the Application Design Space

(sdgo)ndybnoay o) Awgnwrzn Bnoayy S (sdgo)indybnoayy

IPSec
ize constraints.

Instances

Throughput with code s

14.

Fig.

28 Pai and Govindarajan

5.6. Performance of Non-linear ADAGs

The ADAGs for the applications under consideration thus far are
linear by nature. With such linear ADAGs, performing manual map-
ping is straightforward (with or without code constraints) and often
results in the same mapping as in FEADS. We model more complex
task graphs to better reflect the increasing complexity of network applica-
tions being implemented on network processors. We compared the perfor-
mance of our scheme for two non-linear ADAGs, FEADS_inputl and FE-
ADS_input2. The ADAG for FEADS _inputl was constructed using two
parallel branches, one branch each from IPv4 and NAT. The throughput
obtained by the naive scheme and from FEADS are shown in Fig. 15. In
case of FEADS input2, the throughput obtained by FEADS is upto 2.5
times higher than the naive scheme. Also we observe that the performance
improvement is consistent for all number of instances. The results clearly
indicate that with the increasing complexity of network applications, man-
ual partitioning and binding of tasks is no longer sufficient to achieve the
necessary performance.

(a)

7 127

2] [INaive [l FEADS

e 0.8

5

o 0.6

<

D 0.4-

=

© 02

c

= 0A

12 3 456 7 8 9 1011 1213 14 1516 17 18 19

Instances
FEADS_inputl

(b)

— 7

ﬁ_ 6 [INaive [l FEADS

O 5

5 44

£ 3

=P

o

- 1.

K=

- 04

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Instances
FEDAS_input2

Fig. 15. Throughput for non-linear ADAGS.

A Framework for Exploring the Application Design Space 29

5.7 Summary

From the above results, we observe that static task scheduling is
beneficial and should be enforced when buffer requirements can be met.
While manual binding of tasks to resources can result in a fairly good
solution for linear graphs and without additional code-size constraints
being imposed, it becomes increasingly difficult when either of these condi-
tions is not met. FEADS yields a mapping whose throughput is compara-
ble to that obtained by manual partitioning and scheduling for linear task
flow graphs and upto 2.5 times higher for more complicated task graphs,
and therefore effectively automates the process of application development
on network processors.

6. Conclusions

This paper presents FEADS, a framework for automating the process
of task partitioning, mapping and scheduling on network processors. The
FEADS uses an ADAG with tasks of finer granularity than those pro-
posed by previous approaches. It obtains an optimal mapping and sched-
uling of tasks onto resources using simulated annealing. Task scheduling is
done using cyclic and r-periodic scheduling. We find that FEADS gener-
ates mappings whose throughput is comparable to that obtained by man-
ual binding for linear ADAGs and upto 2.5 times higher for non-linear
ADAGs. Further, imposing a static schedule on the generated mapping
results in 14% higher throughput compared to unscheduled execution. The
FEADS therefore provides an effective solution for mitigating the growing
complexity of designing network applications to meet line speeds.

Automation of the ADAG generation module from a given applica-
tion specification can be undertaken for future work. The framework can
also be extended for mapping, scheduling and performance evaluation of
applications for other network processor families.

7. ACKNOWLEDGMENTS

We acknowledge the Consortium for Embedded and Internetworking
Technologies (CEINT) and Arizona State University, Tempe, USA for the
partial support provided through a research subcontract. We are thank-
ful to Govind Shenoy for his help in the PN model and the members
of the High Performance Computing laboratory for their useful sugges-
tions and comments. Lastly, we are grateful to the reviewers for their use-
ful comments.

30

Pai and Govindarajan

REFERENCES

10.
11.
12.

16.

17.

18.

19.

20.

21.

. T. Blickle, J. Teich, and L. Thiele, System-Level Synthesis Using Evolutionary
Algorithms, in Design Automation for Embedded Systems, 1998.

. M. Chen, X. Li, R. Lian, J. Lin, L. Liu, T. Liu, and R. Ju. Shangri-La, Achiev-
ing High Performance from Compiled Network Applications While Enabling Ease of
Programming, in ACM SIGPLAN 2005 Conference on Programming Language Design
and Implementation (PLDI), June 2005.

. R. Ennals, R. Sharp, and A. Mycroft, Task Partitioning for Multi-Core network
processors, in International Conference on Compiler Construction (CC), 2005.

. M. Franklin and S. Datar, Pipeline Task Scheduling on Network Processors, in
Proceedings of Third Workshop on Network Processors, 2004.

. L. Garber, Denial of Service Attacks Rip the Internet. IEEE Comput, 33(4): 12-17 (2000).

. S. Govind and R. Govindarajan, Performance Modeling and Architecture Exploration
of Network Processors. in Proceedings of the International Conference on Quantitative
Evaluation of Systems, Torino, Italy, 2005.

. T. C. Hu, Parallel Sequencing and Assembly Line Problems, Oper. Res., 9(6): 841-848
(1961).

. Intel Corp, Intel IXP1200 Network processor family.

. Intel Corp, Intel IXP2400 Hardware reference manual.

Intel Corp, Intel IXP2800 Hardware reference manual.

Intel Corp, Intel IXP2850 Hardware reference manual.

S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Optimization by Simulated

Annealing., in Science 220, 598 (1983).

. C. Kulkarni, M. Gries, C. Sauer, and K. Keutzer, Programming Challenges in Network
Processor Deployment. in Proceedings of the 2003 International Conference on Compil-
ers, Architectures and Synthesis for Embedded Systems (CASES03), 2003.

. M. Lam, Software Pipelining: An Effective Scheduling Technique for VLIW Machines,
in Conference on Programming Language Design and Implementation, 1988.

. W. E. Leland, M. S. Taqqu, W. Willinger and D. Wilson, On the Self Similar Nature

of Ethernet Traffic., Proc of SIGCOMM, Sept 1993.

Lucent Technologies Inc, PayloadPlus Fast Pattern Processor, Apr. 2000.

http://www.agere.com/support/non-nda/docs/FPPProductBrief. pdf

R. Morris, E. Kohler, J. Jannotti, and M.F. Kaashoek, The Click Modular Router,

ACM Trans. Comput. Syst., 18(3): 263-297 (2000).

N. Shah, W. Plishker, and K. Keutzer. NP-Click, A Programming Model for the Intel

IXP1200, in Proceesings of Second Workshop on Network Processors (NP2) at the

Ninth International Symposium on High Performance Computer Architecture (HPCA9),

2003.

L. Thiele, S. Chakraborty, M. Gries, and S. Kunzli, Design Space Exploration of

Network Processor Architectures., in Proceedings of First Workshop on Network Proces-

sors at the Eighth International Symposium on High Performance Compter Architecture

(HPCAS), 2002.

V. Van Dongen, G. Gao, and Q. Ning, A Polynomial Time Method for Optimal Soft-

ware Pipelining., in Proceedings of the Second Joint International Conference on Vector

and Parallel Processing: Parallel Processing, 1992.

J. Wang and C. Eisenbeis, Decomposed Software Pipelining: A New Approach to

Exploit Instruction Level Parallelism for Loop Programs., in Proceedings of the IFIP

WGI10.3. Working Conference on Architectures and Compilation Techniques for Fine and

Medium Grain Parallelism, Vol. A-23, 1993.

A Framework for Exploring the Application Design Space 31

22. N. Weng and T. Wolf, Pipelining versus Multiprocessors: Choosing the Right
Network Processor System Topology, in Proceedings of Advanced Networking and
Communications Hardware Workshop (ANCHOR 2004) in conjunction with the 31st
Annual International Symposium on Computer Architecture (ISCA 2004), June 2004.

23. W. M. Zuberek, Modeling Using Timed Petri nets — Event-Driven Simulation,
Technical Report No. 9602, Department of Computer Science, Memorial University
of Newfoundland, St. John’s, Canada, 1996. ftp:/ftp.ca.mun.ca/pub/techreports/
tr-9602.ps.Z.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

