
DOI: 10.1007/s10766-006-0019-9
International Journal of Parallel Programming, Vol. 34, No. 4, August 2006 (© 2006)

Deterministic Parallel Processing

Gajinder Panesar,1,2 Daniel Towner,1 Andrew Duller,1
Alan Gray,1 Will Robbins1

Received July 1, 2005; accepted June 1, 2006

In order to address the problems faced in the wireless communications
domain, picoChip has devised the picoArrayTM. The picoArray is a tiled-
processor architecture, containing several hundred heterogeneous processors,
connected through a novel, compile-time scheduled interconnect. This archi-
tecture does not suffer from many of the problems faced by conventional
general purpose parallel processors and provides an alternative to creating
an ASIC. The PC102 is the second generation device from picoChip con-
taining 308 processors. The devices are designed to be connected together
using a seamless extension of the internal interconnect structure. This enables
multi-chip solutions to be easily realised for applications which require addi-
tional processing. This paper highlights some of the difficulties encountered
when building parallel systems and goes on to show how the features of the
picoArray allow deterministic processing to be achieved, how the tool chain
allows programming to be performed effectively in a combination of high
level assembly language and C, and how systems built around the picoArray
are debugged in real-time. By handling a wide variety of types of processing
within the picoArray a single design flow can be used to produce complex
communications systems. The effectiveness of this approach is demonstrated
through the use of the picoArray to build a 802.16 base-station for commer-
cial deployment.

KEY WORDS: Deterministic; interconnect; wireless; hetrogeneous.

1. INTRODUCTION

In a field where no single standard exists, wireless communications sys-
tems are typically designed using a mixture of DSPs, FPGAs and custom
ASICs, resulting in systems that are awkwardly parallel in nature. Due to

1picoChip Designs Limited, Riverside Buildings, 108 Walcot Street, Bath, UK.
2To whom correspondence should be addressed. E–mail: gajinder.panesar@picochip.com

323

0885-7458/06/0800-0323/0 © 2006 Springer Science+Business Media, Inc.



324 Panesar, Towner, Duller, Gray and Robbins

the state of flux of standards, if there are any, it is very costly to enter the
market with a custom ASIC solution. What is required is a scalable pro-
grammable solution, which can be used in most, if not all areas. To this
end picoChip created the picoArray and a rich toolset.

The picoArray is a tiled processor architecture in which hundreds of
processors are connected together using a deterministic interconnect.(1,2)

The level of parallelism is relatively fine grained with each processor hav-
ing a small amount of local memory. Each processor runs a single pro-
cess in its own memory space and they use “signals” to synchronise and
communicate. Multiple picoArray devices may be connected together to
form systems containing thousands of processors using on-chip peripherals
which effectively extend the on-chip bus structure.

In order to provide a commercially viable, massively parallel, scalable
solution, picoChip has had to re-think methods of debug and verification
in several areas.

2. OVERVIEW OF THE PICOARRAY ARCHITECTURE

The picoArray is a tiled processor architecture in which 308 heteroge-
neous processors are connected together using a deterministic interconnect
as shown in Fig. 1. The interconnect consists of bus switches joined by
picoBusTM connections. Each processor is connected directly to the pico-
Bus above and below it (an enlarged view of part of the interconnect is
shown in Fig. 2, to simplify the diagram only two of the four vertical bus
connections are shown).

There are three RISC processor variants which share a common
core instruction set, but have varying amounts of memory and additional
instructions to implement certain wireless baseband control and digital sig-
nal processing functions. A brief description of the three processor vari-
ants and a breakdown of the internal memory distribution is given in
Table I.

The routing strategy used was determined largely by the real-time
nature of the intended applications where the indeterminate latency due
to bus arbitration would be unacceptable. All of the communications are
determined during the “compilation” of the system which means that the
communications bandwidth can be guaranteed.

2.1. Interconnect

Within the picoArray, processors are organised in a two dimensional
grid, and communicate over a network of 32-bit unidirectional buses (the
picoBusTM) and programmable bus switches. The physical interconnect



Deterministic Parallel Processing 325

Fig. 1. Top-level diagram showing processors and interconnect.

Switch

Processor

Example signal path

Fig. 2. Interconnect.



326 Panesar, Towner, Duller, Gray and Robbins

Table I. PC102 Processor Variants and Memory Distribution

Type Description Number Memory (bytes)

STAN Standard: A standard processor optimised
for CDMA spread and de-spread and other
wireless base station signal processing func-
tions. Includes a multiply accumulate unit and
which supports additional multiply accumulate
instructions

240 768

MEM Memory: A processor having a multiply unit
and additional data memory

64 8,704

CTRL Control: A processor with a multiply unit and
larger amounts of data and instruction mem-
ory optimised for the implementation of con-
trol functionality

4 65,535

structure is shown in Fig. 2. The processors are connected to the pico-
Bus by ports which contain internal buffering for signal data. These act
as nodes on the picoBus and provide a simple processor interface to the
bus based on put and get commands. The processors are essentially inde-
pendent of the ports unless they specifically use a put or a get instruction.

The inter-processor communication protocol implemented by the
picoBus is based on a time division multiplexing (TDM) scheme. There is
no run-time bus arbitration, so communication bandwidth is guaranteed.
Data transfers between processor ports occur during specific time slots,
scheduled in software, and controlled using the bus switches. Figure 2
shows an example in which the switches have been set to form two differ-
ent signals between processors. Signals may be point-to-point, or point-to-
multi-point. Data transfer will not take place until all the processor ports
involved in the transfer are ready.

Communication time slots throughout the picoBus architecture are
allocated according to the bandwidth required. Faster signals are allo-
cated time-slots more frequently than slower signals. The user specifies
the required bandwidth for a signal by giving a rate at which the signal
must communicate data. For example, a transfer rate might be described
as @4, which means that every fourth time-slot has been allocated to that
transfer.

The default signal transfer mode is synchronous; data is not trans-
fered until both the sender and receiver ports are ready for the transfer.
If either is ready before the other then the transfer will be retried during
the next available time slot. If, during a put instruction no buffer space is
available then the processor will sleep (hence reducing power consumption)



Deterministic Parallel Processing 327

until space becomes available. In the same way, if during a get instruction
there is no data available in the buffers then the processor will also sleep.
Using this protocol ensures that no data can be lost.

2.2. Processors

All of the processors in the picoArray are 16-bit, and use 3-way
VLIW scheduling. The basic structure of the processors is shown in
Fig. 3. Each processor has its own small memory, which is organised
as separate data and instruction banks (i.e. a Harvard architecture). The
processor contains a number of communication ports, which allow access
to the interconnect buses through which it can communicate with other
processors. Each processor is programmed and initialised using a special
configuration bus. The processors have a very short pipeline which helps
programming, particularly at the assembly language level. The architecture
of the three processor variants are shown in Fig. 4.

In addition to the general purpose processors, there are a number
of special peripherals, including a host interface, an SRAM interface,
asynchronous data and inter-picoArray interfaces. These peripherals are
connected to the bus structure through ports, which enables them to be
treated as though they are special purpose processors. Processors, periph-
erals and others with ports in a picoArray are referred to as Array Ele-
ments (AEs). The overall distribution of processors and peripherals is
shown in Fig. 1 with the peripherals being placed in the top and bottom
rows of the array.

Config

Data
Memory

Ports

Instruction
Memory Processor

32–bit picoBus
32–bit picoBus

Configuration bus

Fig. 3. Processor structure.



328 Panesar, Towner, Duller, Gray and Robbins

Fig. 4. VLIW and execution unit structure in each processor.

2.3. Host Interface

The Host or microprocessor interface is used to configure the
picoArray device and to transfer data to and from the picoArray device
using either a register transfer method or a DMA mechanism. The DMA
memory-mapped interface has a number of ports mapped into the exter-
nal microprocessor memory area. Two ports are connected to the configu-
ration bus within the PC102 and the others are connected to the internal
picoBus. These enable the external microprocessor to communicate with
the internal AEs using signals.

2.4. SRAM Interface

Each picoArray has an amount of memory distributed amongst the
processors for data and instruction storage. However, an external SRAM
interface is provided to supplement the on-chip memory. This interface
allows processors within the core of the picoArray to access external
SRAM across the internal picoBus.

2.5. Asynchronous Data/Inter-picoArray Interfaces

There are four interfaces on each device which can be configured in
one of two modes: either the inter picoArray interface (IPI) mode or the
asynchronous data interface (ADI) mode. The choice of interface mode is
made for each interface separately during device configuration.



Deterministic Parallel Processing 329

2.5.1. Inter picoArray Interface

The four IPI interfaces are bidirectional and designed to allow each
picoArray to exchange data with up to four others. Using this feature, a
grid of picoArray devices can be constructed to implement highly complex
and computationally intensive signal processing systems. The IPI interface
operates in full duplex, sending and receiving 32-bit words. The 32-bit
words on the internal picoBus are multiplexed as two 16-bit data on the
interface itself.

2.5.2. Asynchronous Data Interface

The ADI allows data to be exchanged between the internal picoBus
and external asynchronous data streams such as those input and output
by data converters or control signals between the base band processor and
the RF section of a wireless base station.

2.6. Functional Accelerator Units

Using experience gained from the first generation device, picoChip
developed a new special purpose AE for PC102 called the Function Accel-
erator Unit (FAU). There are 14 FAUs present on the PC102. Each FAU
includes configurable hardware for accelerating a number of compute-
intensive tasks, including correlation and trellis processing. When config-
ured in trellis-processing mode, the FAU provides support for log MAP
decoding, Viterbi decoding, trellis coded modulation decoding and fast
Hadamard transforms. Each FAU provides support for up to 64 trellis
states, and multiple FAUs can be interconnected to support trellis codes
with up to 512 states. Using the FAUs, a single PC102 can handle Viterbi
decoding with output data rates in excess of 100 Mbit/s, leaving most of
the picoArray free for other tasks.

2.7. Low-power Considerations

Potentially, a device such as the PC102, which contains 322 AEs and
a TDM interconnect, could use a lot of power. A number of methods
have been used to enable the power consumption of the picoArray to be
reduced. For example, individual processors are able to ‘sleep’ when they
are waiting for communications events, thus consuming minimal power,
and parts of the picoArray which are not used in a particular design are
switched off.



330 Panesar, Towner, Duller, Gray and Robbins

2.8. Array Layout

The target applications for the picoArray are fairly varied although
they have many common attributes. The layout of the array in terms of
quantities and locations of processors was determined to match these attri-
butes as far as possible. Since any realistic system will make use of many
picoArray devices, 4, 8, 16 or more, the layout has to be a compromise
between the different types of processing that are required within a wire-
less infrastructure system. At the input to the system the data rates are
very high but the processing is simple, as data flows through the system
the data rates reduce, the control becomes more complex and the opera-
tions become more complex.

Figure 5 shows a typical piece of processing from the front end of
the receive chain in a base station. At the input to the system, through
the ADI, the data rate is high during which the incoming signals are fil-
tered. This is then transformed into a symbol rate stream of data at a
much lower rate, this rate can vary between the 960 kHz given, down to
15 kHz depending on the type of signal. It should be noted that this rate
is for each user of the base station and typically there will be 64 users or
more. In addition, multiple antennas will be used making the initial input
data rate even higher.

The majority of the array, 240 processors (STAN processors), are
designed for stream based processing and therefore have small amounts
of local memory. The target applications tend to have a smaller require-
ment for block based processing and this is supported by the 64 MEM
processors which have more local storage and can be used in conjunction
with the SRAM interface. The low level control requirements of applica-
tion systems are handled by the provision of 4 CTRL processors. Each
processor has a performance comparable to an ARM 9 for control type
functionality, or a TI C55XX for DSP tasks.

ADI Rx Filters AGC Channel
Estimate

RAKE/CHAN EST I/F

RAKE

RACH I/F

RACH

SRCH I/F

SRCH

Symbol Rate
processing

Rake
Finger

Manager

4 x 3.84MHz

8 x 3.84MHz

1.5kHz

960kHz

Fig. 5. Typical data rates.



Deterministic Parallel Processing 331

3. PUSHING THE EDA ENVELOPE

This section highlights some of the practical considerations necessary
to implement a large chip such as PC102 in small geometries like 130 nm.

3.1. Hierarchical Approach

PC102 contains over 200 million transistors; even using ASIC design
techniques this causes large problems to EDA tools. This problem was
considered up front in the design process. The massive parallelism of the
picoArray was exploited to divide the device into so called tiles. Each
tile consisted of five AEs. A tile was the atomic element to pass through
the backend EDA flow. It was a suitable size to make all tasks from syn-
thesis to design rule checking managable in terms of memory footprint
and run time.

Ninety of these tiles were then assembled channelessly, i.e. they were
butted, to form over 99.5% of the device. The remainder of the device was
simply padring. In this way vast EDA tasks that could have taken days or
weeks to run were removed from the design process.

3.2. Tiles

Tiles were designed to be complete encapsulated entities. They could
be signed off for timing, DRC, LVS, power and clocking independently
of the remainder of the device. They were self-contained P&R tasks, in
fact the tiles were the largest gate count P&R tasks in the device. Their
independence was achieved by making them all follow the same template
for power routing, signal routing and timing constraints. Everything was
included in the tile including feed though test circuity, configuration bus-
ses, all power routing and even a “gutter” to route the top level clock in,
so that assembling tiles assembled the device. Tiles were effectively made
self-contained in terms of power by connecting each of them to the power
and ground in the package using flip-chip bumps. This reduced the need
for chip wide power analysis and ensured minimal ground bounce. By con-
sidering the detailed floorplan when designing the logic ensured that high
level routing and timing problems at the top level were solved at the sim-
pler lower levels.

3.3. Clock Distribution

PC102’s clocking is completely synchronous, that is to say all logic
is running from a single clock. Broadcasting a single clock over a large



332 Panesar, Towner, Duller, Gray and Robbins

area with minimal skew is a challenge. The initial approach was to ensure
that the circuitry at the tile interfaces was tolerant of moderate skews. This
is inherent in the picoBus since timing analysis of the paths across it are
done for every user design. However clock skew can have the effect of
shortening apparent clock periods, this affects the distance a signal can
travel on the picoBus which in turn can cause congestion on the buses.
Hence the secondary approach was to reduce top level clock skew by lay-
ing it out as a balanced H-tree in the gutters between tiles. The regular tile
power structure provided shielding from fast switching signals which could
have “crosstalked” onto the clock causing further skew.

By considering all of the key circuits in terms of logical and physi-
cal aspects early on in the design, and understanding where the EDA tools
should be given freedom and where they should be manually constrained,
it was possible to produce a extremely large, powerful and highly utilised
design.

4. PICOARRAY DEBUG AND ANALYSIS

The debug and analysis of parallel systems containing perhaps thou-
sands of processors requires specialised tool support. This section describes
a number of ways in which this has been achieved.

4.1. Language Features

The language features aid verification and integration through three
main features: strong type checking, fixed process creation, and bandwidth
allocation.

Strong type checking is used to ensure that whenever data is com-
municated from one process to another, the data will be interpreted by
both producer and consumer in the same way. Types are selected from a
library of built-in types, or by the users defining their own types. Types
used in communication are limited to 32-bits, which is the maximum size
which may be transferred in a single communication over the picoBus. At
the structural level, processes will be defined with ports of specific types,
and they will be connected with signals which must match the port types.
Within a process, any data which is “put” or “get” from a port must be
of the correct type. For processes written in C, this is achieved by syn-
thesising the available types using C encoding rules (e.g., using typedef’s,
union’s, and struct’s), and hence tying into the C compiler’s type system.
Thus, end-to-end communication of data can only occur when all pro-
cesses and signals agree on the type format. This makes integration of



Deterministic Parallel Processing 333

independently developed components easy since any discrepancies in type
formats will be detected at compile time, when they are easily fixed.

The structural VHDL used to define a system requires the number
of processes, and their interconnections to be fixed at compile time. Dur-
ing compilation, the tools will allocate each process to its own processor,
and schedule the signals connecting the processes onto the picoBus inter-
connection fabric. Because of this compile-time scheduling, non-determin-
istic runtime effects such as process scheduling, or bus contention have
been eliminated. This makes it easier to integrate systems. If problems are
found, it also makes the reproduction of the problems, their debugging
and the verification of their fixes easier.

In addition to specifying fixed signals connecting processes, the sig-
nals are also allocated bandwidth. This is achieved using a language nota-
tion which allows the frequency of communication over the signal to be
specified. Processes requiring high signal bandwidths will use high frequen-
cies (e.g., every 4 cycles), while processes requiring low bandwidth will use
low frequencies (e.g., every 1024 cycles).

4.2. Design Browser

The design browser is a tool which allows the user’s logical design to
be viewed graphically and can be used both during simulation and when
executing a design on hardware. There is a number of different graphical
views.

For example the hierarchical view mirrors the structural hierarchy
that was created by the user and allows each level of this hierarchy to be
explored. An example of this is shown in Fig. 6.

In addition to the static features the design browser can provide
dynamic information about the each instance in a design, for example
whether it is processing or waiting for a communications operation. An
example of this display is shown in Fig. 7 (in fact the boxes are coloured,
green for processing, red for waiting on communications, but in this paper
are grey and dark grey respectively).

4.3. Simulation

The cycle accurate simulation system allows users to build, test and
verify their entire design before moving to the hardware. The user is able
to extract the state of the system (on a cycle-by-cycle basis) in order to
check against the behaviour on hardware. Importantly, the same simula-
tion system was used to provide a “golden reference” during the design
and verification of the PC101 and PC102 chips.



334 Panesar, Towner, Duller, Gray and Robbins

Fig. 6. Design browser hierarchical display.

Fig. 7. Design browser strongly connected component display.

The same source-level debugging interface exists on the hardware as
on the simulator enabling the user to migrate from one environment to the
another without making any changes to their design or their testbenches.

4.4. Scripting

While debugging large parallel systems, operations such as viewing
the source code or variable values of individual processes become too low



Deterministic Parallel Processing 335

level; this is analogous to debugging a compiled process by inspecting its
raw machine code and register values. For large parallel systems it is more
convenient to be able to abstract the debugger to provide a higher system-
level interface. Such an interface allows the details of individual processes
to be hidden, and replaced by system-specific displays instead. Clearly, it
is impossible for picoChip to provide interfaces for every possible system,
so instead the debugger can be programmed using Tcl/Tk.(3) This allows
the users to create their own system-specific interfaces, built on top of the
picoChip debugger. Figure 9 shows an example of a WiMax system inter-
face.

4.5. Traffic Analysis

Traffic analysis is used to monitor the state of the communica-
tions network. The AEs in a picoArray use signals to communicate data
(and hence synchronise), and traffic analysis can indicate to the user the
states of the communication at any particular time. The relevant data is
extracted from selected AEs or from all AEs in a design and either dis-
played immediately or stored to a file.

For each signal the maximum bandwidth of a signal has to be speci-
fied at design time but of particular interest to the user is the actual band-
width used on a given signal. Using the traffic analysis data can provide
information on the statistics of the bandwidth used and can help in the
analysis of deadlock and livelock problems.

4.6. FileIO

When testing and debugging it is common to wish to use Unix files
in order to inject data into a system or to record intermediate results. This
is achieved by providing an AE template which interfaces to the picoBus
in the usual way using signals but which is also “connected” to a Unix
file. The advantage of this method is that the same user’s code can be
used whether the system is running as a simulation or on hardware. The
FileIO AE has two different implementations, one for simulation and one
for hardware. In a simulation the connection to the file is trivial since
the simulation simply consists of a piece of compiled C++. In hardware
the data memory of the AE is used to buffer the data and when the AE
requires it must request that the debugger either empty its memory (for an
output FileIO) or fill its memory (for an input FileIO).



336 Panesar, Towner, Duller, Gray and Robbins

4.7. Traces

Traces allow specific types of data, such as register and memory
contents, or signal values to be recorded during execution. The trace is
stored as a sequence of tuples recording changes in value against the time
at which that change occurred. This sequence can be saved to a file, and
used by external programs such as gtkwave.(4) The tracing tool is used in
a way that is similar to a hardware engineer using an oscilloscope to probe
data paths in an electronic circuit. The trace allows a visual representa-
tion of the data to be shown with respect to time, which can make cer-
tain types of bug readily apparent. Tracing can also be used to perform
code profiling, by tracing how the program counter changes over time, and
post-processing the information to relate it to the original source code.

While many general purpose processors use special hardware to
implement tracing (e.g., ARM Embedded Trace Macrocell(5)) the pico-
Array devices do not. One reason for this is that traces can generate
huge quantities of data (e.g., tracing the program counter for a single
processor would generate 3.2 × 108 bytes/s). While the picoArray devices
have impressive internal communications bandwidth, it would be impossi-
ble to transfer this much data off chip without affecting the system being
debugged.

Two mechanisms are used to perform tracing. Signals are traced using
probes, which are described in Section 4.8. The probes mechanism allows
signal traces to be performed while running a system at full hardware
speed (160 Mhz) but the dumping of data to a file means that this speed
cannot be sustained. All other types of data (general/special purpose regis-
ters, and blocks of memory) are traced using software. The debugger tool
repeatedly single-steps the debug system, recording traced values after each
step. This can be slow. Typically, the debugged system will be traced off-
line, and the results analysed using post-processing tools.

4.8. Probes

Probes are special purpose processes which the debugger inserts into
the user’s design by utilising unused processors. Probes can be connected
to one or more signals, and can non-intrusively monitor all traffic which
passes over the signals. They achieve this by using the bus interconnects
ability to create 1-to-many connections. For example, suppose two pro-
cesses in a system were connected by a 1-to-1 signal. If a probe is inserted
during debugging to monitor that signal, the debug tools will change the
1-to-1 signal into a 1-to-many signal, with the probe acting as an extra
destination. The original processes are unaffected by this change (both in



Deterministic Parallel Processing 337

terms of latency and bandwidth), but the probe is now able to monitor all
communication over that signal.

Probes are implemented as processes, and so can run at full hardware
speed. This enables probes to be used to debug systems in real-time. One
use for probes is to allow real-time signal traces to be performed. Other
uses include signal assertions, and on-chip analysis.

Signal assertion probes can be used to check that the data passing
over a signal conforms to some compile-time specified property. For exam-
ple, all signals in picoArray devices have pre-allocated bandwidth. A sig-
nal assertion probe could be attached to a signal to record the bandwidth
actually used, thus allowing signals with over-allocated bandwidth to be
detected.

Probes can be used to perform on-chip analysis of signal data,
rather than having to transport the data off-chip (e.g., using traces),
for later analysis. For example, during the development of the picoChip
base station, a probe was created which performed Bit-Error Rate (BER)
computation on signals. These BER probes could be used to monitor
the performance of the base station’s Viterbi decoder’s in real-time, under
different system loads.

4.9. Activity Display

This is related to the trace facility but only looks at the type of
activity being undertaken by an AE. This can be running, waiting on a
communication or stalled on a memory pipeline fetch. This display allows
the history of the activity of a number of AEs to be viewed.

5. PICOARRAY DESIGN METHODOLOGY

This section goes through a typical process that is used to create a
picoArray based application.

5.1. System Decomposition

Typically this is done by hierarchically breaking down the problem
into components consisting of processes connected by signals. Experience
has shown that components generally contain a few tens of processes,
however the number of processes required does not have to be specified
at this stage. The boundaries of these components will also have signals
defined and will eventually be connected to other parts of the system. The
user will use knowledge of the real-time system being developed to spec-
ify signal properties, such as maximum bandwidth and signal type. The



338 Panesar, Towner, Duller, Gray and Robbins

properties can be checked during integration using signal assertions, which
are described in Section 5.3.

5.2. Component Coding

Two approaches can be taken, the choice being dictated by the
complexity of the component.

For small components in which the division into AEs can be deter-
mined easily these AEs can be coded using C or ASM and connected
using appropriate signals.

For larger components it may be preferable to initially produce a
functional representation using C. This can be simulated even when the
code size exceeds the memory for any AE and allows functional testing of
this component prior to its division into individual AEs.

Whichever approach is used the code can be tested by creating test
harnesses using FileIO to mimic the external components. The symbolic
debugger and its attendant tools can be used to find bugs within the AEs.

The migration of the code to hardware is eased by the fact that the
same FileIO test harnesses produced for simulation can be used for veri-
fication. This highlights a huge advantage of the picoChip approach since
testing on hardware can be performed at a very early stage which means
that components can be tested for minutes or hours of real time which
would be impossible using simulation.

Other components can be written in parallel by other developers, or
sequentially by the same developer.

5.3. Small Scale Integration

As components are completed they can be integrated. The strong
typing, bandwidth allocation, and fixed process creation ensure that com-
ponents developed by different people will fit together properly. Signal
assertions can be written to encode properties (such as signal value or
minimum throughput) of the signals, and these can be checked during
integration using assertion probes.

If integration fails (components fail to communicate properly), then
this is caused by problems between components, rather than within a com-
ponent (since the component has been verified in isolation, it has static
processes, fixed local signals, etc.). The suite of system-wide tools (probes,
traces, activity display, etc.) can be used to identify the problem.



Deterministic Parallel Processing 339

5.4. Large Scale Integration and Performance Testing

This phase of development can only really be done on the hardware.
At this stage all of the FileIO will have been replaced by real components.

It is important to be able to monitor aspects of performance in real-
time and this can be done using customised probes which monitor var-
ious signals and compare data throughput against predetermined limits.
In addition it is possible to monitor the behaviour of the system when
processing real-world data, and to inject data by using the microproces-
sor interface. The results of the monitoring can be displayed using custom
GUI’s which the user can develop (an example of a custom GUI is shown
in Fig. 9).

6. A DESIGN EXAMPLE

picoChip is a member of the WiMax (802.16) Forum(6) and is
working with its customers to produce a 802.16 compliant system. The
scope of the work is aimed at producing a system which can be used in
either the base station or the consumer premises equipment (CPE) mar-
ket. As part of this work, picoChip has developed the first part of this
system solution — an 802.16 compliant PHY, whose functional decompo-
sition can be seen in Fig. 8.

Fig. 8. Functional decomposition of an 802.16 PHY.



340 Panesar, Towner, Duller, Gray and Robbins

Fig. 9. Diagnostics output from 802.16 PHY.

Using the PC102 device the system’s team at picoChip have used most
of the debugging aids to implement this PHY. This includes developing
the individual blocks, executing the implementation on the simulator and
creating testbenches in order to verify the correct (compliant) operation
before moving onto integration.

It is the final integration of the whole PHY system, for both trans-
mit and receive, that illustrates the key aspects of the debugging environ-
ment. The result of this is best shown in Fig. 9 where the systems group



Deterministic Parallel Processing 341

scripted an application specific GUI on top of the primitives provided by
the toolkit and indeed the system debugging widgets. There are four areas
of interest: three data output probes and one input probe.

The Data Constellation shows data captured by a probe at the output
of the Channel Equaliser. This data is extracted in real-time and streamed
out of the picoArray via the microprocessor interface.

The Channel Estimation shows the magnitude of preamble sub-
carriers (consecutive preambles shown on plot) as captured by a probe at
the output of the FFT.

The AWGN (additive white Gaussian noise) has been added to aid
checking of the behaviour when there is noise in the channel. This injects
data (noise) as input to the quad demodulation block.

The Viterbi BER display shows the BER at the output of the Viterbi,
again in real-time, as captured by a probe.

Finally the RSSI (Received Signal Strength Indicator) display shows
received signal statistics captured by a probe at the output of the ADI.

REFERENCES

1. A. Duller, G. Panesar, and D. Towner, Parallel Processing – the picoChip way! In
J.F. Broenink and G.H. Hilderink (eds.), Communicating Processing Architectures 2003,
pp. 125–138, 2003.

2. P. Claydon, A Massively Parallel Array Processor, In Embedded Processor Forum, 2003.
3. J. K. Ousterhout, Tcl and the Tk Toolkit. May 1994.
4. The University of Manchester Advanced Processor Technologies Group. GTKWave

Electronic Waveform Viewer. http://www.cs.man.ac.uk/apt/projects/tools/gtkwave/.
5. Embedded Trace Macrocell. http://www.arm.com/products/solutions/ETM.html.
6. Wimax forum. http://www.wimaxforum.org/home.


