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Current high-end microprocessors achieve high performance as a result of
adding more features and therefore increasing complexity. This paper makes
the case for a Chip-Multiprocessor based on the Data-Driven Multithread-
ing (DDM-CMP) execution model in order to overcome the limitations of
current design trends. Data-Driven Multithreading (DDM) is a multithread-
ing model that effectively hides the communication delay and synchronization
overheads. DDM-CMP avoids the complexity of other designs by combin-
ing simple commodity microprocessors with a small hardware overhead for
thread scheduling and an interconnection network. Preliminary experimental
results show that a DDM-CMP chip of the same hardware budget as a high-
end commercial microprocessor, clocked at the same frequency, achieves a
speedup of up to 18.5 with a 78–81% power consumption of the commercial
chip. Overall, the estimated results for the proposed DDM-CMP architecture
show a significant benefit in terms of both speedup and power consumption
making it an attractive architecture for future processors.

KEY WORDS: Chip multiprocessor; multithreading; parallel processing; data-
driven execution.

1. INTRODUCTION

To deliver performance as predicted by Moore’s Law, computer archi-
tects have relied on the advancements of process technology, as well as
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improvements of the computer architecture and organization. While this
approach has worked well in the past, it is currently only resulting in
diminishing returns.(1) This is due to the inability of traditional architec-
tures in surpassing two major obstacles: the memory and power walls. Both
walls can be traced back to the von Neumann model of execution that
has dominated the computer architecture field since the advent of digital
computers. The memory wall problem is due to the imbalance between the
speed of microprocessors and that of main memory, while the power wall
is due to the high frequencies and complexity in modern microprocessors.

Current microprocessors have a high transistor density, execute at
very high frequencies, include large cache memories and rely heavily on
out-of-order and speculative execution. For the implementation of these
techniques, multiported and even replicated devices are required. This
however, leads to an exponential increase at the gate level whereas get-
ting the power consumption out of hand.(2) As such, major microproces-
sor manufacturers have shifted their strategy to multicore chips in order
to avoid the memory and power walls.

It appears that the current trends in architecture and compiler design
might not be able to sustain the performance improvements achieved in
the past.(1) Consequently, we propose to use Data-Driven Multithreading
(DDM),(3,4) as it does not suffer from the previously mentioned limita-
tions. This is due to the fact that DDM is not based on the von Neumann
model of execution but instead on the dataflow model of execution, which
is side-effect free and scheduling is based on data availability. Thus, the
memory latencies can be tolerated without the huge performance penalty
of the von Neumann model. Furthermore, the data-driven scheduling does
not require the complexity of the multiple issue and out-of-order execu-
tion. DDM is a non-blocking multithreading model based on the Decou-
pled Data-Driven (D3) model of execution.(5,6) This model decouples the
synchronization from the computation portions of a program allowing
them to execute asynchronously. In this model a thread is scheduled for
execution in a dataflow manner, i.e., whenever all of its required data have
been produced. As a consequence, no synchronization or communication
latencies are experienced at the execution stage. The performance improve-
ment is achieved at the expense of extra off-chip hardware: the Thread
Synchronization Unit (TSU). This hardware is responsible for the dynamic
scheduling of threads in the multiprocessor system. In addition, the DDM
implementation may be used with conventional off-the-shelf microproces-
sors. Therefore, it has the obvious benefit that a system may combine both
DDM and the latest microprocessor technology. DDM can also benefit
from CacheFlow, a cache management policy that uses the information
provided by the DDM scheduling together with data prefetching.
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In this paper we present a Chip Multiprocessor implementation using
the Data-Driven Multithreading model (DDM-CMP).(7) This is the exten-
sion of the previously proposed DDM implementation, which was based
on the Network-of-Workstations model. In the current study we analyze
two alternative DDM-CMP configurations designed with the same hard-
ware budget as the baseline Intel Pentium 4 high-end microprocessor: a
configuration with 4 medium-complexity Pentium III cores and a configu-
ration with 8 simpler cores (Pentium III with reduced cache size). An esti-
mate of the power consumption shows that with equal frequency, technol-
ogy and hardware budget as the baseline Pentium 4 chip, the DDM-CMP
chips with 4 and 8-cores consume less power than the baseline, 22% and
19%, respectively. For a scenario where we allow the DDM-CMP chip to
consume the same power as the baseline processor, we observe a perfor-
mance speedup ranging from 2.3 to 11.7 for the 4-core DDM-CMP and
2.3 to 22.6 for the 8-core DDM-CMP, for the benchmarks studied. Also,
we can achieve large savings in the power consumption if we limit the per-
formance to be equal to the one achieved by the baseline. For this scenario
we observe power savings larger than 65% for the 4-core DDM-CMP and
63% for the 8-core DDM-CMP. Overall the results are very encouraging
for the proposed DDM-CMP architecture.

This paper is organized as follows: Section 2 presents the data-driven
multithreading model and implementation, Section 3 describes the advan-
tages of the chip multiprocessor architecture, and Section 4 shows how
the chip multiprocessor may benefit from using the data-driven multith-
reading model. Section 5 presents the power consumption analysis for
the DDM-CMP chip, while in Section 6 we analyze the experimental
results obtained. Finally, in Section 7 we discuss the related work and in
Section 8 we present the conclusions and future work.

2. DATA-DRIVEN MULTITHREADING (DDM)

DDM provides effective latency tolerance by allowing the computa-
tion processor produce useful work, while a long latency event is in pro-
gress. This model of execution has been evolved from the dataflow model
of computation. In particular, it originates from the dynamic dataflow D3

graphs,(5,6) where the synchronization part of a program is separated from
the computation part. The computation part represents the actual instruc-
tions of the program executed by the computation processor, while the
synchronization part contains information about data dependencies among
threads and is used for thread scheduling.

A program in DDM is a collection of re-entrant code blocks. A code
block is equivalent to a function or a loop body in the high-level program
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text. Each code block comprises of several threads. A thread is a sequence
of instructions equivalent to a basic block. A producer/consumer relation-
ship exists among threads. In a typical program, a set of threads, called
the producers, create data used by other threads, called the consumers.
Scheduling of code blocks, as well as scheduling of threads within a code
block is done dynamically at runtime according to data availability. The
instructions within a thread are fetched by the CPU sequentially in con-
trol-flow order. Nevertheless, the CPU can reorder the sequence of instruc-
tions internally to exploit the advantages of out-of-order execution.

At compile time a program is partitioned into a data-driven syn-
chronization graph and code threads. Each node of the graph represents
one thread associated with its synchronization template. Each thread is
identified by the thread number (Thread#) consisting of the triplet (Con-
text, Block, ThreadID). The Context field is set at runtime to distinguish
between multiple invocations of the same code block or thread. This is
useful for the implementation of multiple invocations of functions and
loop bodies. The Block field identifies the code block, while the ThreadID
identifies the thread within the code block. The synchronization template
of each thread contains the following information: Ready Count, Instruc-
tion Frame Pointer (IFP), Data Frame Pointer (DFP) and Consumer
threads (Consumer1 and Consumer2). The Ready Count is set by the com-
piler and corresponds to the number of input values, i.e., producers to the
thread. This value is decremented at runtime and a thread is enabled, i.e.,
it is ready for execution when its Ready Count reaches zero. Whenever the
thread completes its execution, it uses the Consumer thread pointers to dec-
rement their ready count.

As for the code of the threads, the compiler identifies certain blocks
of code where threads may be created. Examples of such code are the loop
body and function instructions. Assuming that there are no dependences,
for a fixed number of instructions, the compiler may opt between creat-
ing a large number of threads with few instructions or a small number
of threads with a large number of instructions each. The former is favor-
able in exploiting more parallelism but the latter is favorable in reducing
the thread execution overheads (metadata maintenance and scheduling).
Therefore, the compiler uses heuristics to statically determine the num-
ber of instructions to be added to a thread. It is relevant to notice that
the compiler creates the threads according to the application characteris-
tics and not the architecture configuration. If a large number of threads
is created, while a DDM-CMP configuration with more cores will result
in better performance, the same code will be able to execute in any other
DDM-CMP configuration.
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Regarding the DDM memory model, it assumes the existence of a
shared memory address space. Nevertheless, it does not require an explicit
cache coherence protocol to assure correct execution. The protocol is
avoided by forwarding all the shared data from the producer to the cache
of the consumer threads.

2.1. TSU: Hardware Support for DDM

The purpose of the Thread Synchronization Unit (TSU) is to provide
hardware support for data-driven thread synchronization on conventional
microprocessors. The TSU is made out of three units: the Thread Issue
Unit (TIU), the Post Processing Unit (PPU) and the Network Interface
Unit (NIU). When a thread completes its execution, the PPU updates the
Ready Count of its consumer threads, determines whether any of those
threads became ready for execution, and if so, it forwards them to the
TIU. The function of the TIU is to schedule and prefetch threads deemed
executable by the PPU. The NIU is responsible for the communication
between the TSU and the interconnection network. The internal structure
of the TSU is shown in Fig. 1.

The TIU provides the computation processor with all information
related to the thread scheduled to be executed. This information can be
found in two different queues: the Waiting Queue (WQ) and the Firing
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Fig. 1. Thread Synchronization Unit (TSU).
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Queue (FQ). The thread identification number (Thread#) and iteration
number of ready threads are first placed in the WQ. The Thread# is used
to determine the thread’s IFP and the DFP from the Graph Memory
(GM).

The computation processor passes information about the completed
threads to the PPU through the Acknowledgment Queue (AQ). This infor-
mation is the thread number (Thread#), the iteration number (AqIndx)
and the status of the completed thread (AqStat). An extra field is provided
by the AQ, the AqData that is used to pass the data produced by threads
that send single values to other nodes. The Thread# is used as an index
to the GM to determine the Thread# of the consumers of the completed
thread. The Synchronization Memory (SM) is indexed with the Thread#
number of the consumer threads. If a consumer thread becomes ready, it
is shifted to the WQ of the TIU. If a ready thread belongs to a remote
node, it is forwarded to the NIU for further processing.

2.2. CacheFlow

Although DDM can tolerate communication and synchronization
latency, scheduling based on data availability may have a negative effect on
locality. To overcome this problem we use the scheduling information to
implement efficient short-term optimal cache management policies, which
we named CacheFlow.(8)

The basic CacheFlow implementation employs hardware prefetching to
fetch into the cache the data needed by the threads scheduled for execution
in the near future. To achieve this, two extra fields are added in the thread’s
template pointing to the data needed by the thread. These fields are loaded
into the Graph Memory at runtime as Data Offset Pointer 1 (DOP1) and
Data Offset Pointer 2 (DOP2). If a thread has only one input, then DOP1
points to that value, while DOP2 is set to 0. If a thread has more than two
inputs, then DOP1 is set to zero, while DOP2 is a pointer to the DOP list,
a memory block that contains a list of DOPs.

The implementation of the CacheFlow policies is directly related to
the TIU. When a thread becomes ready, its identification number and
context are placed in the WQ, by the PPU. The TIU uses the thread
identification number to determine the threads starting address and data
pointers by reading its IFP, DFP and DOPs from the Graph Memory. The
addresses pointed by the DOPs relative to the DFP are prefetched before
the thread is shifted from the Waiting Queue to the Firing Queue.

In addition to the basic CacheFlow policy presented, we explored two
optimizations to further improve its performance. The first optimization,
called the false conflict avoidance, prevents the prefetcher from replacing
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cache blocks required by the threads waiting in the FQ. This is achieved
with the use of a table, called the Reserved Address Table (RAT), that con-
tains the addresses of all cache blocks prefetched for the threads waiting
in the FQ, as well as the thread currently running. All addresses required
by a ready thread are determined using the information from the Graph
Memory and are placed in the Tag Queue. These addresses are then com-
pared with the contents of the RAT to determine if prefetching would
cause a false cache conflict. A thread is shifted into the FQ if none of its
addresses would result in a cache conflict. If it is detected that an address
would result in a false cache conflict, then the thread is placed temporarily
in a buffer and the next thread from the WQ is tested. Threads waiting in
the temporary buffer have precedence over the threads in the WQ. This is
essential to avoid thread starvation, as a thread waiting in the temporary
buffer is blocking its consumers from executing.

The second optimization, called the thread reordering, attempts to
exploit locality by reordering the threads in the WQ so that threads with
the same identification number (Thread#) are placed near each other in
the WQ. This increases the possibility that the code of a thread will be
used many times before it is replaced from the cache, thus exploiting tem-
poral locality. Furthermore, threads with the same Thread# are ordered
according to their index (iteration number), thus exploiting spatial data
locality. The thread reordering mechanism operates in parallel and asyn-
chronously with the rest of the TIU and consequently it does not add any
extra delays in the datapath of the TIU.

3. CHIP MULTIPROCESSOR

Until recently, increasing the processor’s performance was achieved by
adding more features in order to exploit more instruction level parallelism.
Nevertheless, this resulted in larger, more complex microprocessors which
are neither easy to scale any further, nor may execute at high clock fre-
quencies.(1) Therefore, the solution adopted by all major manufacturers is
to exploit parallelism by using multiple simpler processors packed on the
same chip. This is known as the Chip Multiprocessor or CMP.

One of the key advantages of the CMP architecture is that it can
achieve very high throughput, thus making this architecture ideal for
server systems.(9)

Another major advantage is the fact that CMPs are more power-
performance efficient architectures. For example, although the performance
of the dual-core AMD Athlon 64 × 24800+ (2.4 GHz) processor is higher
than the one of the single-core AMD Athlon 64 4000+ (2.4 GHz), the
power consumption increases only by 24% (110 W vs. 89 W).(10) This is
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due to the fact that some of the components of the chip infrastructure
are shared in a multi-core chip such as, the clock distribution network,
the power distribution network and in the Athlon’s case, the memory and
hyper-transport controllers, which are shared among the cores.(11) Also, as
multi-core architectures are a more efficient architecture, their frequency
may be scaled down without loss of performance, thus resulting in a
decrease in power consumption. This is the strategy currently followed by
Intel who have released dual core processors clocked at a lower frequency
than their single core ones.

A larger number of cores on the same chip offers some flexibility for
the assignment of tasks to processors. This advantage may be used by a
scheduler in order to avoid chip hot-spots and therefore, assign the next
task to a core that is far from the hottest point of the chip. A design of
a thermal-aware scheduler has been recently proposed.(12,13) In an extreme
case, cores may be shut down altogether(14) in order to cool down a cer-
tain area or the overall chip. Notice that even in the extreme case, the user
would not be dramatically affected as applications will still execute nor-
mally but on a smaller number of cores.

Related to the last topic is the fact that if one of the cores of a multi-
core chip is detected to be faulty, either during production or regular exe-
cution, that core may simply be disabled. This has only a small impact
on the execution of the applications as it results only in a reduction of
its performance due to the reduced available units for exploiting parallel-
ism. Also, the multiple cores may be used to execute redundant processes
in order to avoid soft errors that happen during the execution of an appli-
cation. Both techniques mentioned make the CMP an architecture that is
more fault-tolerant compared to monolithic microprocessor.

Overall, the characteristics of the CMP architecture offer special ben-
efits which have been recognized by all major processor manufacturers and
consequently, will become the standard technology for future microproces-
sors.

4. DDM-CMP

In spite of the advantages mentioned in the previous section, one
challenging issue for the CMPs is the configuration of the core to be used.
Although smaller cores will result in a worse single-threaded performance,
the smaller the core, the larger the number of cores that may be included
in the same area resulting in an increased ability to exploit parallelism.(7)

DDM helps toward this goal as it may achieve high performance inde-
pendently of the core features. For example, Instruction Level Parallelism
(ILP) is an added benefit but not a requirement. In addition, CacheFlow
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performs deterministic prefetching of the data used in the threads before
their execution. Therefore, there is no need for large caches to capture
temporal locality. As such, the cores may be simpler and smaller and con-
sequently more cores may fit in the same area resulting in a potential
higher degree of parallelism offered to the applications.

Finally, DDM is designed to use commodity CPUs. As we may use
directly the existing core IPs for the processor to be replicated on the chip,
a DDM-CMP chip should be implemented without major effort other
than the one-time design of the TSU and the interconnection network.
Fig. 2 depicts four different alternatives for the DDM-CMP architecture.

The first proposed CMP architecture (Fig. 2-(a)) is the integration of
the previously proposed D2NOW(15) into a single chip. While having one
TSU per processor was required in the NOW system, when all processors
are on the same chip it is possible to optimize the use of the TSU struc-
ture and share it among two or more processors (Fig. 2-(b)). Ultimately,
we may consider the extreme case where one TSU is shared among all on-
chip CPUs (Fig. 2-(c)). Notice that by saving hardware with the sharing of
the TSUs it may be possible to increase the number of on-chip CPUs or
alternatively add internal shared cache (Fig. 2-(d)). In this paper we will
only evaluate the first architecture.

1 2 n 1 2 n+x

1 2 n+x 1 2 n

(a) (b)

(c) (d)

Fig. 2. Several alternatives of the DDM-CMP architecture. (a) Each microprocessor has
its own TSU. (b) One TSU is shared among two microprocessors and the number of cores
increases. (c) One TSU serves all the microprocessors of the chip and the number of cores

increases. (d) Saved space is used to implement on-chip shared cache.
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4.1. Design 1: DDM-CMP with Pentium III Cores

The objective of the proposed DDM-CMP architecture is to achieve
better performance and/or lower power consumption than a current high-
end microprocessor, given the same hardware budget, i.e., the same num-
ber of transistors. For our analysis we consider the Intel Pentium 4 as
the baseline for the high-end microprocessor. As mentioned before, DDM-
CMP is build out of simpler cores. For the purposes of our analysis we
consider Intel Pentium III as a representative of such a core. The number
of transistors used in implementing Intel Pentium 4 3.2 GHz 90 nm tech-
nology is approximately 125 million, while the number of transistor used in
implementing the Intel Pentium III 800 MHz 180 nm technology is 22 mil-
lion.(16) Therefore, the Pentium 4 requires approximately 5.7 times more
transistors than what is needed to build the Pentium III.

In addition to the processors, other hardware structures are needed to
implement the DDM-CMP architecture: the TSUs and the interconnection
network. Regarding the TSU, a preliminary study of its implementation
on FPGA lead to an estimate budget of approximately 25 K transistors
per TSU.(3) This results in only 100 and 200 K transistor requirement for
the TSUs for the 4- and 8-core DDM-CMP chips, respectively. Regarding
the interconnection network, several studies report a 10% of the total chip
area devoted to its implementation. Considering the case above where we
use the area of a Pentium 4 chip in order to implement four Pentium III
processors, about 37 million transistors will be left unused. This number
of transistors is more than enough to implement the four TSUs and the
appropriate interconnection network. Therefore, a DDM-CMP architec-
ture with four Pentium III processors can be implemented with the same
number of transistors needed to build a Pentium 4.

4.2. Design 2: DDM-CMP with Minimal Configuration Cores

As the DDM model does not require complex microprocessors or
large cache space, the Pentium III core used in the previous design may
not be the most efficient core for the DDM-CMP. For example, with
DDM’s CacheFlow one may expect that the need for cache space is
reduced. As such, the challenge was to find out the minimal specifications
required for a core, without significant single-process performance penalty,
thus fitting more cores into the same chip. As a result, a DDM-CMP chip
with increased number of cores will be able to offer a higher degree of
parallelism.

In order to achieve our goal, we performed several experiments to
observe the impact on the application performance of using different
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configurations for the core processor. In particular, we used the SimpleSca-
lar(17) simulator to test three SPLASH-2(18) application (FFT, Radix, and
LU) using different cache configurations: first-level data cache (L1 D$)
ranging from 4 KB to 32 KB, first-level instruction cache (L1 I$) ranging
from 4 KB to 512 KB and second-level unified cache (L2 U$) ranging from
64 KB to 4 MB. We also tested the support for instruction-level parallelism
by changing the issue width from 1 up to 4 and by selecting both in-order
and out-of-order execution. In addition, we tested the configurations for
the execution of the application with small and large input data set size.

As scaling down the original Pentium III core to include fewer func-
tionality is not a trivial matter, we focused on the cache requirements of
the applications.

To evaluate the best cache size configuration for the core we used
a metric that takes into account both the performance and the die area
occupied by the corresponding cache. We named this metric as efficiency
and we defined it as follows:

Eff = IPC
Area

In Fig. 3-(a) and (b) we present the results for the efficiency of the L1
D$ and L1 I$ caches, respectively. In the x-axis we show different cache
configurations, depending on their characteristics (number of sets, block
size, and associativity).

It is relevant to notice from the results that the most efficient cache
configurations are those where the cache is small. This is justified by the
fact that although larger caches achieve lower miss rates, the reduction
is not enough to justify the increase in area required. In addition, larger
caches also have larger access times which contribute negatively toward the
IPC.

Overall, the experimental results lead us to conclude that an efficient
CMP core should include small caches and be able support out-of-order
execution. Based on these results, the core configuration chosen for this
second DDM-CMP design includes an 8 KB L1 I$, an 8 KB L1 D$ and
a 32 KB L2 U$. This core supports out-of-order execution and is able
to issue 4 instructions per cycle. Using this configuration we estimate the
area, in terms of number of transistors, for each processor configuration,
using the floor plan of the Pentium III. The new area is determined by
scaling down the area of the original caches by a factor equal to the cache
size reduction. Finally, the reduction in the total area of the original Pen-
tium III is such that it allows us to implement 8 of these smaller cores
into the same area budget of the baseline Intel Pentium 4 microprocessor.
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Fig. 3. Cache Efficiency: (a) L1 D$ and (b) L1 I$.

5. POWER ANALYSIS FOR THE DDM-CMP

In this work we present an estimate of the benefits in terms of power
consumption for the DDM-CMP architectures. We need to remind that
both DDM-CMP Design 1 and 2 as presented in the previous section,
occupy the same hardware budget, i.e., they have approximately the same
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number of transistors, as the baseline Intel Pentium 4 microprocessor. As
such, the only factors that will result in a different power consumption
are: the support for Hyper-Threading, the cache memory size and the per-
centage of transistors devoted to logic as opposed to memory. Notice that
Hyper-Threading, or HT,(19) is Intel’s implementation of the Simultaneous
Multithreading technology.(20)

To estimate the DDM-CMP power consumption we developed a
mathematical model, which determines the power consumption using the
equation shown below:

Power = a0 + a1 × (#Trans)e1 + a2 × (HT)e2

+a3 × (Tech)e3 + a4 × (L1)e4 + a5 × (L2)e5

In this equation, term #Trans represents the number of transistors
of the processor in millions, HT takes the value 1 if the processor sup-
ports Hyper-Threading and 0 if not. Tech is the technology point in nm,
whereas L1 is the size of L1 cache in KB (both instruction and data) and
L2 the size of L2 cache in KB.

The parameters of the equation (a0 · · · a5, e1 · · · e5) are estimated
using the multiple polynomial regression method. Specifically, the model is
trained using characteristics of 186 different processors and achieves max-
imum relative error of 18.3% and average absolute error of 8.8%.

The training samples used include mobile processors (mobile Pentium
III and mobile Celeron), high-end server processors (Xeon), low-end desk-
top processors (Celeron) and different models of high-end desktop proces-
sors (Pentium III and Pentium 4). Additionally, the training set contains
processors with and without the Hyper-Threading technology, clocked at
frequencies ranging from 400 to 3800 MHz, with implementation technol-
ogies of 180 and 90 nm and L1 caches ranging from 12 Kops/8 KB to
12 Kops/16 KB and L2 caches from 128 KB to 2 MB. The data was col-
lected from.(10) The processors for which we have estimated the power
consumption in our experiments are covered by this range of configura-
tions.

In Table I we show the memory sizes, the estimated power consump-
tion, and the Iso-Power Frequency for the Pentium 4 and the two DDM-
CMP designs (4 and 8 cores). The Iso-Power Frequency is the frequency
that results in the same power consumption as the one for the base-
line Pentium 4 processor. Both the estimated power consumption and iso-
power frequency are obtained using the power model as described above.
Note that from hereafter we call the DDM-CMP Design 1 the DDM-
CMP4 and the Design 2 the DDM-CMP8 due to the number of cores in
each design.
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Table I. Memory Size and Percentage of Logic and Memory Transistors Per Chip

Pentium4 DDM-CMP4 DDM-CMP8

L1 I$ 12 Kops (32 KB) 4 × 16 KB = 64 KB 8 × 8 KB = 64 KB
L1 D$ 16 KB 4 × 16 KB = 64 KB 8 × 8 KB = 64 KB
L2 U$ 1 MB 4 × 256 KB = 1 MB 8 × 32 KB = 256 KB
Est. Power (3.2 GHz) 91.4 W 71.3 W 74.0 W
Rel. Power (3.2 GHz) 100% 78% 81%
Iso-Power Freq. 3200 MHz 4009 MHz 3901 MHz

The results of the model for the power consumption of the different
architectures show that the DDM-CMP8 has slightly higher power con-
sumption than the DDM-CMP4 and both have lower power consump-
tion than the baseline Pentium 4. Once the results are for the case where
all three architectures are clocked at the same frequency, the major fac-
tor that determines the difference between the power consumption of the
Pentium 4 and the DDM-CMPs is due to the hardware required to sup-
port Hyper-Threading, which exists only in the Pentium 4. As for the
difference between DDM-CMP4 and DDM-CMP8, this is due to the
ratio between logic and memory transistors. We call memory transistors
the transistors used to implement the caches, whereas logic transistors
the rest of the transistors on a chip, i.e., the transistors used to imple-
ment the functional units. Although both DDM-CMP4 and DDM-CMP8
use approximately the same number of transistors for their implementa-
tions, in the DDM-CMP8 the strategy was to exchange memory space
for computational units, i.e., we reduced the cache sizes and increased the
number of cores with the space that was made free. Therefore, the ratio
of logic-to-memory transistors in the DDM-CMP8 is higher than in the
DDM-CMP4. Due to the fact that memory transistors have smaller activ-
ity factors (percentage of time a transistor switches) compared to logic
transistors,(21) the former consume less power than the latter. As such, it
is expected that the DDM-CMP8 consumes more power than the DDM-
CMP4, as shown in the results.

It is relevant to notice that, at this point, in the power consumption
estimate, we do not directly account for either the TSUs or the intercon-
nection network. Instead, we use all the transistors from the baseline Pen-
tium 4 in our estimate. This should be a conservative estimate as both
TSUs and interconnection network do not account for such a large num-
ber of transistors.

Another relevant piece of information that we extracted from the
model was the frequency scaling that can be done in order to match the
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Table II. DDM-CMP8 Performance Scaling Factors

FFT LU Radix Mmult Trapez

0.98 0.99 1.00 0.51 1.00

power consumption of the DDM-CMP architectures to the one reported
for the baseline Pentium 4. We call this the Iso-Power Frequency. As pre-
sented in Table I, DDM-CMP4 consumes the same power as the base-
line Pentium 4 when clocked at 4009 MHz, while for DDM-CMP8 this fre-
quency is 3901 MHz.

6. EXPERIMENTAL RESULTS FOR THE DDM-CMP

In this section we present three types of results: (a) Speedup and
power consumption for equal frequency, (b) Speedup for equal power con-
sumption and (c) Power consumption for equal speedup. These results are
presented for the Pentium 4, DDM-CMP4 and DDM-CMP8 architectures.

6.1. Experimental Setup

For this proof-of-concept analysis the workload considered to test the
proposed architecture is composed of three kernels from the SPLASH-2
benchmark suite,(22) LU, FFT and Radix and two applications that rep-
resent standard algorithms used in large scientific applications such as the
block matrix multiply (Mmult) and the trapezoidal method of integration
(Trapez).

As for the baseline high-end processor we have selected the Pentium
4 3.2 GHz. To obtain the results for this setup we measure the execution
time of the application’s native execution on that system. The execution
time is determined by measuring the number of processor cycles consumed
in the execution of the main function of the program, i.e., we ignore the
initialization phase. The processor cycles are measured by reading the con-
tents of the hardware program counter of the processor.(23) Notice that as
this is native execution, in order for the results to be statistically significant
we execute the same experiment several times and we report the average
result after having excluded the largest and smallest measurements.

The performance results for the DDM-CMP architecture are derived
from the results obtained by Kyriacou et al.(24) for the D2NOW imple-
mentation. In this case, we will use the results for the D2NOW architec-
ture configured with 4 and 8 Pentium III 800 MHz processors including
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all architecture optimizations as a base for the DDM-CMP4 and DDM-
CMP8 setups. Notice that the D2NOW results are conservative for the
DDM-CMP architecture, as the on-chip interconnection network has both
larger bandwidth and smaller latency than the D2NOW interconnect. In
addition, we adjust the DDM-CMP8 results using a factor obtained by
simulating the same application in SimpleScalar(17) using the different pro-
cessor configurations. The values of these factors are presented in Table II.

Notice that the performance scaling factors are all close to 1 except
for Mmult, which is 0.51. This is due to the fact that this particular
application has a working set larger than the cache space available in the
DDM-CMP8. Therefore, there is a large penalty in its performance due to
an increase in the cache misses observed.

6.2. Speedup and Power Consumption for Equal Frequency

Scenario

In Fig. 4 we present the projected speedup and the estimated power
consumption for the DDM-CMP4 and DDM-CMP8 systems for the five
applications, for the two DDM-CMP alternative designs (DDM-CMP4
and DDM-CMP8). The speedup, reported in the first two groups of five
bars presented in the Figure, is relative to the execution time of the appli-
cations on the Intel Pentium 4 3.2 GHz baseline high-end processor. The
last group of two bars presents the power consumption for the DDM-
CMP architecture compared to the Pentium 4. In this setup, the frequency
of both the DDM-CMP4 and DDM-CMP8 systems are set to 3.2 GHz,
the same as the baseline processor.

From the chart in Fig. 4-(a) we observe that, depending on the char-
acteristics of the application, such as their working set size and data
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Fig. 4. (a) Speedup and (b) power consumption for frequency equal to the one of the
baseline processor.
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dependencies between threads, the speedup values observed range from a
moderate 1.9 for Mmult on the DDM-CMP4 to 18.5 for Trapez on the
DDM-CMP8. In the next section we analyze in more detail the different
characteristics of applications that justify these results. One interesting fact
observed with the results in Fig. 4-(a) is that although in DDM-CMP8
the cores have smaller cache space, the speedup obtained across almost all
tested applications doubles from the one obtained for the DDM-CMP4.
The other result, observed in Fig. 4-(b), is that the power consumption
of these two chips is smaller than the one of the baseline chip. For the
DDM-CMP4 we observe the power savings to be 22%, while for the
DDM-CMP8 the power savings is 19%. The justification and discussion of
these results was already presented in Section 5.

6.3. Speedup Results for Equal Power Consumption Scenario

In Fig. 5 we present the projected speedup for the DDM-CMP4
and DDM-CMP8 systems for the five tested applications, compared to
Intel Pentium 4 3.2 GHz baseline high-end processor for equal power con-
sumption. The frequency of both the DDM-CMP4 and DDM-CMP8 sys-
tems has been set based on the fact that all three systems (Pentium 4,
DDM-CMP4, and DDM-CMP8) should consume the same power. We
call this frequency the Iso-Power Frequency and we determined it using
the power model as described in Section 5. According to this model the
DDM-CMP4 should be clocked at 4009 MHz and the DDM-CMP8 at
3901 MHz.

From the results in Fig. 5 it is possible to observe that there is a
speedup larger than two for all applications and the two different DDM-
CMP setups. The speedup ranges from 2.3 to 11.7 for the DDM-CMP4
setup and from 2.3 to 22.6 for the DDM-CMP8. It is also interesting to
observe that the results can be of three types. The first type of result is a
moderate sub-linear and non-scalable speedup as observed for the Mmult
application. The speedup for this application is relatively low and does not
increase for the DDM-CMP configuration with larger number of cores.
This is a consequence of the fact that the characteristics of this application
include a large exchange of data between the different cores and also the
fact that the data handled is considerably large and so there is a penalty
when changing to the DDM-CMP8 configuration where the cache mem-
ory space is smaller. A small experiment where we monitored the number
of misses observed during the execution of Mmult showed that while the
L1 I$ and L1 D$ misses are constant, the L2 U$ misses increase by a fac-
tor of 60 when changing from the Pentium 4 to the Pentium III core. With
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Fig. 5. Speedup when frequency and core scaling is taken into account.

the smaller core, the L2 U$ misses increase by a factor larger than 2000
when comparing to the Pentium 4 baseline.

The second type of result is a moderate sub-linear but scalable
speedup as observed for FFT and LU. For these applications the data
exchanges is still an important factor. Nevertheless, the working set is
smaller and is not affected by the decrease of the cache memory space
offered by the DDM-CMP8 configuration. In order to better understand
the behavior of these two applications, we performed a brief analysis of
their execution and we were able to determine that the main function that
performs the calculations for the algorithm accounts for approximately
only 50% of the total execution in both FFT and LU. This is an indica-
tion that in order to obtain more reliable results for both FFT and LU
we will need to use larger data set sizes. This issue will be covered in
the near future as we complete the DDM-CMP simulator. Nevertheless,
at this point we do not consider this result to be a problem as we expect
that there will always be applications that will show such moderate perfor-
mance improvement when executing on the DDM-CMP.

The third type of results is a large super-linear and scalable speedup
as observed for Radix and Trapez. These results are justified by the fact
that these applications are easier to parallelize and include fewer data
exchanges between the different threads of the application and their work-
ing set is not affected by the smaller cache setup of DDM-CMP8. In
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addition, for these two applications, the CacheFlow feature offered by
DDM-CMP results in more successful data prefetching for the application
threads, therefore leading to very efficient execution of the applications. It
is important to notice that the speedup is determined in comparison with
the baseline, which is a Pentium 4. The two architectures (Pentium III and
4) have some differences which justify part of the super-linear speedup as
the fact that the Pentium III L1 caches are larger than the Pentium 4.
In addition, it is relevant to add that the speedup presented should be
taken as an indication of the possible upper bound and not as their abso-
lute value as they are a result of an estimation. On the one hand, the
speedup results are over-estimated if we consider that the frequency scal-
ing was applied to the complete execution time, including memory access
time and not just the compute time. Nevertheless, it is relevant to state
that the memory access is limited due to the success of the CacheFlow
prefetching policies as it reduces the L2 cache misses to the orders of 1%.
On the other hand, the speedup results are under-estimated if we consider
that the intra-chip interconnection network has a smaller latency than the
one on the NOW and the accesses to the TSU are faster as they are on-
chip accesses.

6.4. Power Savings Results for Equal Speedup Scenario

After confirming in the last section that DDM-CMP can achieve a
high speedup for the equal power consumption scenario, next we would
like to test how much power savings DDM-CMP can achieve while keep-
ing the same speedup as the baseline architecture. Therefore, in this sec-
tion we present the expected power consumption for the two DDM-CMP
configurations, normalized to the Pentium 4, when the speedup is the
same for all the three systems: Intel Pentium 4, DDM-CMP4, and DDM-
CMP8. In order to achieve the same speedup we had to scale the fre-
quency for the two DDM-CMP configurations. This scaling is performed
in a per-application basis. Figure 6 depicts the power consumption of
the different configurations for the different applications, compared to
the Intel Pentium 4 3.2 GHz baseline. The table on the bottom of the
chart contains the frequencies used for each architecture and application
in order to achieve the constant speedup. These frequency values are an
estimate and they were determined by simply assuming that the applica-
tion performance scales linearly with the frequency.

The results in Fig. 6 show that the DDM-CMP configurations achieve
the same speedup at a fraction of the power consumption for the original
system. For the DDM-CMP4 we observe savings in the power consump-
tion larger than 65% while for the DDM-CMP8 the savings are larger
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Fig. 6. Power savings of the multicore DDM-CMP comparing with the baseline Pentium 4.

than 63%. As some applications achieve very high speedup (10–20×) for
the equal power consumption scenario, the performance can be the same
as the one achieved with the Pentium 4 results with a considerable reduc-
tion of the frequency. As the power consumption changes with the cube
of the frequency, this frequency reduction results in a dramatic decrease
in the power consumption. Therefore, it is possible to observe the 1% val-
ues in Fig. 6. For this work, although the power model gave very low
power consumption for certain frequencies, we kept the minimum power
consumption at 0.5 W, the same as achieved by an Intel XScale.(25)

7. RELATED WORK

The architecture proposed in this paper combines two important
fields of research: multithreading and chip multiprocessor.

Parallel architectures often suffer from large synchronization and
communication latencies. Data-Driven Multithreading (DDM)(15,24) is an
execution model that aims at tolerating the latencies by allowing the com-
putation processor to produce useful work, while a long latency event is
in progress. The previously proposed DDM implementation uses regular
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off-the-shelf microprocessors. This is a contrast with previous DDM
implementations that required either special design processors(26–29) or
modified existing processors.(30–33) Alternatively, software-only approaches
such as TAM(34) suffer from performance degradation, in comparison to
our proposed solution.

As presented in this work, an alternative design that achieves par-
allelism but avoids the complexity is the Chip Multiprocessor (CMP).(2)

Several research projects have proposed CMP architectures.(2,35–37) In
addition, commercial products have also been proposed (e.g., Intel Pen-
tium D, AMD Athlon X2, IBM Power5,(38) and SUN Niagara(39)).

A preliminary study of the efforts into combining these two technol-
ogies, data-driven multithreading and chip-multiprocessors was presented
by Stavrou et al.(7) In that work the conceptual DDM-CMP idea was pre-
sented along with very preliminary results. In this current paper, in addi-
tion to extending our analysis to a larger set of applications, we developed
a power model and present estimates for the power consumption for the
proposed DDM-CMP architecture.

8. CONCLUSIONS

In this paper we presented DDM-CMP, a Chip Multiprocessor archi-
tecture that uses the Data-Driven Multithreading model. This architec-
ture aims in overcoming both the memory and power walls. DDM-CMP
achieves a higher speedup and/or lower power consumption compared to
an equal hardware budget high-performance single-chip uniprocessor.

An estimate of the power consumption shows that with the same fre-
quency, technology and hardware budget as the baseline Pentium 4 chip,
the DDM-CMP chip may consume 22% less power than the baseline. For
a high-performance scenario where the DDM-CMP chip is allowed to
consume the same power as the baseline processor, we observe a speedup
increase up to 22.6 for an 8-core DDM-CMP. As for a low-power scenario
where the performance is set to be the same as the baseline, we observe
a significant reduction in the power consumption. Overall, the results are
very encouraging for the proposed DDM-CMP architecture.

The results presented in this paper motivated us to continue this
work. In the near future we will complete the DDM-CMP execution-
driven simulator, as well as the DDM compiler in order to obtain more
accurate results, analyze different points in the design space, and broaden
the applications used to evaluate this architecture. Also, we are working on
a hardware prototype of the DDM-CMP architecture based on the Xilinx
Virtex II-Pro chip.
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