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Single-Instruction Multiple-Data (SIMD) instructions provide an inexpensive
way to exploit the Data-Level Parallelism in multimedia applications. How-
ever, the performance improvement obtained by employing SIMD instructions
is often limited because frequently many overhead instructions are required to
bring data in a form amenable to SIMD processing. In this paper, we employ
two techniques to overcome this limitation. The first technique, extended sub-
words, uses four extra bits for every byte in a media register. This allows
many SIMD operations to be performed without overflow and avoids pack-
ing/unpacking conversion overhead. The second technique, Matrix Register
File (MRF), allows flexible row-wise as well as column-wise access to the
register file. It is useful for many two-dimensional multimedia algorithms
such as the (I) Discrete Cosine Transform, 2 × 2 Haar Transform, and pixel
padding. In addition, we propose a few new media instructions. Experimental
results obtained by extending the SimpleScalar toolset show that these tech-
niques improve performance by up to a factor of 4.5 compared to a conven-
tional SIMD instruction set extension.
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1. INTRODUCTION

Future general-purpose as well as embedded computing systems will
exploit Instruction-Level Parallelism (ILP), Thread-Level Parallelism (TLP),
as well as Data-Level Parallelism (DLP) to achieve high performance.
Due to their area and energy efficiency, Single-Instruction Multiple-Data
(SIMD) architectures provide an inexpensive way to exploit the DLP in
multimedia applications. One of their main advantages is that the instruc-
tion decode and control overhead is amortized over many parallel oper-
ations. In general-purpose as well as high-performance embedded proces-
sors, SIMD instructions typically operate on 64- or 128-bit registers that
contain several narrow data types. For example, a 128-bit SIMD regis-
ter can be treated either as a vector of 16 bytes, eight 16-bit values, or
four 32-bit fixed- or floating-points. Examples of such SIMD instruction
set extensions are Intel’s MMX,(1) SSE and SSE2,(2,3) Sun’s VIS,(4) MIPS’
MDMX,(5) and Motorola’s AltiVec.(6)

When employing n-way parallel SIMD instructions, the ideal speedup
over scalar execution is n. Usually, however, the attained speedup is much
smaller. This is due to several reasons. First, the way multimedia data is
stored in memory (the storage format) is usually too small to represent
intermediate results. Consider, for example, the following loop which com-
putes the arithmetic average of two images:

unsigned char src1[], src2[], dst[];
for (i=0; i<n; i++)

dst[i] = (src1[i] + src2[i]) >> 1;

Even though the final result dst[i] is an 8-bit value, the intermediate
result src1[i]+src2[i] is 9-bit. The source operands, therefore, need
to be unpacked to a larger computational format before they can be pro-
cessed and the results have to be packed again before they can be writ-
ten back to memory. Obviously, this means loss of performance due to
the extra cycles required for unpacking and packing. Furthermore, it also
implies a loss of parallelism due to the reduction of the vector length. A
second reason why the achieved speedup is usually much smaller than the
maximum attainable speedup is that many two-dimensional (2D) multime-
dia algorithms process data along the rows as well as along the columns.
In order to employ SIMD instructions in 2D algorithms, the matrix needs
to be transposed frequently. On current SIMD extensions, however, trans-
position takes a significant amount of time. For example, to implement
an 8 × 8 matrix transposition using MMX/SSE requires 56 instructions if
the elements are 8 bits wide. If the elements are two bytes wide, then 88
instructions are required.
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In this paper, we employ two techniques to overcome these limitations.
The first technique, called extended subwords, uses registers that are wider
than the size of a packed data type in memory. Specifically, for every
byte of data, there are four extra bits. This allows many computations
to be performed without overflow and avoids packing/unpacking overhead
instructions. The second technique, called the Matrix Register File (MRF),
allows load and store instructions to access the register file along the rows
as well as along the columns. In other words, it allows a view of the reg-
ister file as a matrix, where each register corresponds to a row of the
matrix and corresponding subwords in different registers correspond to a
column. In addition, we have designed a few new media instructions which
we have found very useful but are not provided in, for example, MMX
and SSE.

We have enhanced MMX with extended subwords and the matrix reg-
ister file. The resulting architecture is called Modified MMX (MMMX,
pronounce as triple-MX). Experimental results for many important multi-
media kernels have been obtained by extending the SimpleScalar toolset.(7)

The results show that MMMX improves performance by factors of 1.08 to
4.47 compared to MMX.

This paper is organized as follows. Related work is discussed in
Section 2. Section 3 describes the proposed architecture, i.e., extended
subwords, the matrix register file, the instruction set architecture, and esti-
mates the area overhead of the proposed techniques. Section 4 discusses
the simulation environment, the benchmarks, and their implementations in
MMX and MMMX. The experimental results are provided in Section 5,
and conclusions are drawn in Section 6.

2. RELATED WORK

Extended subwords have been previously proposed in Ref. 8, where
they are called fat subwords. A register file organization that provides both
row- and column-wise accesses has been proposed in Ref. 9. We build on
these previous works but significantly extend on them. Specifically, our
main contributions are:

– In Ref. 8, extended subwords have been proposed but not evalu-
ated. Our work shows that extended subwords can be employed
for many important multimedia kernels and that this technique
improves performance significantly.

– We combine extended subwords with the MRF. Our experimental
results show that using either of these techniques is insufficient to
eliminate all pack/unpack and rearrangement overhead instructions.
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– We have designed a few new instructions (see Section 3.3), which
have been found very useful for several kernels and allow the elim-
ination of all pack/unpack and rearrangement instructions for the
considered kernels.

In Ref. 10, we have proposed using extended subwords to avoid data
conversion overhead. For ten important media kernels we have determined
the storage format and the maximum number of bits required to rep-
resent intermediate results. For seven kernels, a 12-bit data format was
found to be sufficient. For the remaining three kernels, 24 bits were suffi-
cient. The efficiency of extended subwords has been evaluated by count-
ing the dynamic number of instructions needed to realize the kernels. The
results show that using extended subwords reduces the dynamic number
of instructions significantly (up to a factor of 2.7) for eight kernels. For
two kernels the dynamic instruction count increases, but this is because
in these kernels complex, special-purpose instructions have been emulated
using simple, general-purpose instructions.

Although employing extended subwords reduces the dynamic instruc-
tion count substantially, most kernel implementations still incur many
overhead instructions. This is because many 2D media algorithms pro-
cess data along the rows as well as along the columns. Since adjacent
column elements are not stored consecutively in memory, the data needs
to be rearranged to exploit SIMD instructions. To avoid this rearrange-
ment overhead, in Ref. 11, we have combined extended subwords with
the MRF. Again, performance was evaluated by calculating the dynamic
number of instructions. The results show that extended subwords and the
MRF combined reduce the dynamic instruction count by up to a factor
of 5.0. Moreover, for the considered kernels, the coalescence of both tech-
niques eliminates the conversion and reorganization overhead completely,
while extended subwords alone does not.

The limitation of our previous work is that the effectiveness of
the proposed techniques has been evaluated by calculating the dynamic
instruction count. Consequently, phenomena such as instruction depen-
dencies, different instruction latencies, and cache effects have not been
taken into account. In this paper, we significantly extend our previous
work by providing experimental results obtained using a detailed, cycle-
accurate simulator.

We briefly summarize other related approaches. In Ref. 12, new sub-
word permutation instructions across multiple registers have been pre-
sented, which can perform all permutations of a 2 × 2 matrix. MIPS’
MDMX(5) uses a predefined set of eight 8-bit and eight 16-bit wide shuf-
fles to implement partial shuffle operations. The Mix instruction in HP’s
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MAX(13) can perform any permutation of the four 16-bit elements within
a 64-bit register. Motorola’s AltiVec(6) includes a three operand instruc-
tion (vperm) for data rearrangement. Oliver et al.(14) propose to include
a subword permutation unit (SPU) in the execution pipeline. This SPU
allows data permutation operations to be performed before other oper-
ations by removing permutation instructions from the instruction stream
and instead having the SPU controller schedule the rearrangement instruc-
tions. In Ref. 15, a memory-to-memory architecture for 2D vectors is pro-
posed. Control registers are used to specify the size of data in memory
and the size of data during computation. If the computational format is
larger than the storage format, the input data is automatically unpacked
before being processed. A related proposal is the Matrix-Oriented Mul-
timedia (MOM) extension.(16) MOM contains instructions that can be
viewed as vector versions of SIMD instruction, i.e., they operate on matri-
ces and each matrix row corresponds to a packed data type. MOM sup-
ports a matrix transpose instruction that transposes an 8 × 8 matrix with
a latency of 8 + C cycles but this operation cannot be pipelined.

3. PROPOSED ARCHITECTURE

In this section, we describe extended subwords, the matrix register file,
and the proposed instruction set. In addition, we briefly discuss the area
overhead of the proposed techniques.

3.1. Extended Subwords

Image and video data is typically stored as packed 8-bit elements, but
intermediate results usually require more than 8-bit precision. As a conse-
quence, most 8-bit media instructions will be wasted on many multimedia
kernels. The packed 16-bit data type, however, is often larger than neces-
sary for many image and video applications, and reduces the amount of
parallelism that can be exploited.

In previous work, we have proposed MMMX.(10) MMMX features
registers that are wider than the size of a packed data type in memory.
Specifically, for every byte of data there are four bits of extra precision.
Load instructions automatically unpack data and store instructions implic-
itly pack data. We have shown that four extra bit for every byte in a regis-
ter is sufficient for many multimedia kernels. This is also supported in Ref.
17, where it was shown that a 12-bit data format is sufficient for 85.7% of
the processing in MPEG-4 encoding.

In MMMX, there are eight architectural multimedia registers as
in MMX. However, these registers are 96 bits wide instead of 64 bits.
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Fig. 1. A 96-bit partitioned ALU.

Figure 1 shown that a 96 bit ALU can be partitioned into eight 12-bit
ALUs. Such a partitioned ALU can perform eight 12-bit, four 24-bit, two
48-bit, or a single 96-bit operation. The cost of implementing a partitioned
ALU is very small.

3.2. Matrix Register File

The ability to efficiently rearrange subwords within and between reg-
isters is crucial for the performance of many media kernels. Matrix trans-
position, in particular, which is needed in many block-based algorithms,
is a very expensive operation. To implement this operation in MMX/SSE
requires many rearrangement instructions such as punpckh, punpckl,
and pshufw. To overcome this problem, we propose to employ a MRF,
which allows data loaded from memory to be written to a column of the
register file as well as to a register (which corresponds to row-wise access).

Figure 2 shows an MRF with 12-bit subwords. For simplicity, write
and clock signals have been omitted. Data loaded from memory can be
written to a row (corresponding to a conventional media register) as well
as to a column (corresponding subwords in different registers). Seven 2:1
12-bit multiplexers are needed per register/row to select between row-wise
and column-wise access. For example, for register mm0 we need to be able
to select between the most significant subword of the data for column-wise
access and another subword in case of row-wise access. Multiplexers are
not needed for the subwords on the main diagonal.

Only load instructions can write to a column of the MRF. Thus a
transposition of a matrix stored in the register file can be accomplished
using a normal store followed by a column-wise load. Alternatively, we
can use a column-wise store followed by a normal load. However, the first
method requires fewer instructions if the matrix to be transposed is stored
in memory in row-major order and needs to be processed column-wise.
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Fig. 2. A matrix register file with 12-bit subwords. For simplicity, write and clock signals
have been omitted.

Fig. 3. First stage of the LLM algorithm for computing an 8-point DCT.

As an example of where column-wise access to the register file is very
useful, Fig. 3 depicts the first stage of the LLM algorithm(18) for com-
puting an 8-point 1D Discrete Cosine Transform (DCT). An 8 × 8 2D
DCT can be accomplished by performing a 1D DCT on each row fol-
lowed by a 1D DCT on each column. Initially, the bytes xi (0 ≤ i ≤ 7)
are packed consecutively into one 64-bit quadword. It can be seen that
this piece of code exhibits subword DLP, but only 4-way. Furthermore,
in order to exploit this parallelism using SIMD instructions, the elements
x0, x7, x1, x6, x2, x5, and x3, x4 have to be in corresponding subwords of
different registers. This implies that the high and low doublewords of the
quadword have to be split across different registers and that the order of
the subwords in one of these registers has to be reversed. An alternative
way to realize a 2D DCT is by transposing the matrix so that all the xi ’s
of different rows are in one register. In other words, we perform several
1D DCTs in parallel rather than trying to exploit the DLP present in a 1D
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DCT. If the transposition step can be implemented efficiently, this method
is more efficient than the first one. Moreover, it allows to exploit 8-way
SIMD parallelism provided the subwords can represent the intermediate
results.

We note that matrix transposition not only arises in the DCT but also
in many other kernels such as the IDCT, vertical padding, and vertical
subsampling. Furthermore, the matrix has to be transposed twice in order
to exploit 8-way parallelism in these kernels.

3.3. Instruction Set Architecture

In this section, we briefly describe the MMMX instruction set.
Most MMMX instructions are direct counterparts of MMX/SSE

instructions. For example, the MMMX instructions fadd{12,24,48}
(packed addition of 12-, 24-, 48-bit subwords) correspond to the MMX
instructions padd{b,w,d} mm,mm/mem64. MMMX, however, does not
support variants of these instructions that automatically saturate the
results of the additions to the maximum value representable by the sub-
word data type. They are not needed because load instructions automati-
cally unpack the subwords and store instructions automatically pack and
saturate. For example, the fld8u12 instruction loads eight unsigned 8-
bit elements from memory and zero-extends them to a 12-bit format in
a 96-bit MMMX register. Vice versa, the instruction fst12s8u satu-
rates the 12-bit signed subwords to 8-bit unsigned subwords before storing
them to memory. The instruction fldc8u12 (“load column 8-bit to 12-bit
unsigned”) is used to load a column of the MRF.

In the remainder of this section, we describe the novel MMMX
instructions which are not supported in MMX. In many media kernels
all elements packed in a register need to be summed, while in other ker-
nels adjacent elements need to be added. Rather than providing different
instructions for summing all elements and adding adjacent elements, we
decided to support adding adjacent elements only but for every packed
data type. Whereas summing all elements would probably translate to
a multicycle operation, adding adjacent elements is a very simple oper-
ation that can most likely be implemented in a single cycle. Figure 4
shows how eight 12-bit subwords can be reduced to a single 96-bit
sum or 96-bit difference using the instructions fsum{12,24,48} and
fdiff{12,24,48} respectively. The fsum instructions are used to syn-
thesize the special-purpose SSE sum-of-absolute (SAD) instruction, which
is not present in MMMX because it is of little benefit if subwords are
12-bit.(10)
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Fig. 4. Reducing eight 12-bit subwords to a single 96-bit sum or 96-bit difference using the
instructions fsum{12,24,48} and fdiff{12,24,48}, respectively.

The instructions fmadd{12,24} mm,mm/mem64 perform the mul-
tiply-add operation on adjacent subwords. Specifically, the instruction
fmadd12 multiplies the eight signed 12-bit subwords of the first operand
with the corresponding subwords of the second operand and adds adja-
cent 24-bit products. The instruction fmadd24 performs the same opera-
tion but on 24-bit subwords and produces two 48-bit results. In the MMX
architecture, the multiply–add operation is only supported for the packed
word (4 × 16-bit) data type (pmaddwd).

Another operation we have found useful to implement many multime-
dia kernels such as the (I)DCT kernels is the possibility to negate some or
all elements in a packed register. The instructions fneg{12,24} mm,imm8
negate the 12-bit (24-bit) subwords of the source operand if the corre-
sponding bit in the 8-bit immediate imm8 is set. If subwords are 24-bit,
the four higher order bits in the 8-bit immediate are ignored. Finally,
we remark that special-purpose MMX/SSE instructions such as psadbw,
pavg {b,w} and conversion and rearrangement instructions such as
pshufw, packss {wb,dw,wb}, punpck{hbw,hwd,hdq,lbw,lwd,
ldq} are not supported in the MMMX architecture. In MMMX, the
conversion and rearrangement instructions are not needed and the spe-
cial-purpose instructions can be synthesized using a few general-purpose
instructions.
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3.4. Area Overhead and Delay

In this section, we provide coarse estimates of the area overhead of
extended subwords and wide partitioned ALUs using area estimates found
in literature. Providing accurate estimates is beyond the scope of this paper
and will be the subject of future work. We also briefly discuss the latency
and throughput of SIMD instructions.

MMX and MMMX have only eight architectural SIMD registers, but
we assume 32 64-bit physical (renaming) registers. Under this assumption,
the total area overhead for extended subwords is 1 Kb, which is very small.
In a recent paper,(19) an area breakdown of the TM3270 media proces-
sor, the latest TriMedia VLIW processor, has been presented. The regis-
ter file constitutes about 12% of the total area. The TriMedia register file
is relatively large, however, because it consists of 128 32-bit registers and
has 10 32-bit read and five 32-bit write ports. The area of a register file
is the product of the number of registers, the number of bits per register,
and the size of a register cell.(20) Furthermore, the size of a cell is pro-
portional to (3 + p)(4 + p), where p is the total number of ports. The
most aggressive superscalar processor we have simulated issues at most
four (SIMD) instructions per cycle and requires eight read and four write
ports. Since we assume 32 64-bit physical registers and require at most 12
ports, the MMX register file would constitute at most 4.2% of the total
area. Under these assumptions, implementing extended subwords would
require less than 2.1% of the total area.

A 32-bit ALU requires less than 0.05 mm2 in a 0.18 µm CMOS pro-
cess,(20) so a coarse approximation of the area of a 64-bit partitioned
ALU is 0.1 mm2 and of a 96-bit partitioned ALU 0.15 mm2. A relatively
small integrated circuit is 1 cm2. Therefore, four 64-bit SIMD ALUs, as is
assumed in the most aggressive MMX-enhanced superscalar, require less
than 0.4% of the total area and four 96-bit SIMD ALUs take less than
0.6% of the total area. In other words, the area overhead of 96-bit SIMD
units instead of 64-bit SIMD units is very small.

In our simulations, we assume that the latency and throughput of SIMD
instructions are equal to the latency and throughput of the corresponding
scalar instructions. This is a conservative assumption given that the SIMD
instructions perform the same operation but on narrower data types.

4. EXPERIMENTAL SETUP

4.1. Simulation Environment

In order to evaluate MMMX, we have used the sim-outorder sim-
ulator of the SimpleScalar toolset (revision 3.0d).(21) sim-outorder is a
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detailed, execution-driven simulator that supports out-of-order issue and
execution. New instructions can be synthesized without having to change
or recompile the assembler. This is accomplished by adding annotations to
instructions in the assembly files as in the following example:

add.d/a $f2, $f4, $f6.

The annotation /a in this example specifies that the first bit of the 16-bit
annotation field should be set. The simulator can then be modified to indi-
cate that the instruction above corresponds to, e.g., paddb (packed addi-
tion of 8 bytes) instead of double-precision floating-point addition. This
method, however, is very error-prone.

In order to simplify synthesizing new instructions, two new tools have
been developed: the Simple Scalar Instruction Tool (SSIT) and the Simple
Scalar Architecture Tool (SSAT).(22) SSIT allows to use human-readable
instructions such as paddb in the assembly files. It processes assembly files
containing readable instructions, replaces them with corresponding anno-
tated instructions, and modifies the source code of sim-outorder to
support the new instructions. SSAT extends SSIT by providing the pos-
sibility to define new registers and to define aliases for existing registers.
For example, in MMX as well as many other media extensions, the media
registers correspond to the floating-point registers.

We remark that because the SimpleScalar architecture is RISC, we have
not simulated MMX and MMMX but rather RISC-like approximations. For
example, one operand of many MMX and MMMX instructions can be a mem-
ory location, but we have simulated load/store architectures. This does not
affect the validity of our simulations because our main objective is to com-
pare the performance of an SIMD architecture without extended subwords
and the MRF to the same architecture with these features. Furthermore, in
the Pentium 4 MMX instructions involving memory operands are translated
to RISC-like micro-operations (µOPs). We also remark that the correctness of
the MMX and MMMX codes has been validated by comparing their output
to the output of C programs.

The main parameters of the modeled processors are depicted in
Table I. We modeled processors with an issue width of 1, 2, and 4 instruc-
tions. So, when four SIMD instructions are issued simultaneously, up to
32 data operations are executed in parallel. For most parameters we used
the default values, except for the size of the register update unit (RUU),
which is 16 by default. This, however, is insufficient to find many inde-
pendent instructions. We, therefore, used an RUU size of 64 instead. As
explained in Section 3.4, the latency and throughput of SIMD instructions
are set equal to the latency and throughput of the corresponding scalar
instructions.
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Table I. Processor Configuration

Parameter

Issue width 1 2 4
Integer ALU, SIMD ALU 1 2 4
Integer MULT, SIMD MULT 1 2 2
L1 Instruction cache 512-set, direct-mapped 64-byte line

LRU, 1-cycle hit, total of 32 KB
L1 Data cache 128-set, 4-way, 64-byte line, LRU, 1-cycle

hit time, total of 32 KB
L2 Unified cache 1024-set, 4-way, 64-byte line, LRU,

6-cycle hit, total of 256 KB
Main memory latency 18 cycles for first chunk, 2 thereafter
Memory bus width 16 bytes
RUU (register update unit) entries 64
Load-store queue size 8

4.2. Benchmarks

In this section, we describe the kernel benchmarks and briefly sketch
their MMX and MMMX implementations. These kernels have been stud-
ied because they represent the major portion of many workloads. Most
kernels process small (e.g., 8 × 8 or 16 × 16) sub-blocks but are performed
on all sub-blocks of an image or frame. To investigate if this changes their
quantitative behavior, we will also consider the case where the kernel is
performed on all sub-blocks. Some of the kernels have been taken from
the Berkeley Multimedia Kernel Library (BMKL).(23) Others have been
found in literature (e.g., Refs. 24 and 25).

4.2.1. Matrix Transpose

Matrix transposition is at the center of many 2D multimedia algo-
rithms. Because of this, we consider it as a kernel benchmark.

The MMMX implementation of matrix transpose is straightforward.
Iteratively, we load a vector from memory and write it to a column of the
register file. Once a sub-matrix has been transposed in this way, it is writ-
ten back to memory. The MMX implementation, on the other hand, is
more difficult and requires many permutation (pack and unpack) instruc-
tions.

The matrix transpose kernel was implemented for two different data
types, byte and 12-bit. For brevity, they will be referred to as Transps.
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(8) and (12), respectively. A 12-bit data format arises, for example, in the
IDCT. In memory, however, these values are stored as 16-bit.

4.2.2. Add Block

For encoding a block or macroblock in Intra-coded mode in stan-
dards such as MPEG-4 and H.264, a prediction block is formed based
on previously reconstructed blocks. The residual signal between the cur-
rent block and the prediction is encoded. This residual signal data can be
larger than 8-bit. The add block kernel is used in the decoder, during the
block reconstruction stage of motion compensation. This kernel requires
9 bits of intermediate precision. Consequently, the MMX implementation
needs to unpack the input data from 8- to 16-bit and to pack the 16-
bit result to 8-bit. In the MMMX implementation this overhead is not
required. Figures 5 and 6 depict the MMX and MMMX implementations
of the inner loop of the add block kernel.

4.2.3. DCT and IDCT

The DCT and its inverse (IDCT) are widely used in many image
and video compression applications. JPEG and MPEG partition the input
image into 8 × 8 blocks and perform the 2D DCT on each block. The

Fig. 5. MMX implementation of inner loop of add block kernel.

Fig. 6. MMMX implementation of inner loop of add block kernel.
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input elements are either 8- or 9-bit, and the output is an 8 × 8 block of
12-bit 2’s complement data.

Our implementations are based on the LLM algorithm,(18) which
performs a 1D DCT and is performed on every row and column. The
MMX/SSE implementation of the 2D DCT is due to Slingerland and
Smith.(23) Because the input data is either 8- or 9-bit, they have used
16-bit functionality (4-way parallelism). Furthermore, they have vectorized
the 1D DCT. As explained in Section 3.2, to do so requires a signifi-
cant amount of overhead. The MMMX implementation performs several
1D row DCTs in parallel instead of parallelizing each 1D row DCT. This
allows to exploit 8-way parallelism but requires that the matrix is trans-
posed prior to the row and column DCTs.

The IDCT is the inverse of the DCT and can be accomplished using
the same algorithm except that the stages are reversed.

4.2.4. Repetitive Padding

An important new feature in MPEG-4 is padding. Profiling results,
reported in Refs. 26–28, indicate that padding is a computationally
demanding process.

MPEG-4 defines Video Object Planes (VOPs) as arbitrarily shaped
regions of a frame which usually correspond to objects. Motion estimation
is defined over VOPs instead of frames. The padding process defines the
color values of pixels outside the VOP. It consists of two steps. First, each
horizontal line of a block is scanned. If a pixel is outside the VOP and
between an end point of the line and an end point of a segment inside the
VOP, then it is replaced by the value of the end pixel of the segment inside
the VOP. Otherwise, if the pixel is outside the VOP and between two end
points of segments inside the VOP, it is replaced by the average of these
two end points. In the second step, the same procedure is applied to each
vertical line of the block. Figure 7 shows horizontal and vertical repetitive
padding for an 8 × 8 pixel block. In this figure, VOP boundary pixels are
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Fig. 7. Repetitive padding for VOP boundary blocks.
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indicated by a numerical value, interior pixels are denoted by X, and pix-
els outside the VOP are blank.

Our implementations are based on the algorithm described in Ref.
25, where special instructions have been proposed for both horizontal as
well as vertical repetitive padding. If column-wise access to the register file
is supported, however, then both steps can be performed identically and
efficiently using SIMD instructions, and special instructions for horizontal
and vertical repetitive padding are not needed.

4.2.5. 2 × 2 Haar Transform

The 2 × 2 Haar transform is used to decompose an image into four
different bands. A 2D Haar transform can be performed by first perform-
ing a 1D Haar transform on each row followed by a 1D Haar transform
on each column. The 2×2 Haar transform is given by the following equa-
tion.
[

x0 x1
x2 x3

]
2×2 Haar→
transform

[
x0 + x1 x0 − x1
x2 + x3 x2 − x3

]
,

[
x0 + x1 + (x2 + x3) x0 − x1 + (x2 − x3)

x0 + x1 − (x2 + x3) x0 − x1 − (x2 − x3)

]
.

(1)

The MMX code for the inner loop of the 2 × 2 Haar transform
is depicted in Fig. 8. The punpcklbw and punpckhbw instructions
(instructions 9, 10, 12, and 13) expand the data to two bytes. Because
both operands are in the same register and because MMX does not have
an instruction that adds or subtracts adjacent elements, the instruction
pmaddwd with some multiplicands set to 1 and others to −1 is used for
the final addition or subtraction. The MMMX code for the 2 × 2 Haar
transform is depicted in Fig. 9. MMMX reduces the number of instruc-
tions in the inner loop by almost a factor of 2 (from 20 to 11) compared
to MMX. This reduction is due to two reasons. First, 8 pixels can be pro-
cessed in parallel because 12 bits are sufficient for adding or subtracting
4 pixels. Second, as described in Section 3.3, MMMX includes instructions
for adding and subtracting adjacent elements in a register.

4.2.6. Vector/Matrix Multiply

Vector/matrix multiplication is another important kernel with many
applications. For example, it has been used to implement finite impulse
response filters,(29) the discrete wavelet transform,(30) and, of course,
matrix/matrix multiplication. The naive vector/matrix multiply algorithm
traverses the matrix along the columns. Matrices are typically stored in
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Fig. 8. MMX implementation of 2 × 2 Haar Transform.

Fig. 9. MMMX implementation of 2 × 2 Haar Transform.
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row-major order leaving the columns scattered in memory. This kernel will
be referred to as V × M.

In Ref. 31, two MMX implementations of vector/matrix multiplica-
tion have been explained. In the first implementation the matrix is split
into 4 × 2 sub-matrices and the vector is also split into sub-vectors of two
elements. This algorithm processes four columns of the matrix in paral-
lel and accumulates results in a set of four accumulators. However, this
algorithm exhibits poor cache utilization. In the second method, the outer
loop of the vector/matrix multiply algorithm is unrolled four times. This
algorithm processes 16 columns of the matrix in each iteration of the
inner loop, and each iteration of the outer loop calculates 16 elements of
the output vector. We compare our MMMX code to the second method,
because it performs better than the first method. For this kernel a block
size of 8 × 16 is used and the elements are assumed to be 12 bits wide
(stored as 16-bit) as is the case in, for example, the Hadamard Transform
in image processing and in edge detection using different masking. This
kernel mainly benefits from the 8×12-bit multiply-add operation provided
in MMMX (cf. Section 3.3).

4.2.7. Paeth Prediction

Paeth prediction is used in the PNG standard.(24) The Paeth predictor
returns the pixel a, b, or c which is closest to the initial prediction a+b−c,
where a is the element to the east of the current pixel, b the element to the
north, and c is the element to the northeast. A pseudo-code description of
the Paeth predictor (for one pixel) is given in Fig. 10.

Because a, b, and c are unsigned bytes, p = a + b − c is in the range
−255 . . . 510 (10 bits), pa = |p − a| = |b − c| is in the range 0–255 (8 bits),
pb = |p − b| = |a − c| is also in the range 0–255, and pc = |p − c| =

Fig. 10. Pseudo-code description of the Paeth predictor.
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|a + b − 2c| is in the range −510 . . . 510 (10 bits). This implies that 12 bits
are sufficient to perform this kernel without overflow. MMX, on the other
hand, needs to unpack to 16-bit values and, therefore, can only exploit
4-way parallelism.

Because the MMX implementation computes the prediction for 3 pix-
els in a single iteration and MMMX for 7 pixels, the number of columns
must be divisible by both 3 and 7 to implement this kernel conveniently.
We, therefore, assumed a block size of 7 × 21.

5. EXPERIMENTAL RESULTS

In this section, we evaluate MMMX by comparing the performance
obtained for an MMMX implementation of a kernel to the performance
of an MMX implementation of the same kernel.

Figure 11 depicts the speedup of MMMX over MMX for one exe-
cution of each kernel on a single block. Consequently, the measured run-
ning times include many compulsory instruction and data cache misses. It
can be seen that for most kernels MMMX achieves a speedup between
1.5 and 2.5. The two kernels for which a speedup smaller than 1.5 is
obtained are the 2D IDCT and the Padding kernel. The input data of the
2D IDCT is 12-bit and some intermediate results are larger than 12-bit.
Therefore, the MMMX implementation cannot employ 12-bit functional-
ity (8-way parallel SIMD instructions) all the time but sometimes has to
convert to 4×24-bit packed data types. The MMX implementation, on the
other hand, is able to use 16-bit functionality all the time. The reason why
MMMX improves performance by just 20% for the Padding kernel is that
the MMX implementation employs the special-purpose pavgb instruction,
which computes the arithmetic average of eight pairs of bytes. (More pre-
cisely, pavgb is supported in the SSE integer extension to MMX.) We

Fig. 11. Speedup of MMMX over MMX for one execution of each kernel on a single
block.
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decided not to support the pavgb instruction in MMMX because with
extended subwords it offers little extra functionality since it can be synthe-
sized using the more general-purpose instructions fadd12 and fsar12
(shift arithmetic right on extended subwords). Nevertheless, because the
matrix needs to be transposed between horizontal and vertical padding
MMMX provides a speedup.

The two kernels for which the highest speedups are obtained are the
8 × 8 matrix transpose (on 8-bit as well as 12-bit data) and Paeth. If the
matrix elements are 8-bit, MMMX can use the MRF to transpose the
matrix, while MMX requires many pack and unpack instructions to real-
ize a matrix transposition. Furthermore, if the elements are 12-bit (but
stored as 16-bit data types), MMMX is able to employ 8-way parallel
SIMD instructions, while MMX can only employ 4-way parallel instruc-
tions. As a result, MMMX improves performance by more than a factor
of 4.4. The speedup obtained for the Paeth kernel is approximately 2.6.
The reason is that intermediate data is at most 10 bits wide and MMMX
can, therefore, calculate the prediction for 7 pixels in each loop iteration
while MMX computes the prediction for three pixels. Finally, it can also
be observed in Fig. 11 that, in general, the speedup of MMMX over
MMX slightly decreases when the issue width is increased. This can be
expected because MMMX collapses several MMX instructions into a sin-
gle instruction, so generally it will decrease the distance between depen-
dent instructions.

As explained before, the results presented in Fig. 11 are for one execu-
tion on a single block. In most cases, however, the kernels are executed on
all blocks of an image or frame. To investigate if this changes the results
fundamentally, Fig. 12 depicts the image-level speedups (i.e., the speedups
obtained when the kernels are executed on all blocks).

In general, the image-level speedups are higher than the block-
level speedups. For example, the block-level speedup for the 2D DCT is
between 1.58 (4-way) and 1.66 (1-way) while the image-level speedup is
between 2.20 and 2.26. As another example, the block-level speedup for

Fig. 12. Image-level speedup of MMMX over MMX.
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Fig. 13. Ratio of committed instructions (MMX to MMMX) versus speedup.

the Paeth kernel is between 2.55 and 2.66 whereas the image-level speedup
is between 2.61 and 2.72. The reason for this behavior is as follows.
Although executing the kernels on all blocks of an image does not reduce
the number of data cache misses (because the images are too large to be
kept in cache), it does reduce the number of instruction cache misses, since
the kernels are relatively small and can be kept in the instruction cache.

The main reason why MMMX improves performance is because it
needs to execute fewer instructions than MMX. To illustrate this reduc-
tion, Fig. 13 depicts the ratio of committed instructions, i.e., the ratio of
the number of committed instructions for the MMX implementation to
the number of committed instructions for the MMMX implementation.
As Fig. 11, the results are for one execution of each kernel on a single
block. For comparison, the speedup achieved by MMMX for the 1-way
processor is depicted also.

Figure 13 shows that for most benchmarks MMMX reduces the
dynamic number of instructions by a factor larger than 2. This is due to
three reasons. First, when intermediate results are larger than 8 bits but
smaller than 13 bits (or larger than 16 but smaller than 25 bits), MMMX
can perform more operations in a single SIMD instruction than MMX.
Second, employing extended subwords avoids conversion overhead. Third,
for the kernels that process two-dimensional data the MRF reduces the
cost of matrix transposition significantly. For some kernels, in particular
Padding, the instruction count reduction is smaller than 2. As explained
before, this is because the MMX implementation of this kernel employs
the instruction pavgb which is not supported in MMMX and must be
synthesized using two general-purpose instructions.

Figure 13 also shows that for all but two kernels the attained speedup
is smaller than the instruction count reduction. For example, MMMX
reduces the dynamic number of instructions by factors of 2.51×, 2.86×,
and 2.93× for the 2D DCT, Paeth, and Vector/Matrix Multiplication ker-
nels, respectively, but the speedups achieved for these kernels are 1.66,
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2.66, and 2.39, respectively. This is expected since the measured running
times include memory stall cycles. Since MMMX only improves the per-
formance of the computational part of an algorithm, the speedup will gen-
erally be smaller than the instruction count reduction. However, for the
matrix transposition kernel (for both data formats) the attained speedup
is larger than the instruction count reduction. A possible explanation is
that the MMMX implementation of this kernel exhibits better cache per-
formance than the MMX implementation.

To further illustrate the instruction count reduction, Figures 14
and 15 depict the mix of instructions in the MMX and MMMX imple-
mentations of the kernels, respectively. They break down the instruction
mix into load/store instructions, overhead instructions (mainly pack and
unpack) due to mismatch between the computational and storage formats,
loop overhead instructions, multiplication operations, and other. Figure 14
shows that many (up to 38% of the total instruction count) overhead
instructions are required in the MMX implementations to convert between
the computational and storage formats. MMMX, on the other hand, elim-
inates this overhead completely, as shown in Fig. 15. Because MMMX
reduces the instruction count compared to MMX, relatively it performs
more load/store instructions.

Fig. 14. Instruction mix in the MMX implementations of the kernels.

Fig. 15. Instruction mix in the MMMX implementations of the kernels.
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6. CONCLUSIONS

In this paper, we have evaluated two techniques aimed at reduc-
ing data conversion and reorganization overhead. The first technique,
extended subwords, uses four extra bits for every byte in a media register.
This allows many SIMD operations to be performed without overflow
and avoids packing/unpacking conversion overhead because of mismatch
between the storage and computational formats. Furthermore, this implies
that frequently MMMX can exploit 8-way parallelism in cases where
MMX must resort to 4-way parallel SIMD instructions. The second tech-
nique is the MRF, which allows flexible row-wise as well as column-wise
access to the register file. This eliminates the costly transposition steps
which are required for many kernels that process 2D images.

We have shown that there are many important media kernels that can
benefit from these techniques. Furthermore, simulation results obtained
by extending the sim-outorder simulator of the SimpleScalar tool-
set show that MMMX improves performance significantly compared to
MMX. The block-level speedups (i.e., for one execution on a single block)
range from 1.1 to 4.47 with an arithmetic average of 2.03 and a geo-
metric mean of 1.86 for a 1-way processor and from 1.08 to 4.43 with
an arithmetic average of 1.99 and a geometric mean of 1.82 for a 4-way
processor. The image-level speedups (i.e., the speedups obtained when
the kernels are executed on all blocks of an image) range from 1.58
to 3.24 for a 1-way processor and from 1.58 to 2.54 for a 4-way pro-
cessor. As can be expected, in general the speedup is smaller than the
reduction of the dynamic number of instructions, due to memory stall
cycles.

Future high-performance computing systems will exploit ILP, TLP,
and DLP. An excellent example of this is the Cell processor(32,33) devel-
oped by a partnership of Sony, Toshiba, and IBM. Cell is a chip mul-
tiprocessor consisting of a PowerPC core that controls eight so-called
Synergistic Processing Elements (SPEs). Each SPE is an in-order dual-
issue statically scheduled processor that can issue two 128-bit SIMD
instructions per cycle: one arithmetic instruction and one memory oper-
ation. Interestingly, the SIMD architecture does not support the packed
8-bit data type because such a narrow data type would degrade compu-
tation results.

The cost of implementing extended subwords and the MRF appears
to be small. To validate this, we intend to develop RTL models of both
techniques. Furthermore, we intend to identify other sources of inefficiency
(e.g., unaligned memory accesses) and to develop (micro) architectural
techniques to circumvent them.
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