
DOI: 10.1007/s10766-006-0013-2
International Journal of Parallel Programming, Vol. 34, No. 3, June 2006 (© 2006)

Special issue on Micro-grids – Guest
Editor Introduction

This special issue of the International Journal of Parallel Processing
contains papers selected from the first open international Micro-grids
workshop. This event was hosted by the Computer Systems Architec-
ture group (http://www.science.uva.nl/research/csa/) at the University of
Amsterdam on July 1–2, 2005 at the Science Park in Amsterdam. The
theme of the workshop series is scalable on-chip parallelism, and it aims
to bring together experts in micro-architecture, languages and compilers
with the goal of disseminating longer-term research into the significant
problems associated with scalable on-chip concurrency.

This workshop emerged from the following historical perspective. For
many years there has been uniformity in computer architecture with lit-
tle diversity and no new directions. This had led to a monoculture within
the computer architecture research community, where every research group
seemed to be designing and testing marginally better mousetraps, without
any realisation that mice were no longer an issue. We refer of course to
the overwhelming body on literature on speculative, out-of order execu-
tion in wide-issue pipelines. With a few exceptions, research into alterna-
tive concurrent architectures was marginalised by a neat pincer movement.
On the one side, the rate of change of clock speed in mainstream pro-
cessors was being driven by two factors: an exponential increase in speed
from the reduction in device dimensions and, from the 1990s onwards, an
additional one-off boost by the use of superpipelining in the micro-archi-
tecture. This massive increase in clock speed was matched on the other
flank with a well-oiled manufacturing process that brought us new fabrica-
tion facilities and new and faster products on an almost annual basis. This
combination of circumstances did not allow any diversity in the form of
parallel architecture to enter into the market, as it was always cheaper and

189

0885-7458/06/0600-0189/0 © 2006 Springer Science+Business Media, Inc.



190 Guest Editor Introduction

faster to simply wait for the next generation of superscalar processors or
to use many of them concurrently in a variety of configurations depending
on the application.

Concurrent architecture research from the 1980s, such as dataflow,
was forgotten; the superscalar processor reigned supreme and perhaps for
very good reason. This form of concurrency exploitation required no input
from the programmer. Moreover it gave us the holy grail of compatibil-
ity, namely that the same binary code could run on each new generation
of processor. What is interesting to review over this period is the effect of
device-dimension changes in the characteristics of the processors that were
implemented in this technological roller coaster. Over a 12 year period,
from the early 1990s, Moore’s law predicted a packing density increase of
256, and the corresponding speed increase around 16, based on device-
dimension scaling. If we look at the Power PC processor as an example of
progress (see http://www.rootvg.net/RSmodels.htm), clock speed increased
at about twice the predicted rate during this period; i.e., from 33 MHz to
1 GHz. Circuit density in the die has also grown as predicted; but if we
look at how it has contributed to concurrency in instruction issue, then
we see a very different picture. Here we get an increase of only a factor of
10, with the PPC moving from a 32-bit, single-instruction-issue implemen-
tation to a 64-bit, five-way-instruction-issue implementation. If those gates
had been used to replicate the single issue base line, we would expect 256
such processors to be possible. So, what has happened?

The faster than predicted clock speed is due to the finer slicing of the
pipeline. The smaller than predicted instruction-issue concurrency (a fac-
tor of 25) is more worrying and can be attributed to a number of factors,
namely: a larger proportion of chip die being used for memory, to miti-
gate against the memory wall; the fact that out-of-order instruction issue
is not scalable; and finally the fact that the larger multi-port register files
required are not scalable either. Scalability of this architectural cul-de-sac
was not the only issue. Like all CMOS parameters, exponential growth
cannot continue unabated without some form of population control flat-
tening out the curve.

Gate dimension still has some scaling left, different sources predict
different end points but we are still several orders of magnitude from the
fundamental limit of atomic dimensions. Signal propagation and power
dissipation are the two parameters which are beginning to cause prob-
lems. Power dissipation has been growing exponentially in each new gen-
eration of commodity processor, but power densities have already reached
the point at which removing the excess heat is no longer economic. The
power dissipation has been exacerbated by the large central support struc-
tures required for out-of-order issue. It was this, rather than the lack of



Guest Editor Introduction 191

scalability, that rang the death knoll for continued increase in issue width
in superscalar architectures.

These facts have led to the emergence of multi-core processor chips
over the last few years. However, it is clear that applying the same
approach to multi-processors-on-chip as has been used at the system level
is not an optimal solution. Perhaps the biggest challenge is that multi-
processing has only been used by a small percentage of the application
market: the large-scale scientific application and the simpler server-appli-
cation domains. By far the largest segment of the market for processors
still demands binary-code compatibility, but the experience from the num-
ber crunchers is that each new generation/configuration of multi-processor
required some rewriting of the application to tune it for concurrency. This
then is the crux of the issue. For too long we have ignored the genericity
of research into concurrency and its exploitation; and we are now faced
with a world where if we are to exploit what is left of silicon CMOS scal-
ing, we are forced to use multi-processors. Thus the questions these pro-
ceedings try to answer are whether scalability can be achieved in on-chip
multi-processors? If so, then can the grail of binary-code compatibility be
resurrected in a concurrent environment? If not, are there language or
compiler solutions that will give some relief from the hands-on approach
currently used in large-scale grid computing? These are all pressing issues
as we have arrived at the point of departure with little foundation in
theoretical research that would give us insight into the future.

This first part of the two-part special issue contains four papers from
the Micro-grids workshop which have been significantly expanded and
include three on architecture and one on compiler theory. The paper from
Ramon Beivide’s group looks at scalability in chip multi-processors from
the perspective of networks on chip and explores the suitability of dense
circulant graphs of degree four for the design of on-chip interconnec-
tion networks. Networks based on these graphs have better characteris-
tic measures than planar toroidal graphs, especially in managing collective
communications. The paper from Skevos Evripidou’s group looks at archi-
tectures based on minimal change from current micro-architecture and
evaluates the case for data-driven scheduling of threads as a mechanism
of exploiting them. This paper considers both performance and power dis-
sipation and concludes that a significant performance increase, or indeed
power savings, can be made by backtracking to earlier micro-architectures
and running chip multi-processors based on their data-driven methodol-
ogy. Stamatis Vassiliadis’ group’s paper is a study into the management
of data in concurrent SIMD architectures, such as multimedia processors.
This is a very pragmatic paper, which shows significant advantages over
the current state of the art in this area. Finally, the paper from Olivier



192 Guest Editor Introduction

Temam’s group is the odd one out in this issue and is the first of our
compiler papers. This paper looks at a unified polyhedral representation
of iteration spaces, illustrates how complex the transformation sequences
required for significant performance benefits may be and illustrates how
the framework may be used in accomplishing those transformations.

We are pleased to present these papers to you, as well as the papers
that will follow in the subsequent edition that complete the spectrum of
research which was presented in Amsterdam.

Chris Jesshope, Professor
Institute of Informatics

University of Amsterdam
Kruislaan 4031098 SJ Amsterdam

The Netherlands
E-mail: jesshope@science.uva.nl

Alex Shafarenko, Professor
Department of Computer Science

University of Hertfordshire
College Lane, Hatfield, AL10 9AB, UK

E-mail: A.Shafarenko@herts.ac.uk


