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The registers constraints are usually taken into account during the schedul-
ing pass of an acyclic data dependence graph (DAG): any schedule of the
instructions inside a basic block must bound the register requirement under
a certain limit. In this work, we show how to handle the register pressure
before the instruction scheduling of a DAG. We mathematically study an
approach which consists in managing the exact upper-bound of the register
need for all the valid schedules of a considered DAG, independently of the
functional unit constraints. We call this computed limit the register saturation
(RS) of the DAG. Its aim is to detect possible obsolete register constraints,
i.e., when RS does not exceed the number of available registers. If it does,
we add some serial edges to the original DAG such that the worst regis-
ter need does not exceed the number of available registers. We propose an
appropriate mathematical formalism for this problem. Our generic processor
model takes into account superscalar, VLIW and EPIC/IA64 architectures.
Our deeper analysis of the problem and our formal methods enable us to
provide nearly optimal heuristics and strategies for register optimization in
the face of ILP.

KEY WORDS: Register requirement; register pressure; instruction level paral-
lelism; integer linear programming; optimizing compilation.

1. INTRODUCTION

The introduction of instruction level parallelism (ILP) has rendered the
classical techniques of register allocation for sequential code semantics
inadequate. In Ref. 16, the authors showed that there is a phase ordering
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problem between classical register allocation techniques and ILP instruc-
tion scheduling. If a classical register allocation is done early, the intro-
duced false dependences inhibit instruction scheduling from extracting a
schedule with high amount of ILP. However, this conclusion does not
prevent a compiler from effectively performing an early register allocation,
with the condition that the allocator is sensitive to the scheduler, as done
in Refs. 2, 18, 20, 23, 25 and 26.

Some other studies(5,8,16,24,28) claim that it is better to combine
instruction scheduling and register allocation in a single complex pass,
arguing that applying each method separately has a negative influence on
the efficiency of the other. However, we think that this phase ordering
problem arises only if the applied first pass (ILP scheduler or register allo-
cator) is “selfish”. Indeed, we can effectively decouple register constraints
from instruction scheduling if enough care is taken. In this paper, we show
how we can treat register constraints before scheduling, and we explain
why we think that our methods provide better techniques than the existing
solutions.

The principal reason for handling register constraints before instruc-
tion scheduling is that register allocation is more important as an optimi-
zation issue than code scheduling. This is because performance is far more
sensitive to memory accesses than to fine-grain scheduling (memory gap):
a cache miss may inhibit the processor from achieving a high dynamic
ILP, even if the scheduler has extracted it at compile time. Even if we
expect spill code to exhibit high locality, and hence likely produces cache
hits, this cannot be asserted at compile time. It is very hard for a com-
piler to guarantee the existence of data inside a memory hierarchy level.
Consequently, it is difficult to really guarantee the latency of a memory
operation at compile time. So, the schedule of the instructions computed
by the compiler wouldn’t act in harmony with the dynamic execution of
the hardware. The authors in Ref. 15 relate that about 66% of application
execution times are spent satisfying memory requests. Furthermore, mem-
ory requests exhibit a high potential for conflicts, even if they are data
independent. These conflicts are due to micro-architectural restrictions
and simplifications in the memory disambiguation mechanisms (load/store
queues) and possible banking structure in cache levels.(21) These possible
conflicts may cause severe performance degradation even in the presence
of high levels of ILP, and even if the data is located in the cache. (22)

Of course, our claim that spill code is more damaging than a weak static
ILP extraction is more appropriate for those architectures, where memory
access latency is very long compared to the delay of calculation. This is
the case in almost all high performance processors. If memory access delay
is not critical, the register saturation concept may be useless.
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Another reason for handling register constraints prior to ILP sched-
uling is that register constraints are much more complex than resource
constraints. Scheduling under resource constraints is a performance issue.
Given a data dependence graph (DDG), we are sure to find at least one
valid schedule for any underlying hardware properties (a sequential sched-
ule in extreme case, i.e., no ILP). However, scheduling a DDG with a lim-
ited number of registers is more complex. Unless we generate superscalar
codes with sequential semantics, we cannot guarantee in the case of VLIW
the existence of at least one schedule. In some cases, we must introduce
spill code and hence we change the problem (the input DDG). Also, a
combined pass of scheduling with register allocation presents an impor-
tant drawback if not enough registers are available. During scheduling, we
may need to insert load-store operations if not enough free registers exist.
We cannot guarantee the existence of a valid issue time for these intro-
duced memory accesses in already scheduled code; resource or data depen-
dence constraints may prohibit all possible issue slots inside the scheduled
code. This fact forces an iterative process of scheduling followed by spill-
ing until reaching a solution. Even if we can experimentally reduce the
backtracking as in Ref. 31, this iterative aspect adds a high algorithmic
complexity factor to a pass integrating both register allocation and sched-
uling. As far as we know, there is no formal solution that effectively solves
this problem.

The above arguments suggest that we consider new ways of handling
register pressure before starting the scheduling process. The scheduler should
be freed from register constraints so that the schedule does not suffer
from excessive serialization. This article synthesizes our contributions from
Refs. 29 and 30. We study the concept of register saturation (RS), which
prevents a DAG from producing an excessive number of simultaneously live
values for all the valid schedules. Our pre-pass analyzes a DAG (with respect
to control flow) to deduce the maximum register need among all schedules.
We call this limit the RS, because the register need can reach this limit but
never exceed it. If RS exceeds the number of available registers, we intro-
duce new edges in the DAG to reduce RS, as illustrated in Fig. 1. In this
paper, we give some theoretical results on RS and provide exact (optimal)
and approximate methods for the problems of computing and reducing RS.
After our RS analysis pass, the DAG is free from register constraints and
can be sent to the scheduler and the register allocator.

This article is organized as follows. Section 2 presents our DAG and
processor model which can be used for most of existing ILP architec-
tures (superscalar, VLIW, EPIC/IA64). Section 3 provides some theoretical
results on computing the RS that prove the NP-completeness of this
problem. Section 4 presents an algorithmic heuristics for computing RS.
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Fig. 1. Early register pressure management.

Computing the optimal RS by integer linear programming (intLP) is given
in Section 5. Our intLP formulation use the linear writing of logical for-
mulas (⇒,⇔,∨) and the max operator (max(x, y)) by introducing extra
binary variables. If the RS exceeds the number of available registers, RS
must be reduced. Section 6 proves that this problem is NP-hard. An algo-
rithmic heuristics for reducing RS is given in Section 7 and an exact opti-
mal solution is presented in Section 8. Section 9 presents our large range
of experiments, which show that our heuristics are nearly optimal in prac-
tice. Before concluding, in Section 10 we discuss why the RS concept is a
better way to handle register constraints prior to ILP scheduling compared
to register minimization. To enhance readability, only the most important
formal proofs are presented in this paper. The complete theoretical proofs
are provided in the cited references.

2. DAG AND PROCESSOR MODEL

A DAG G = (V , E, δ) in our study represents the data dependenc-
es between the operations and any other serial constraints. Each operation
u has a strictly positive latency lat(u). The DAG is defined by its set of
nodes (operations) V , its set of edges (data dependences and serial con-
straints) E = {(u, v)|u, v ∈ V }, and δ such that δ(e) is the latency of the
edge e in terms of processor clock cycles. We assume that the initial DAG
contains only edges with positive latencies. This assumption is useful for
some formal proofs. However, we will see in later sections (when reducing
RS) that we can insert new edges with non-positive latencies.

A schedule σ of G is a function which gives an integer execution
(issue) time for each operation:

σ is valid⇔ ∀e = (u, v) ∈ E, σ(v)− σ(u) � δ(e).

The set of all valid acyclic schedules of G is denoted by �(G).
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To simplify the writing of some mathematical formulas, we assume that
the DAG has one source (�) and one sink (⊥). If not, we introduce two ficti-
tious nodes (�,⊥) representing nops (evicted at the end of the RS analysis).
We add a virtual serial edge e1 = (�, s) to each source with δ(e1) = 0, and
an edge e2 = (t,⊥) from each sink with the latency of the sink operation
δ(e2) = lat(t). The total schedule time of a schedule is then σ(⊥). The null
latency of an added edge e1 is not inconsistent with our assumption that
latencies must be strictly positive because the added virtual serial edges do
not exist in the original DAG. Furthermore, we can avoid introducing these
virtual nodes without any impact on our theoretical study, since their pur-
pose is only to simplify some mathematical expressions.

We consider a target RISC-style architecture with multiple register
types, where T denotes the set of register types (for instance, T ={int,
float}). We differentiate between statements and precedence constraints,
based on whether they refer to values to be stored in registers or not.

• VR,t ⊆ V is the set of statements (operations) which define values to
be stored in registers of type t ∈ T . We simply call such statements
values. We assume that each statement u ∈ VR,t writes into at most
one register of a type t ∈ T . Statements which define multiple val-
ues with different types are accepted in our model if they do not
define more than one value of a single type. We denote by ut the
value of type t defined by the operation u.

• ER,t ⊆ E is the set of data flow dependence edges through a value
of type t ∈ T . We call them flow edges.

• All the edges in E−ER,t , i.e. edges which are not data flow depen-
dences, are called serial edges.

Basically, there are three types of ILP codes: superscalar, VLIW and
EPIC. Superscalar codes can be simply considered as linear sequential pro-
grams. Even if the compiler try to generate efficient superscalar codes,
the processor is the unique responsible for dynamically extracting ILP at
execution time. So, code generation for such ILP codes write sequential
ones, as if they would be executed by a sequential processor. However,
VLIW codes contain information about parallel operations. The compiler
has the task of statically extracting ILP and then generating the code
by compacting the parallel operations into Very Long Instructions Words.
The processor executes such instructions (containing many independent
operations) sequentially. So, the compiler has the complete control of the
dynamic execution of VLIW codes (except dynamic events, such as cache
misses, exceptions, etc.). EPIC codes have a semantics that may be con-
sidered as a mixture between VLIW and superscalar: while the compiler
include information about ILP in the code, the processor can use such ILP
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information at execution time, or can simply execute sequentially the pro-
gram. From the compiler point of view, an EPIC processor can be viewed
as a sequential (superscalar) or as VLIW processor.

To accommodate static issue VLIW and EPIC/IA64 processors in
which the hardware pipeline steps are visible to compilers (we allow for
dynamically scheduled superscalar processors as well), we assume that
reading from and writing into a register may be delayed from the begin-
ning of the schedule time, and these delays are visible to the compiler
(architecturally visible). We define two delay (offset) functions δr,t and δw,t

in which: the read cycle of ut from a register of type t is σ(u)+δr,t (u), and
the write cycle of ut into a register of type t is σ(u) + δw,t (u). By defini-
tion, we have δr,t (u) � δw,t (u) < lat(u). For instance, according to super-
scalar and EPIC/IA64 code semantics, δr,t and δw,t are equal to zero. This
is because, according to the semantics provided by the vendors, such codes
can be considered as sequential (linear). Any register written by operation
u at time slot c in the code, that register is assumed as busy at the pro-
gram point c (no delay is architecturally visible). The same remark holds
when reading from registers.

Figure 2(b) gives the DAG that we use in this paper constructed from
the code of part (a). In this example, we focus on the floating point reg-
isters: the values and flow edges are illustrated by bold lines. We assume
for instance that each read occurs exactly at the schedule time and each
write at the final execution step (δr (u) = 0, δw(u) = lat(u)− 1). The nodes
with non-bold lines are any other operations that do not write into reg-
isters (as stores), or write into registers of unconsidered types. The edges
with non-bold lines represent the precedence constraints that are not flow
dependences through registers, such as data dependences through memory,
or through registers of unconsidered types, or any other serial constraints.

Fig. 2. DAG model.
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Notation and Definitions on DAGs
In this paper, we use the following notations for a given DAG

G = (V , E) (as those usually used in lattices and orders algebra):

• �+G(u) = {v ∈ V |(u, v) ∈ E} successors of u in the graph G;
• �−G(u) = {v ∈ V |(v, u) ∈ E} predecessors of u in the graph G;
• ∀e = (u, v) ∈ E source(e) = u ∧ target (e) = v. u, v are called

endpoints;
• ∀u, v ∈ V : u < v ⇔ ∃ a path (u, . . . , v) in G;
• ∀u, v ∈ V : u‖v ⇔ ¬(u < v) ∧ ¬(v < u). u and v are said to be

parallel;
• ∀u ∈ V ↑ u = {v ∈ V |v = u ∨ v < u} u’s ascendants including u. In

other terms, a node u is an ascendant of a node v iff u = v or if
there exists a path from u to v;

• ∀u ∈ V ↓ u = {v ∈ V |v = u ∨ u < v} u’s descendants including u.
In other terms, a node u is a descendant of a node v iff u = v or
if there exists a path from v to u;

• two edges e, e′ are adjacent iff they share an endpoint;
• A ⊆ V is an antichain iff all nodes belonging to A are parallel. For-

mally, A ⊆ V is an antichain in G iff ∀u, v ∈ A, u‖v;
• AM is a maximal antichain iff its size in terms of number

of nodes is maximal. Formally, AM is a maximal antichain
∀A antichain in G, |A| � |AM|;

• the extended DAG G\E′ of G generated by the edges set E′ ⊆ V 2 is
the DAG obtained from G after adding the edges in E′. As a conse-
quence, any valid schedule of G′ is necessarily a valid schedule for G:

G′ = G\E′ ⇒ �(G′) ⊆ �(G)

• an extended graph has a similar definition as above, but it is not
restricted to be a DAG;

• let I1 = [a1, b1] ⊂ N and I2 = [a2, b2] ⊂ N be two integer intervals.
We say that I1 is before I2, noted by I1 ≺ I2, iff b1 < a2. We say
that I1 finishes I2 iff b1 = b2.

3. SOME THEORETICAL RESULTS ON COMPUTING REGISTER

SATURATION

In this section, we study some formal properties of register saturation
in order to help us compute it algorithmically. For clarity and without loss
of generality, let us focus on a single register type. Accordingly, our nota-
tion becomes VR for the set of values of the implicit type we consider, ER
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for the set of flow edges through a register of that type, and δr and δw for
reading/writing delays. Also, we use the notation u for both the operation
u and the value it produces.

3.1. Register Need of a Schedule

Given a DAG G = (V , E, δ), a value u ∈ VR is alive from the point
just after the writing clock cycle of u until the point of its last use (con-
sumption). Values which are not read in G or are still alive when exit-
ing the DAG are assumed to be kept in registers as exit values. We model
these exit values by considering that the bottom node ⊥ consumes them.
We define the set of consumers for each value u ∈ VR as:

Cons(u) =
{ {v ∈ V |(u, v) ∈ ER} if ∃(u, v) ∈ ER

⊥ otherwise.

Given a schedule σ ∈ �(G), the last consumption of a value is called the
killing date and noted:

∀u ∈ VR, killσ (u) = max
v∈Cons(u)

(
σ(v)+ δr (v)

)

All the consumers of u whose reading time is equal to the killing date
of u are called the killers of u.1 We assume that a value written at instant
i in a register is available one step later. That is to say, if operation u reads
from a register at instant i while operation v is writing in the same reg-
ister at the same time, u does not get v’s result but, gets the value previ-
ously stored in the register. Then, the lifetime interval LTσ (u) of a value u

according to σ is ]σ(u)+δw(u), killσ (u)]. This interval is left-open by con-
vention only and can be changed without any consequence on our math-
ematical study.

Given the lifetime intervals of all the values, the register need of σ is
the maximum number of values simultaneously alive:

RNσ (G) = max
0�i�σ(⊥)

|vsaσ (i)|

where vsaσ (i) = {u ∈ VR|i ∈ LTσ (u)} is the set of values alive at time
step i. A maximal set of values simultaneously alive are called excessive

1While it is evident that a killer is unique in the case of linear codes (superscalar), VLIW
codes may leads to multiple killers per value.
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values. In other terms, if the register need at time step i is maximal, then
all the values alive at this time step are called excessive values. Figure 3
is an example of a valid schedule for the previous DAG that needs three
FP registers. The bars represent the lifetime intervals. {e, f } are the killers
of b. {a, b, d} is a set of FP excessive values since they are the maximum
number of values simultaneously alive of type float. Nine is a FP exces-
sive clock cycle since at this time there are three FP values simultaneously
alive. Note that we may have more than one set of excessive values, since
the register need may be defined with many sets of values simultaneously
alive.

3.2. Register Saturation Problem

The RS is the maximal register need for all the valid schedules of the
DAG:

RS(G) = max
σ∈�(G)

RNσ (G)

Fig. 3. Register need of acyclic schedules.
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We call σ a saturating schedule iff RNσ (G) = RS(G). In this section, we
study how to compute RS(G). We will see that this problem comes down
to answering the question “which operation must kill this value ?” When
looking for saturating schedules, we do not worry about the total sched-
ule time. Our aim is only to prove that the register need can reach the RS
but cannot exceed it. Minimizing the total schedule time is considered in
Section 6 when we reduce the RS. Furthermore, we will prove that, for
the purpose of maximizing the register need, looking for only one suitable
killer of a value is sufficient rather than looking for a group of killers: for
any schedule that assigns more than one killer for a value u, we can build
another schedule with at least the same register need such that this value
u is killed by only one consumer. Therefore, the purpose of this section
is to select a suitable killer for each value in order to saturate the register
requirement.

Since we do not assume any schedule, the lifetime intervals are not
defined yet, so we cannot know at which date a value is killed. However,
we can deduce which consumers in Cons(u) are impossible killers for the
value u. If v1, v2 ∈ Cons(u) and ∃ a path (v1 . . . v2), v1 is always scheduled
before v2 by at least lat(v1) processor cycles. Then v1 can never be the last
reader of u (remember our assumption of positive latencies in the initial
DAG). We can consequently deduce which consumers can “potentially”
kill a value (possible killers). We denote by pkillG(u) the set of operations
which can kill a value. u ∈ VR:

pkillG(u) = {
v ∈ Cons(u)| ↓ v ∩ Cons(u) = {v}}

A potential killing operation for a value u is simply a consumer of u that
is neither a descendant nor an ascendant of another consumer of u. One
can check that all operations in pkillG(u) are parallel in G. Any opera-
tion which does not belong to pkillG(u) can never kill the value u. The
Lemma 1 proves that for any value u and for any schedule σ , there exists
a potential killer v that is a killer of u according to σ . Furthermore, for
any potential killer v of a value u, there exists a schedule σ that makes v

a killer of u.

Lemma 1. Given a DAG G = (V , E, δ), then ∀u ∈ VR

∀σ ∈ �(G), ∃v ∈ pkillG(u) : σ(v)+ δr (v) = killσ (u) (1)

∀v ∈ pkillG(u), ∃σ ∈ �(G) : killσ (u) = σ(v)+ δr (v) (2)
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Proof. The proof of (1) is directly derived from the definition of pkill.
Since

v ∈ pkill(u)⇒ �v′ ∈ Cons(u) v < v′

then the killing date of u must be the schedule date of some operations in
pkill(u). Let us prove that

∀u ∈ VR, �v′ ∈ Cons(u)− pkill(u), ∃σ ∈ �(G) : killσ (u) = σ(v′)+ δr (v
′)

Suppose the converse is true.

∃v′ ∈ Cons(u)− pkill(u)⇒ ∃v ∈ pkill(u)|v′ < v

Let lp(v′, v) be the longest path from v′ to v.

since lp(v′, v) � lat(v′) > δr(v
′)⇒ σ(v)− σ(v′) > δr(v

′)

Since δr (v) � 0:

σ(v)+ δr (v)− σ(v′) > δr(v
′)⇒ σ(v)+ δr (v) > σ(v′)+ δr (v

′)

Then

killσ (u) � σ(v)+ δr (v) > σ(v′)+ δr (v
′)

In order to prove (2) we create an extended DAG Gu
v = G\E′ , for each v ∈

pkill(u), to enforce v to be the last read of the value u. ∀v′ ∈ pkill(u)−{v},
we add a serial edge e from v′ to v with latency δ(e) = δr (v

′) − δr (v).
Then, any schedule σ ∈ �(Gu

v) ensures σ(v)+ δr (v) � σ(v′)+ δr (v
′) which

means killσ (u) = σ(v). Let’s prove that Gu
v is still a DAG. Suppose the

converse is true, i.e., ∃u ∈ VR, ∃v ∈ pkill(u) such that Gu
v is cyclic. Let C =

(v, . . . , v′, v) be this cycle where the introduced edge is (v′, v). We know
that all the potential killing operations pkill(u) of a value u are parallel in
G. However, before introducing this edge, a path P = v � v′ means that
v < v′ in G which is a contradiction.

Figure 4 shows the two extended DAGs associated with e. The orig-
inal DAG is presented in Fig. 4. Here, we assume that all read delay are
null. e has two potential killing operations {h, i}, so we have two extended
DAG: Ge

i ensures that i kills e, and Ge
h that ensures that h kills e.
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Fig. 4. Each potential killing operation can kill the value.

A potential killing DAG of G, noted PK(G) = (V , EPK), is built to
model the potential killing relations between the operations, (see Fig. 2.c),
where:

EPK = {(u, v)|u ∈ VR ∧ v ∈ pkillG(u)}

There may be more than one operation candidate for killing a value. Next,
we prove that looking for a unique suitable killer for each value is suffi-
cient for maximizing the register need: the next theorem proves that for
any schedule that assigns more than one killer for a value, we can build
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another schedule with at least the same register need such that this value
is killed by only one consumer. Consequently, our formal study will look
for a unique killer for each value instead of looking for a group of killers.

Theorem 1. Let G = (V , E, δ) be a DAG and a schedule σ ∈
�(G). If there is at least one excessive value that has more than one killer
according to σ , then there exists another schedule σ ′ ∈ �(G) such that:

RNσ ′(G) � RNσ (G)

and each excessive value is killed by a unique killer according to σ ′.

Proof. We suppose that there exists a schedule σ ∈ �(G) with at least
one excessive value that has more than one killer:

∃σ ∈ �(G), ∃u ∈ EV σ (G) : |killersσ (u)| > 1

where EV σ (G) is a set of excessive values assuming σ as a schedule for
G. We show in this proof how to build a new schedule σ ′ ∈ �(G) such
that u is killed by a unique killer and σ ′ needs at least as many registers
as σ does.

Suppose that u has j killers according to σ , and we note them:

killersσ (u) = {k1, . . . , kj }

with killσ (u) = σ(k1) + δr (k1) = · · · = σ(kj ) + δr (kj ). We choose one
killer within this set to be the only one killer of u according to σ ′, say k1.
We build σ ′ by “shifting” down k1 and all its descendants with a strictly
positive factor, say 1:

∀v ∈ V σ ′(v) =
{

σ(v)+ 1 if v ∈↓ k1
σ(v) otherwise

Now, we prove that σ ′ is valid and needs at least as many registers as σ

does, and that k1 is the only killer of u according to σ ′.
σ ′ is valid: we can easily check that any dependence ∀e = (v1, v2) ∈ E

is satisfied by σ ′:

1. if both v1, v2 �∈↓ k1, then

σ ′(v2)− σ ′(v1) = σ(v2)− σ(v1) � δ(e)
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2. in the case where v1 �∈↓ k1 ∧ v2 ∈↓ k1

σ ′(v2)− σ ′(v1) = σ(v2)+ 1− σ(v1) > δ(e)

3. the case of v1 ∈↓ k1 ∧ v2 �∈↓ k1 is impossible because the edge
e = (v1, v2) exists;

4. in the case where both v1, v2 ∈↓ k1, then

σ ′(v2)− σ ′(v1) = σ(v2)+ 1− σ(v1)− 1 � δ(e)

RNσ ′ � RNσ : let t be an excessive clock cycle according to σ , i.e., a clock
cycle t where the excessive values are simultaneously alive during it:

∀v ∈ EV σ (G) : t ∈ LTσ (v)

⇒ ∀v ∈ EV σ (G) : σ(v)+ δw(v) < t � killσ (v)

Here, we want to prove that these excessive values according to σ are still
alive during t according to σ ′. Any value v ∈ EV σ (G) has the same defi-
nition date in σ ′ as in σ , this is because only ↓ k1 nodes have been shifted
down and:

∀v ∈ EV σ (G)− {u} : v �∈↓ k1

otherwise LTσ (u) ≺ LTσ (v), which is in contradiction with u, v ∈ EV σ (G).
Then

∀v ∈ EV σ (G) : σ ′(v) = σ(v)

However, the killing date of any excessive value v ∈ EV σ (G) could be
increased by the translation factor 1:

∀v ∈ EV σ (G) : killσ (v) � killσ ′(v)

which gives

∀v ∈ EV σ (G) : σ ′(v) < t � killσ ′(v)

⇒ RNσ ′ � |EV σ (G)| = RNσ (G)
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k1 is the unique killer of u: since k1 ∈ pkillG(u), there is no other
potential killer k ∈ pkill(u) ∧ k �= k1 such as k ∈↓ k1. Otherwise, k1
cannot kill u (pkill operations property). In this case σ ′(k) = σ(k) while
σ ′(k1) = σ(k)+ 1. We conclude

∀k ∈ pkillG(u)− {k1} σ ′(k1)+ δr (k1) > σ ′(k)+ δr (k)⇒ killersσ ′(u) = {k1}

Finally, generalizing to an arbitrary number of excessive values like u

(those that have more than one killer and that are simultaneously alive
with u) is obviously done by iteratively building new σ ′ schedule for each
of these values. However, we must take a precaution. Indeed, if we treat an
excessive value u1 by shifting down one of its killers, and then we proceed
to another excessive value u2, we cannot guarantee that shifting down u2’s
killer would not shift down other u1 consumers (and hence, u1 becomes
killed by multiple consumers). To break this recursivity, we proceed as fol-
lows. When we treat an excessive value u by shifting down its killer k(v),
we add an edge to the DAG from each potential killer of u (except k(u))
to k(u). Hence, when we iterate over the remaining excessive values, any
shifting down action would always guarantee the existence of a unique
killer for the previously treated values. The added edges does not intro-
duce a cycle since they define a strict order between the potential killing
nodes.

Corollary 1. Given a DDG G = (V , E, δ), there is always a satu-
rating schedule for G with the property that each saturating value has a
unique killer.

Proof. Direct consequence of Theorem 1.

Let us begin by assuming a killing function, k, which guarantees that
an operation v ∈ pkillG(u) is the killer of u ∈ VR. If we assume that k(u)

is the unique killer of u ∈ VR, we must always verify the following asser-
tion:

∀v ∈ pkillG(u)− {k(u)} : σ(v)+ δr (v) < σ
(
k(u)

)+ δr

(
k(u)

)
(3)

There is a family of schedules that ensures this assertion. In order to
define them, we extend G by new serial edges that force all the poten-
tial killing operations of each value u to be scheduled before k(u). This
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leads us to define an extended DAG associated with k and denoted G→k =
G\Ek , where:

Ek = {e = (v, k(u))|u ∈ VR v ∈ pkillG(u)− {k(u)} with

δ(e) = δr (v)− δr

(
k(u)

)+ 1}

Then, any schedule σ ∈ �(G→k) ensures Property 3. The necessary
existence of such a schedule defines the condition for a valid killing func-
tion:

k is a valid killing function⇔ G→k is acyclic.

Figure 5 gives an example of a valid killing function k. This function is
illustrated by bold edges in part (a), where each target of a bold edge kills
its source. Part (b) is the DAG associated with k.

According to our definition, invalid killing functions may exist.
Figure 6 is an example, where Part (a) illustrates an arbitrary DAG with
a killing function (the source of each bold edge is killed by its sink).
Part (b) shows that the extended graph associated with the killing func-
tion is cyclic. According to our definition, the killing function defined in
Part (a) isn’t valid.

Provided a valid killing function k, we can deduce the values which
can never be simultaneously alive for any σ ∈ �(G→k). Let ↓R (u) =
↓ u ∩ VR be the set of the descendant operations of u ∈ V that are val-
ues. We call them descendant values.

Lemma 2. Given a DAG G = (V , E, δ) and a valid killing function
k, then:

Fig. 5. Valid killing function and bipartite decomposition.
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Fig. 6. An example of an invalid killing function.

1. the descendant values of k(u) cannot be simultaneously alive
with u:

∀u ∈ VR, ∀σ ∈ �(G→k), ∀v ∈↓R k(u) : LTσ (u) ≺ LTσ (v) (4)

2. there exists a valid schedule which makes any values non-descendant
of k(u) simultaneously alive with u, i.e. ∀u ∈ VR, ∃σ ∈ �(G→k):

∀v ∈

 ⋃

v′∈pkillG(u)

↓R v′

− ↓R k(u) : LTσ (u) ∩ LTσ (v) �= φ (5)

Proof. A complete proof is given in Ref. 30, Appendix A, Sec-
tion A.1.4, page 253.

We define a DAG which models the values that can never be simul-
taneously alive when assuming k as a killing function. The disjoint value
DAG of G associated with k, and denoted DVk(G) = (VR, EDV ) is defined
by:

EDV =
{
(u, v)|u, v ∈ VR ∧ v ∈↓R k(u)

}

Any edge (u, v) in DVk(G) means that u’s lifetime interval is always before
v’s lifetime interval according to any schedule of G→k, see Fig. 5(c) (this
DAG is simplified by transitive reduction). This definition permits us to
state Theorem 2 as follows.

Theorem 2. Given a DAG G = (V , E, δ) and a valid killing
function k, let AMk be a maximal antichain in the disjoint value DAG
DVk(G). Then:
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• the register need of any schedule of G→k is always less than or
equal to the size of a maximal antichain in DVk(G). Formally,

∀σ ∈ �(G→k), RNσ (G) � |AMk|

• there is always a schedule which makes all the values in this maxi-
mal antichain simultaneously alive. Formally,

∃σ ∈ �(G→k), RNσ (G) = |AMk|

Proof. First property. Let us begin by proving that:

∀σ ∈ �(G→k) : RNσ (G) � |AMk|

where DVk(G), the disjoint value DAG, models the order between value
lifetime in any schedule of G→k. The definition of the disjoint value DAG
states that ∀σ ∈ �(G→k),∀u, v ∈ VR:

u < v in DVk(G)⇔ u < k(u) � v in G→k

If v = k(u), then σ(u)+ δw(u) < σ(v)+ δr (v), because of true data depen-
dence. By hypothesis on DAG model we have δr (v) � δw(v), then σ(u) +
δw(u) < σ(v) + δw(v). In the case where v �= k(u), any path from k(u)

to v is a data dependence path with strictly positive integer latencies. We
deduce that:

∀σ ∈ �(G→k) σ
(
k(u)

)+ δr

(
k(u)

)
� σ(v)+ δw(v)

That is,

killσ (u) � σ(v)+ δw(v)

We deduce that the following assertion is correct:

∀σ ∈ �(G→k) u ∼ v in DVk(G) ⇒ LTσ (u) ∩ LTσ (v) = φ

We rewrite it: ∀σ ∈ �(G→k)

LTσ (u) ∩ LTσ (v) �= φ ⇒ u‖v in DVk(G)

⇒ {u, v} ∈ vsaσ (c) , c ∈ LTσ (u) ∩ LTσ (v)
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Then, any values simultaneously alive for σ ∈ �(G→k) belong to an anti-
chain in DVk(G):

∀0 � c < σ̄ , ∃A an antichain of DVk(G) vsaσ (c) ⊆ A

Since RNσ (G→k) = max0�c�σ̄ |vsaσ (c)| and |vsaσ (c)| � |AMk|, we con-
clude that RNσ (G) = max0�c�σ̄ |vsaσ (c)| � |AMk|.
Second Property. Now, given a set of excessive values AMk, we must prove
that:

∃σ ∈ �(G→k) : RNσ (G) = |AMk|.

We have to build a schedule σ such that RNσ (G) = |AMk|. For this pur-
pose, we consider G→k in order to ensure the killing relation, and we add
some serial edges to enforce the values in AMk in order to be simulta-
neously alive. This leads us to a new extended DAG G′ = G→k\E′ and

∀σ ∈ �(G′) ∀u, v ∈ AMk : LTσ (u) ∩ LTσ (v) �= φ.

A sufficient condition that two values u, v in AMk must satisfy to be
simultaneously alive for any schedule of G→k is

[
v < u < k(v) ∧ lp(v, u) � δw(v)− δw(u) ∧
∧ lp

(
u, k(v)

)
> δw(u)− δr

(
k(v)

)]
(6)

∨
[
u < v < k(u) ∧ lp(u, v) � δw(u)− δw(v) ∧
∧ lp

(
v, k(u)

)
> δw(v)− δr

(
k(u)

)]
(7)

∨
[
k(u) = k(v)

]
(8)

with lp(u, v) for u, v ∈ V denoting the longest path from u to v.
These conditions ensure that ∀σ ∈ �(G→k) ∀u, v ∈ VR:

u, v satisfy (6) ⇒ σ(u)+ δw(u) � σ(v)+ δw(v)

∧ σ(k(v))+ δr (k(v)) > σ(u)+ δw(u).

u, v satisfy (7) ⇒ σ(v)+ δw(v) � σ(u)+ δw(u)

∧ σ(k(u))+ δr (k(u)) > σ(v)+ δw(v).

u, v satisfy (8) ⇒ killσ (u) = killσ (v)
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Then, by using usual interval order algebra notations:

u, v satisfy Cond. (6) ⇒ ¬(LTσ (u) ≺ LTσ (v) ∨ LTσ (u) � LTσ (v))

u, v satisfy Cond. (7) ⇒ ¬(LTσ (u) � LTσ (v) ∨ LTσ (u) ≺ LTσ (v))

u, v satisfy Cond. (8) ⇒ LTσ (u) finishes LTσ (v)

If two values in u, v ∈ AMk do not satisfy any of these conditions,
then we use Algorithm 1 to enforce them. This algorithm uses the boolean
function vsaG′(u, v) to check if two values u, v satisfy one of the above
conditions. We add iteratively serial edges until all values in AMk satisfy
one of these conditions. The added serial edges do not introduce a cycle
and any schedule σ of G′ has RNσ (G′) = |AMk|. All this is proved by
Lemma 3, as follows.

Lemma 3. Let G = (V , E, δ) be a DAG. Let k be a killing function
and AMk be a maximal axntichain in the disjoint value DAG DVk(G).
The extended graph G′ = G→k\E′ produced by Algorithm 1 has the two
following properties:

1. it a DAG;
2. for any schedule σ of G′, the lifetime intervals of any two values

belonging to the maximal antichain AMk interfere. Formally,

∀u, v ∈ AMk, ∀σ ∈ �(G′) : LTσ (u) ∩ LTσ (v) �= φ.

Proof. We proceed by induction. We prove that after exiting Algo-
rithm 1, G′ is still a DAG. We also prove that the algorithm makes all
values in AMk satisfying one of the conditions (6), (7) or (8). For this
last condition, if two values do not satisfy it in the DAG G→k, they can-
not satisfy it in G′: this is because the killing operations has been fixed in
G→k. So, if u, v do not satisfy Condition (8), Algorithm 1 can only force
them to satisfy Condition (6) or Condition (7).

We prove also the following property

∀u, v ∈ AMk ¬
(
k(v) < u ∨ k(u) < v

)
in G′

which is the same as proving that Algorithm 1 guarantees that all values
in AMk are forced to be simultaneously alive in G′:

�u, v ∈ AMk|u ∼ v in DVk(G
′)
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Algorithm 1 Extended G→k to enforce values to be simultaneously alive

Require: a valid killing function k

construct the extended graph G→k associated with k

G′ ← G→k {the final extended graph is initialized}
search for a maximal antichain AMk in the disjoint value DAG DVk(G)

for all u ∈ AMk do
for all v ∈ AMk|u �= v do

if ¬vsaG′(u, v) then
if u‖v in G′ then

if ¬(k(u) < v) then
add the serial edges e = (u, v), e′ = (v, k(u)) to G′ with
δ(e) = δw(u)− δw(v) and δ(e′) = δw(v)− δr

(
k(u)

)+ 1
else {¬(k(v) < u) certainly}

add the serial edges e = (v, u), e′ = (u, k(v)) to G′ with
δ(e) = δw(v)− δw(u) and δ(e′) = δw(u)− δr

(
k(v)

)+ 1
end if

else
if v < u then

add the serial edges e = (v, u) and e′ = (u, k(v)) to G′ with
δ(e) = δw(v)− δw(u) and δ(e′) = δw(u)− δr

(
k(v)

)+ 1
else {u < v}

add the serial edges e = (u, v) and e′ = (v, k(u)) to G′ with
δ(e) = δw(u)− δw(v) and δ(e′) = δw(v)− δr

(
k(u)

)+ 1;
end if

end if
end if

end for
end for

Initially, this is correct because u, v ∈ AMk ⇒ u �∈↓R k(v) ∧ v �∈↓R k(u).
In this proof, we note G′i the graph built after exiting iteration i. Suppose
that after exiting iteration i − 1, G′

i−1 is still a DAG and

∀u, v ∈ AMk ¬
(
k(v) < u ∨ k(u) < v

)
in G′i−1

Let ui and vi be the two chosen values at iteration i which do not satisfy
any of the conditions. Let us prove now that G′i is still a DAG and the
two chosen values ui, vi ∈ AMk satisfy one of the conditions after exiting
iteration i. Furthermore, we prove that after exiting this iteration

�w ∈ AMk|k(ui) < w ∨ k(vi) < w in G′i .
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Our algorithm introduces serial edges in four cases:

1. ui‖vi in G′
i−1, then

• if ¬(k(ui) < vi), the two introduced edges e = (ui, vi), e
′ =

(vi, k(ui)) cannot introduce a cycle, because ui < k(ui) in
G′

i−1, see Fig. 7(a). Now they are satisfying Cond. (7). Also,
after introducing these edges, the following property is satis-
fied:

�w ∈ AMk|k(ui) < w ∨ k(vi) < w in G′i

Suppose the converse is true, i.e.,

∃w ∈ AMk|k(ui) < w ∨ k(vi) < w in G′i

If k(ui) < w in G′i , ⇒ k(ui) < w in G′
i−1 because we have

not introduced a serial edge from k(ui), which is impossible
because of induction hypothesis.
If k(vi) < w in G′i , ⇒ k(vi) < w in G′

i−1 because we have
not introduced a serial edge from k(vi), which is also impos-
sible because of induction hypothesis;

• else ¬(k(vi) < ui) certainly, because otherwise

vi < k(vi) < ui ∧ ui < k(ui) < vi ⇒ ui < vi ∧ vi

< ui in G′i−1 (impossible)

Then the introduced edges e = (vi, ui), e
′ = (ui, k(vi)) cannot

introduce any cycle because vi < k(vi) in G′
i−1, see Fig. 7(b).

Now they are satisfying Cond. (6). Also, after introducing
these edges, the following property is satisfied:

�w ∈ AMk|k(ui) < w ∨ k(vi) < w in G′i

The proof is similar to the above case;

2. if vi < ui in G′
i−1, then by induction hypothesis ¬(k(vi) < ui) in

G′
i−1. The two introduced edges e = (vi, ui) and e′ = (ui, k(vi))

cannot cause any cycle. Now they are satisfying Cond. (6). Also,
after introducing these edges,

�w ∈ AMk|k(ui) < w ∨ k(vi) < w in G′i

The proof is similar to the case above;
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Fig. 7. Making values simultaneously alive.

3. ui < vi in G′
i−1, this case is similar to above. Now they are satisfy-

ing Cond. (7).

After n = |AMk|2 iterations, we conclude that:

∀u, v ∈ AMk u, v satisfy one of the conditions (6), (7) or (8)

and then ∀u, v ∈ AMk ∀σ ∈ �(G′) LTσ (u) ∩ LTσ (v) �= φ.

Theorem 2 allows us to rewrite the RS formula as

RS(G) = max
k a valid killing function

|AMk|

where AMk is a maximal antichain in DVk(G). We refer to the problem of
finding such a killing function as the maximizing maximal antichain prob-
lem (MMA). We call each solution for the MMA problem a saturating
killing function, and AMk its saturating values. A saturating killing func-
tion means a killing function that produces a saturated register need. The
saturating values are the values that are simultaneously alive, and their
number reaches the maximal possible register need. Unfortunately,

Theorem 3. Given a DAG G = (V , E, δ), computing a saturating
killing function is NP-complete.

Proof. A complete proof is given in Ref. 30, Appendix A, Sec-
tion A.1.5, page 253.
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Corollary 2. Given a DAG G = (V , E, δ), computing the register
saturation is NP-complete.

Proof. A complete proof is given in Ref. 30, Appendix A, Sec-
tion A.1.6, page 257.

4. A HEURISTICS FOR COMPUTING THE RS

This section presents our heuristics to approximate an optimal k by
another valid killing function k∗. An optimal k is simply a killing func-
tion that defines the optimal register saturation. We have to choose a kill-
ing operation for each value such that we maximize the parallel values in
DVk(G). Our heuristics compute a valid killing function by focusing on
the potential killing DAG PK(G), starting from source nodes to sinks.
Our aim is to select a group of killing operations for a group of parents
that keeps as many descendant values alive as possible. The main steps of
our heuristics are:

1. decompose the potential killing DAG PK(G) into connected bipar-
tite components;

2. for each bipartite component, search for the best saturating killing
set (defined below);

3. choose a killing operation within the saturating killing set (defined
below).

We decompose the potential killing DAG into connected bipartite com-
ponents (CBC) in order to choose a common saturating killing set for
a group of parents. Our purpose is to have a maximum number of chil-
dren and their descendant’s values simultaneously alive with their parent’s
values. A CBC cb = (Scb, Tcb, Ecb) is a partition of a subset of operations
into two disjoint sets where:

• Ecb ⊆ EPK is a subset of the potential killing relations;
• Scb ⊆ VR is the set of the parent values, such that each parent is

killed by at least one operation in Tcb;
• Tcb ⊂ V is the set of the children, such that any operation in Tcb

can potentially kill at least one value in Scb.

A bipartite decomposition of the potential killing graph PK(G) is the set
(see Fig. 5(d))

B(G) = {cb = (Scb, Tcb, Ecb)|∀e ∈ EPK ∃cb ∈ B(G) : e ∈ Ecb}.
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Note that the parents, as well as the children, are parallel inside the
potential killing DAGPK(G). Formally,

∀cb ∈ B(G) ∀s, s′ ∈ Scb ∀t, t ′ ∈ Tcb : s‖s′ ∧ t‖t ′ in PK(G)

A saturating killing set SKS(cb) of a bipartite component cb =
(Scb, Tcb, Ecb) is a subset of children T ′cb ⊆ Tcb. Such subset provides a
unique killer for each value present in the set Scb of parents. Such unique
killer is chosen so as to minimize the number of descendant values of all
the killers in Tcb. The dual consequence is to get a maximal number of
values simultaneously alive with the parent values belonging to Scb.

Definition 1 (Saturating Killing Set). Given a DAG G = (V , E, δ), a
saturating killing set SKS(cb) of a connected bipartite component cb ∈
B(G) is a subset T ′cb ⊆ Tcb, such that:

1. killing constraints: each parent must be killed

⋃
t∈T ′cb

�−cb(t) = Scb

2. objective function: minimize the number of descendant values of
T ′cb

min

∣∣∣∣∣∣
⋃

t∈T ′cb
↓R t |

Unfortunately, computing a SKS is also NP-complete (the proof is the
same as Theorem 3’s proof).

A Heuristics for Finding a SKS, Intuitively and according to Lemma 2,
we should choose a subset of children in a bipartite component that
would kill the greatest number of parents while minimizing the number of
descendant values. We define a cost function ρ that enables us to choose
the best candidate child. Given a bipartite component cb = (Scb, Tcb, Ecb)

and a set Y of (cumulated) descendant values and a set X of not (yet)
killed parents, the cost of a child t ∈ Tcb is:

ρX,Y (t) =



|�−cb(t)∩X|
|↓Rt∪Y | if ↓R t ∪ Y �= φ

|�−cb(t) ∩X| otherwise
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The first case enables us to select the child which covers the greatest
number of non-killed parents, with a corresponding minimum number of
descendant values. If there are no descendant values, then we choose the
child that covers the most non-killed parents.

Algorithm 2 gives a greedy heuristics that searches for an approxima-
tion SKS∗ and computes a killing function k∗ in polynomial time. Our
heuristics has the following property.

Corollary 3. Let G = (V , E, δ) be a DAG. If PK(G) is a tree, then
Greedy-k computes an optimal register saturation with a polynomial time
complexity.

Proof. Trivially, each value has at most one possible killer, i.e., there
is only one choice for the killing function. Then, the saturating values are
simply the sources of the potential killing DAG PK(G). Expression trees

Algorithm 2 Greedy-k: a heuristics for the MMA problem

Require: a DAG G = (V , E, δ)

for all values u ∈ VR do
k∗(u) = ⊥ {all values are initially non killed}

end for
build B(G) the bipartite decomposition of PK(G).
for all bipartite component cb = (Scb, Tcb, Ecb) ∈ B(G) do

X := Scb {all parents are initially uncovered}
Y := φ {initially, no cumulated descendant values}
SKS∗(cb) := φ

while X �= φ do {build the SKS for cb}
select the child t ∈ Tcb with the maximal cost ρX,Y (t)

SKS∗(cb) := SKS∗(cb) ∪ {t}
X := X − �−cb(t) {remove covered parents}
Y := Y∪ ↓R t {update the cumulated descendent values}

end while
for all t ∈ SKS∗(cb) do {in decreasing cost order}

for all parent s ∈ �−cb(t) do
if k∗(s) = ⊥ then {kill non killed parents of t}

k∗(s) := t

end if
end for

end for
end for
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Fig. 8. Example of computing the register saturation.

for instances belong to this class of DAGs, because their potential killing
DAGs are trees.

Since the approximated killing function k∗ is valid, Theorem 2 ensures
that we can always find a valid schedule, which requires exactly |AMk∗ |
registers. Consequently, our heuristics do not compute an upper bound of
the optimal register saturation, and the optimal RS can be greater than
the one computed by Greedy-k. A conservative heuristic which computes
a solution exceeding the optimal RS cannot ensure the existence of a valid
schedule, which reaches the computed limit, and hence it would imply an
unnecessary RS reduction process and a waste of registers. The validity of
the killing function is a key condition because it ensures the existence of a
register allocation requiring exactly |AMk∗ | registers. As a summary, here
are our steps to compute the RS:

1. apply Greedy-k on G. The result is a valid killing function k∗;
2. construct the disjoint value DAG DVk∗(G);
3. find a maximal antichain AMk∗ of DVk∗(G) using Dilworth decom-

position. (11) The approximated set of saturating values is the nodes
belonging to AMk∗ . The approximated RS is equal to RS∗(G) =
|AMk∗ | � RS(G).

Figure 8(a) shows a saturating killing function k∗ computed by
Greedy-k: bold edges mean that each source is killed by its sink. Each
killer is labeled by its cost ρ. Part (b) gives the disjoint value DAG associ-
ated with k∗. The Saturating values are {a, b, c, d, f, j, k}, so the RS is 7.

5. EXACT REGISTER SATURATION COMPUTATION

First, if |VR,t |, the total number of values of type t , is less than or
equal to Rt , the number of available registers of type t , then we are sure
that any schedule cannot require more than |VR,t | � Rt registers. Other-
wise, we must compute the RS.
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Let RNσ
t (G) denote the register need of register type t given a sched-

ule σ ∈ �(G), which is equal to the maximal number of values of type t

simultaneously alive. The RS of a register type t for a DAG G is the max-
imal register need of type t among all valid schedules of G:

RSt (G) = max
σ∈�(G)

RNσ
t (G).

Below, we give the set of variables and constraints of an exact integer lin-
ear programming (intLP) formulation for computing the optimal RSt (G).
Our intLP formulation expresses the logical operators (⇒, ∨, ⇔) and the
max operator (max(x, y)) by introducing extra binary variables. However,
expressing these additional operators requires that we bound the domain
of the integer variables, as explained below.

5.1. Expressing Logical Operators by Integer Programming

In Ref. 17, the authors show how to model the disjunctive operator
∨. Consider the problem:

maximize (or minimize) f (x)

subject to: g(x) � 0 ∨ h(x) � 0

By introducing a binary variable α ∈ {0, 1}, this disjunction is equivalent
to:

g(x) � αg

h(x) � (1− α)h

where g and h are two known non-null finite lower bounds for g, and h

respectively. We deduce the linear constraints of any other logical opera-
tor:

1. g(x) � 0⇒ h(x) � 0 can be written g(x) < 0 ∨ h(x) � 0
2. g(x) � 0⇔ h(x) � 0 can be written

(
g(x) � 0∧h(x) � 0

)∨ (
h(x) <

0 ∧ g(x) < 0
)

Also, z = max(x, y) can be written
{

x � y ⇒ z = x,

y � x ⇒ z = y.

Thanks to the use of binary variables for expressing logical opera-
tors, our intLP formulation of register constraints contains a polynomial
number of variables and constraints, i.e, it depends only on the number of
nodes and edges of the input DAG. Unfortunately, this is not the case of
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the existing techniques in the literature where the number of variables and
constraints is pseudo-polynomial, since this number depends on the total
schedule time. The following section presents our intLP formulation of RS
computation.

5.2. Scheduling Variables

For all operations u ∈ V , we define the integer variable σu � 0 that
identifies the schedule time for each operation. Note that these schedule
variables do not represent the final schedule under resource constraints (that
will be computed after our RS pass), they only represent intermediate vari-
ables for our intLP formulation. The first linear constraints are those that
describe precedence relations (the constraints that ensure the existence of at
least one valid schedule), so we write into the intLP system:

∀e = (u, v) ∈ E : σv − σu � δ(e)

In order to bound the domain set of our variables, we define T a worst
possible schedule time. We choose T sufficiently large, where for instance
T =∑

e∈E δ(e) is a suitable worst total schedule time (the extreme case of
a sequential schedule, i.e, no ILP). Then, we write the following constraint:

σ⊥ � T

As a consequence, we deduce for any u ∈ V :

• σu � σu = LongestP athT o(u) is the shortest schedule time;
• σu � σ̄u = T − LongestP athFrom(u) is the longest schedule time

according to the worst total schedule time T .

5.3. Register Need Constraints

Interference Graph The lifetime interval of a value ut of type t is
(given a schedule σ )

LTσ (ut ) =]σu + δw,t (u), max
v∈Cons(ut )

(
σv + δr,t (v)

)
]

That is, we assume that a value written at instant c in a register is avail-
able one step later. Thus, if an operation u reads from a register r at
instant c while another operation v is writing to the r at the same time,
u does not get v’s result, but rather gets the value previously stored in r.
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Note that these semantics are explicitly chosen and encoded in the defini-
tion of LTσ (ut ), and are not a limitation of the model.

We define for each value ut the variable kut � 0 which computes its
killing date (the last time that ut is read). Since our variable domains are
bounded (assuming a finite T ), we know that kut is bounded by the two
following finite schedule times:

∀t ∈ T , ∀ut ∈ VR,t : kut < kut � kut

where

• kut = σu + δw,t (u) is the first possible definition date of ut ;
• kut = maxv∈Cons(ut )

(
σv + δr,t (v)

)
is the latest possible killing date of

ut .

We use the linear constraints of the max operator to compute kut as
explained in Section 5.1. We write into the intLP system:

∀ut ∈ VR,t : kut = max
v∈Cons(ut )

(
σv + δr,t (v)

)

Now, we can consider Ht the undirected interference graph of G for
the register type t . For any pair of distinct values ut , vt ∈ VR,t , we define
a binary variable st

u,v ∈ {0, 1} such that it is set to 1 if the two lifetimes
intervals of type t interfere: ∀t ∈ T , ∀ couple ut , vt ∈ VR,t :

st
u,v =

{
1 if LTσ (ut ) ∩ LTσ (vt ) �= φ

0 otherwise

The number of variables st
u,v is the number of combinations of two

values among |VR,t |, i.e.,
(|VR,t | × (|VR,t | − 1)

)
/2.

LTσ (ut ) ∩ LTσ (vt ) = φ means that one of the two lifetime intervals
is “before” the other, i.e.,

(
LTσ (ut ) ≺ LTσ (vt )

) ∨ (
LTσ (vt ) ≺ LTσ (ut )

)
,

where ≺ denotes the “before” relation in interval algebra. Then, we have
to express the following constraints:

st
u,v = 1⇔ ¬(

LTσ (ut ) ≺ LTσ (vt ) ∨ LTσ (vt ) ≺ LTσ (ut )
)

where LTσ (ut ) ≺ LTσ (vt ) iff kut � σv + δw,t (v). The negation of this con-
straint is kut > σv+δw,t (v), i.e., kut−σv−δw,t (v)−1 � 0. Since st

u,v ∈ {0, 1},
these variables are constrained as follows:

st
u,v � 1⇔

{
kut − σv − δw,t (v)− 1 � 0
kvt − σu − δw,t (u)− 1 � 0
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Given three logical expressions (P, Q, S), (P ⇔ (Q ∧ S)) is equivalent to
the expression (P ∧Q∧ S)∨ (¬P ∧¬Q)∨ (¬P ∧¬S). We write these two
disjunctions with linear constraints by introducing binary variables(30) and
by computing the finite lower bounds of the linear functions.

Maximal Clique in the Interference Graph. The maximum number of
values of type t simultaneously alive corresponds to a maximal clique in
Ht = (VR,t , Et ), where (ut , vt ) ∈ Et iff their lifetime intervals interfere
(st

u,v = 1). For simplicity, rather than considering the interference graph
itself, we prefer to consider its complementary graph H ′t = (VR,t , E ′t ) where
(ut , vt ) ∈ E ′t iff their lifetime intervals do not interfere (st

u,v = 0). Then, the
maximum number of values of type t simultaneously alive corresponds to
a maximal independent set in H ′t .

To write the constraints that describe independent sets (IS), we define
a binary variable xut ∈ {0, 1} for each value xut ∈ VR,t such that xut = 1 if
ut belongs to some IS of H ′t . We express in the model the following linear
constraints:

∀xut , xvt ∈ VR,t : st
u,v = 0⇒ xut + xvt � 1

This equations means that if two nodes u and v are connected in H ′,
then one and only one of them may belong to a given IS.

5.4. Linear Objective Function and General Remarks

The register requirement of type t is a maximal IS in H ′t , i.e., the
maximal

∑
ut∈VR,t

xut . Thus, the register saturation of type t is computed
by:

Maximize
∑

ut∈VR,t

xut

The total number of integer variables in the intLP formulation is
bounded by O(|V |2), and the total number of constraints is at most
O(|E|+|V |2). Note that our intLP formulation may be optimized by con-
sidering that:

• an edge e = (u, v) in the initial DAG is redundant for the sched-
uling constraints and can be safely ignored if lp(u, v) > δ(e) where
lp(u, v) denotes the longest path from u to v (with the condition
that this edge doesn’t belong to this longest path);

• two values (ut , vt ) ∈ VR,t can never be simultaneously alive iff
for all the possible schedules, one value is always defined after the
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killing date of the other. This is the case if any of the two following
conditions is satisfied:

∀v′ ∈ Cons(vt ) : lp(v′, u) � δr (v
′)− δw(u)

∨ ∀u′ ∈ Cons(ut ) : lp(u′, v) � δr (u
′)− δw(v)

The next section explores the problem of reducing RS if it exceeds the
number of available registers.

6. THE COMPLEXITY OF REGISTER SATURATION REDUCTION

In the case where the register saturation RSt (G) exceeds the number
of available registers Rt of the type t , then we must add extra serial edges
into the DAG G to reduce RSt (G) below this limit. The added edges must
save ILP as much as possible by taking care of the critical path. We note
by E the set of extra edges that we add to G to build a new extended
DAG, namely G = G\E , such that RSt (G) � Rt . We want to first solve
the formal problem stated below.

Definition 2 (Reduce RS Problem). Let G = (V , E, δ) be a DAG. Let
Rt and P be two positive integers. Does there exist an extended DDG
G = G\E of G such that:

RSt (G) � Rt

and

CriticalPath(G) � P

Note that an extended DDG may contain a cycle (as we will see
later), while an extended DAG is restricted to stay a DAG.

Theorem 4. The ReduceRS problem is NP-hard.

Proof. We prove that ReduceRS problem reduces from the problem
of scheduling under register constraints (SRC). Let us start by defining the
latter problem. For the sake of clarity, we assume that the considered reg-
ister type t is implicit (we do not include t in our notations inside this
proof).

Definition 3 (SRC problem). Let G = (V , E, δ) be a DAG, R be a
positive integer, and P be a length. Does there exist a valid schedule σ ∈
�(G) such that:
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RNσ (G) � R
and

total schedule time � P

The SRC problem has been proven NP-hard in Ref. 13, Now we prove the
equivalence of ReduceRS and SRC in terms of computational complexity.
1. ReduceRS ⇒ SRC
Let G be a solution for the ReduceRS problem. Then trivially, any “as
soon as possible” schedule σ ∈ �(G) is a solution for SRC.
2. SRC ⇒ ReduceRS
Let σ be a solution for SRC, i.e., RNσ (G) � R with a total schedule time
of � P . We build an extended DDG G by adding serial edges to impose
the same precedence relations as defined by σ on the value lifetimes of any
schedule of G. Then, ∀u, v ∈ VR|LTσ (u) ≺ LTσ (v) we add the following
edges:

• If v ∈ Cons(u), add serial edges from the readers of u (except v) to
v; the set of added edges is:

{
e = (u′, v)|u′ ∈ Cons(u)− {v}}

• Otherwise, add serial edges from all u’s readers to v; the set of
added edges is:

{
e = (u′, v)|u′ ∈ Cons(u)

}

The latency of these added edges has to be assigned based on the target
architecture. There are two cases:

1. in the case of superscalar codes, there are sequential code seman-
tics. So, the latency of each added edge is set to 1;

2. in the case of VLIW or EPIC/IA64, there are reading and writing
offsets. Thus, for each added edge e = (u′, v), the latency is set to
δ(e) = δr (u

′)− δw(v).

Indeed, the added edges and the chosen latencies force the following asser-
tion:

LTσ (u) ≺ LTσ (v)⇒ ∀σ ′ ∈ �(G) : LTσ ′(u) ≺ LTσ ′(v)
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Then, for all values not simultaneously alive according to σ , there is no
schedule σ ′ of G that makes them simultaneously alive. Formally,

¬(∃u, v ∈ VR, LTσ (u) ≺ LTσ (v), ∃σ ′ ∈ �(G)|LTσ ′(u) ∩ LTσ ′(v) �= φ)

In other words, we ensure that any schedule of G will guarantee the pre-
cedence relations between the lifetime intervals of G according σ . Conse-
quently, any schedule σ ′ of G cannot require more than the register need
of σ and

RS(G) = RNσ (G) � R

A solution for the SRC problem may create a cycle in the solution of
ReduceRS. We are sure that if any cycle is introduced in G, then it must
be non-positive because there exists at least the valid schedule σ ∈ �(G).
Consequently, a solution of the ReduceRS problem may produce a cyclic
DDG. We will see later how to eliminate these solutions.

With regard to the critical path of G, the introduced serial edges
ensure that at least σ ∈ �(G). Since there exists such a schedule with a
total time � P , the critical path of G cannot be longer than P .

The next section provides an algorithmic heuristics that tries to
reduce RS below a limit. This section follows the ideas and notations used
in Section 4.

7. AN ALGORITHMIC HEURISTICS FOR REDUCING THE REGISTER

SATURATION

For clarity and without loss of generality, let us focus on only one
register type.2 Then, our notations become VR for the set of values of the
implicit type we consider, ER for the set of flow edges through a register
of that type, δr and δw for reading/writing delays, and RNσ (G) for the reg-
ister need of the type we consider. Also, we use the notation u for both
the operation u and the value of the considered type it produces.

In this section we build an extended DAG G = G\E such that the RS
is limited by a strictly positive integer (number of available registers) with
the respect of the critical path. Let R be this limit. Then:

∀σ ∈ �(G) : RNσ (G) � RS(G) � R

2If more than one register type exists, we apply our algorithm on each type.
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Fig. 9. Value serialization.

This section presents a heuristics that adds serial edges to prevent
some saturating values in AMk (according to a saturating killing function
k) from being simultaneously alive for any schedule. Also, we take care not
to increase the critical path, if possible.

Serializing two values u, v ∈ VR means that the killing of u must
always be carried out before the definition of v, or vice-versa, as illustrated
by Fig. 9. A value serialization u→ v for two values u, v ∈ VR is defined
by:

• if v ∈ pkillG(u) then add the serial edges
{
e = (v′, v)|v′ ∈

pkillG(u)− {v}}. Textually, this means that if v is a potential killer
of u, the value serialization u→ v means to add a serial edge from
any potential killer of u (except v) to v itself, see Fig. 9(c).

• otherwise add the serial edges
{
e = (u′, v)|u′ ∈ pkillG(u) ∧ ¬(v <

u′)
}

Textually, this means that if v is not a potential killer of u,
the value serialization u→ v means to add a serial edge from any
potential killer of u to v itself, see Fig. 9(d).

The latency of these added edges has to be chosen depending on the tar-
get codes. We have two cases:

1. in the case of superscalar codes, the semantics is sequential. So, the
latency of each added edge is set to 1;

2. in the case of VLIW or EPIC/IA64, there exist reading and writing
offsets.3 Thus, for each added edge e = (u′, v), the latency is set to
δ(e) = δr (u

′)− δw(v).

In order to not violate the DAG property (we must not introduce a
cycle), some serializations must be filtered out. The condition for applying
u → v is that ∀v′ ∈ pkillG(u) : ¬(v < v′). We chose the best serializa-

3On EPIC/IA64 architectures, a writer and a reader can be scheduled at the same instruc-
tion group, so the writing delay is statically considered as zero.
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tion within the set of all the possible serializations by using a cost function
ω(u→ v) = (ω1, ω2), such that:

• ω1 = µ1 − µ2 tries to predict how much RS would be reduced (in
the best case) if we carry out this value serialization, where

– µ1 is the number of saturating values serialized after u if we
carry out this value serialization u→ v;

– µ2 is the predicted number of u’s descendant values that can
become simultaneously alive with u;

• ω2 is the predicted increase in the critical path.

Our heuristics is described in Algorithm 3. It iterates value serializations
within the saturating values until we get the limit R or until no more seri-
alizations are possible (or none is expected to reduce the RS). One can
check that if there is no possible value serialization in the original DAG,
our algorithm exits at the first iteration of the outer while-loop. If it suc-
ceeds, then any schedule of G needs at most R registers. If not, it still
decreases the original RS, and thus limits the register need. Introducing
and minimizing the spill code is another NP-complete problem studied in
Refs. 3, 4, 9, 10 and 27 and is not addressed in this article.

Now, we explain how to compute the prediction parameters µ1, µ2, ω2.
We note Gi the extended DAG of step i, ki its saturating function, and
AMki

its saturating values and ↓Ri
u the descendant values of u in Gi :

1. (u→ v) ensures that ki+1(u) < v in Gi+1. According to Lemma 2,
µ1 = | ↓Ri

v ∩ AMki
| is the number of saturating values in Gi

which cannot be simultaneously alive with u in Gi+1;
2. new saturating values could be introduced into Gi+1: if v ∈

pkillGi
(u), we force ki+1(u) = v. According to Lemma 2,

µ2 =

∣∣∣∣∣∣∣


 ⋃

v′∈pkillGi
(u)

↓Ri
v′


− ↓Ri

v

∣∣∣∣∣∣∣
is the number of values which could be simultaneously alive with

u in Gi+1. µ2 = 0 otherwise;
3. if we carry out (u → v) in Gi , the introduced serial edges could

enlarge the critical path. Let lpi(v
′, v) be the longest path going

from v′ to v in Gi . The new longest path in Gi+1 going through
the serialized nodes is:

max
introduced e=(v′,v)

δ(e)>lpi(v
′,v)

lpi(�, v′)+ lpi(v,⊥)+ δ(e)
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If this path is greater than the critical path in Gi , then ω2 is the
difference between them, 0 otherwise.

At the end of the algorithm, we apply a general check step to ensure
the potential killing property proved in Lemma 1 (page 402) for the orig-
inal DAG. Lemma 1 proves that the operations which do not belong to
pkillG(u) cannot kill the value u. After adding the serial edges that build
G, we may violate this assertion because we introduce some edges with
negative latencies. If this assertion is not verified, the computed RS may
be incorrect. To overcome this problem, we must guarantee the following
assertion: ∀u ∈ VR, ∀v′ ∈ Cons(u)− pkillG(u) :

∃v ∈ pkillG(u)|v′ < v in G⇒ lpG(v′, v) > δr(v
′)− δr (v) (9)

In fact, this problem occurs if we create a path in G from v′ to v, where
v, v′ ∈ pkillG(u). If assertion (9) is not verified, we add a serial edge e =

Algorithm 3 Value Serialization Heuristics

Require: a DAG G = (V , E, δ) and a strictly positive integer R
G := G

compute AMk , saturating values of G;
while {|AMk| > R} do

construct the set Uk of all admissible serializations
between saturating values in AMk with their costs (ω1, ω2);
if�(u→ v) ∈ U |ω1(u→ v) > 0 then {no more possible RS reduction}

exit;
end if
X := {(u→ v) ∈ U |ω2(u→ v) = 0}
{the set of value serializations that do not increase the critical path}
if X �= φ then

choose a value serialization (u→ v) in X with the minimum cost
R− ω1;

else
choose a value serialization (u→ v) in X with the minimum cost ω2;
end if

carry out the serialization (u→ v) in G;
compute the new saturating values AMk of G;

end while
ensure potential killing operations property
{check longest paths between pkill operations}
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(v′, v) with δ(e) = δr (v
′) − δr (v) + 1 as illustrated in Fig. 10: after two

value serializations during step 1 and 2, assertion (9) is forced to be veri-
fied during step 3.

Example 1. Figure 11 gives an example of reducing the RS of our
initial DAG (Fig. 2 page 398) from 7 to 4 registers. Remember that the
saturating values of G are AMk = {a, b, c, d, f, j, k}. Part (a) shows all the
possible value serializations within these saturating values. Our heuristics
selects a→ f as a candidate, since it is expected to eliminate 3 saturating
values without increasing the critical path. The maximal introduced lon-
gest path through this serialization is (�, a, d, f, k,⊥) = 8, which is less
than the original critical path (26). The extended DAG G is presented in
part (b) where the value serialization a → f is introduced: we add the
serial edges (e, f ) and (d, f ) with a -4 latency. Finally, we add the serial
edges (e, f ) and (d, f ) with a unit latency to ensure the pkillG(b) prop-
erty. The whole critical path does not increase and RS is reduced to 4.
Part (c) gives a saturating killing function for G, presented with bold edges
in PK(G). DVk(G) is presented in part (d) to show that the new RS is 4
floating point registers.

After providing an approximate algorithm for RS reduction, the next
section presents an optimal exact method using integer linear program-
ming.

Fig. 10. Checking the potential killers property.

Fig. 11. Register saturation reduction.
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8. AN OPTIMAL METHOD FOR RS REDUCTION

The proof of Theorem 4 gives the intuition for our optimal solution
for the ReduceRS problem using integer programming. It is computed in
two steps:

1. we first compute a valid schedule σ such that the register need of
type t is maximized but does not exceed Rt , while the total sched-
ule time is bounded. Again, this schedule is different from the final
one to be computed under resource constraints;

2. then, we add serial edges as described by the proof of Theorem 4.
This results in an extended DDG that has a bounded register sat-
uration with a minimized critical path.

In order to compute such a minimal schedule that does not require
more than Rt registers, we use our intLP formulation previously defined in
Section 5 that maximizes the register need. We keep all the constraints and
variables of Section 5, except those that compute a maximal independent
set. Now, we use a binary variable xi

ut for each value ut which is set to 1
if the value ut is stored in the register i. Since there are Rt available regis-
ters, we have at most |V |×Rt variables. Since Rt is a constant in our prob-
lem (the number of registers in the target machine), the number of these
variables is O(|V |).

The intLP system tries to build a coloring of the interference graph
with exactly Rt colors (the maximal number of available registers). If
no solution can be found with Rt registers, then solve another intLP
after decrementing Rt (until to 1). If no final solution can be found
when reaching one available register, then the register saturation cannot be
reduced and spilling is unavoidable. The variables xi

ut are computed using
the following constraints.

• a value ut is stored in only one register of type t :

∀t ∈ T ,∀ut ∈ VR,t :
Rt∑
i=1

xi
ut = 1,

• if two values interfere, then they cannot share the same register:

∀t ∈ T , ∀ couple ut , vt ∈ VR,t :

st
u,v � 1⇒ (xi

ut + xi
vt � 1, ∀i = 1, . . . , Rt )

There are at most O(V 2 ×Rt ) = O(V 2) such constraints;
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• The objective function minimizes the total schedule time:

Minimise σ⊥.

As explained before, our DAG and processor model includes writing
and reading offsets. Consequently, in some cases, the optimal RS reduc-
tion may need to introduce non-positive cycles into the original DAG.
Even if such non-positive cycles do not prevent the graph from being
scheduled, they still violate the DAG property and impose hard schedul-
ing constraints that may not be satisfiable under resource constraints in
the subsequent instruction scheduling pass. We must eliminate such opti-
mal solutions as explained in the following section.

8.1. Eliminating Cycles with Non-positive Latencies

As presented in the proof of Theorem 4, the latency of any added
edge e = (u′, v) is equal to δ(e) = δr (u

′) − δw(v) in the case of VLIW
code. Thus, if δr (u

′) � δw(v) then δ(e) becomes non-positive, producing
possible non-positive cycles.

Remember that the purpose of the register saturation analysis is to
ensure in the first steps of compilation that any schedule of a given DAG
will not require more registers than those available. The scheduling phase
is mainly constrained by resources (functional units) of the target archi-
tecture. If the extended DDG produced by the register saturation reduc-
tion contains a non-positive cycle, we cannot guarantee the existence of
a schedule under resource constraints. This is because non-positive cycles
introduce some “not later than” scheduling constraints which may not be
satisfied in the presence of resource constraints.4

For instance, let us assume a zero weighted cycle between two oper-
ations u and v. Theoretically, any schedule such that σ(u) = σ(v) sat-
isfies this zero weighted cycle. However, if we have a resource constraint
that prohibits these two operations from being scheduled at the same clock
cycle, then there is no valid schedule that meets these constraints. When
we reduce the register saturation, we must ensure than there is always a
schedule for any resource constraints. The following example gives an illus-
tration.

Example 2. We use Fig. 12 in this example. The register saturation
of the DAG in Part (1) is equal to 3 (easy to see that we can schedule

4Such constraints are similar to real time constraints, which cannot always be satisfied.
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Fig. 12. Example of non-positive cycles.

{a, b, c} to be simultaneously alive). Here we assume that the reading and
writing delays are equal to zero. Let ask the question: does there exist an
extended DDG of the DAG in Part (1) with a RS equal to two while
the critical path is equal to eight? The answer is yes. The extended DDG
is presented in Part (3). The VLIW schedule in Part (2) shows that it
requires two registers while its total schedule time is equal to 8. As can
be seen, the extended DDG constructed from this schedule has a null cycle
between c and d. We can easily see that we cannot construct any extended
DDG without a cycle, since the minimal register need of the DAG is 2:
the lifetimes intervals of the values c and d must be necessary serialized
after the intervals of a and b if we want to require only two registers.
These two lifetime intervals serializations are responsible for introducing
the null cycle between c and d. Now, if we accept the extended DDG of
Part (3) as a solution, we cannot guarantee the existence of a schedule
under any resource constraints. For instance, if c and d cannot be sched-
uled in parallel because of resource conflicts, then no valid schedule exists.
We do admit such situation in the process of RS reduction.
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Note that the problem of non-positive cycles does not arise for super-
scalar (sequential) codes because all the introduced edges have a positive
latency equal to 1. As example, the minimal register saturation (in the case
of superscalar codes) of the DAG in Fig. 12(1) is equal to 3 (instead of
2 in the case of VLIW codes). The superscalar schedule is presented in
Part (4) with its corresponding extended DAG in Part (5).

To eliminate this problem of non-positive cycles, we impose the
restriction that the extended graph G must be a DAG. This is done by
guaranteeing the existence of a topological sort for the extended graph.
Therefore, we add some variables and constraints to the optimal intLP
system.

• We define integer variables that hold a topological ordering of the
graph. For each u ∈ V , we associate an integer variable du, such
that for any two nodes u and w, du < dw means that u is topolog-
ically sorted before w.

• We bound the topological sort by the number of nodes: ∀u ∈ V :
du � |V |

• We write the topological sort constraints for each edge in the orig-
inal DAG: ∀e = (u, v) ∈ E : du < dv.

• If we add a serial edge in the extended DDG, we must satisfy the
topological sort constraints. If two lifetime intervals LTσ (ut ) and
LTσ (vt ) do not interfere with each other, serial edges will be intro-
duced. ∀u, v ∈ VR,t :

– if v ∈ Cons(ut ), serial edges will be added from the u’s other
readers to v. We then write the constraints:

LTσ (ut ) ≺ LTσ (vt )⇒
(
∀u′ ∈ Cons(ut )− {v} : du′ < dv

)

That is,

σv + δw,t (v)− kut � 0⇒
(
∀u′ ∈ Cons(ut )− {v} : du′ < dv

)

– if v �∈ Cons(ut ), serial edges will be added from all u’s read-
ers to v. We then write the constraints:

LTσ (ut ) ≺ LTσ (vt )⇒
(
∀u′ ∈ Cons(ut ) : du′ < dv

)

That is,

σv + δw,t (v)− kut � 0⇒
(
∀u′ ∈ Cons(ut ) : du′ < dv

)
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Note that these constraints may be optimized by considering the fact that
some values can never interfere, see Section 5.4.

We add at most O(|V |3) variables and O(|V |3 + |E|) constraints to
guarantee that reducing RS always produces an acyclic extended DAG.
Again, these constraints are only added for VLIW and EPIC codes, not
for superscalar codes.

We continue in the next section with the result of our experimental
implementation.

9. EXPERIMENTS

This section presents our experimental results from some DDGs extracted
from SpecFP, whetstone, livermore and linpack. Such graphs can be explored
in Ref. 30, These DDGs are those that have been used in the prior studies.
(12,19) In our experiments, we focus on floating point registers and we assume
that we target superscalar codes. The DAGs used for the experiments are the
loop bodies. This section presents our concluding analysis.

Before starting the presentation of our experiments, we would like
to argue why we chose to evaluate our method using graphs instead of
implementing it inside a real compiler. First, since our study focuses on
register optimization in DDGs, we decide to check the efficiency of our
heuristics on some realistic graphs extracted from real codes. This way
of evaluation that does not require a complete implementation inside a
compiler allows us to isolate our contribution by demonstrating the effi-
ciency of our heuristics on DDGs. If we include our heuristics inside an
existing optimizing compiler, it would be hard to isolate our contribution,
since the optimizing compilation passes are numerous nowadays, and their
interactions (whether they are with the hardware or with other compila-
tion passes) are difficult to analyze. In other words, for any value of the
resulted speedup (positive or negative), it is very hard to certify that the
speedup gain or loss results directly and only from our heuristics. It is
possible that the interaction with other compilation passes may inhibit or
accentuate the performance gain. So, we think that it is better for us to
concentrate our attention on graphs.

Second, we think that our experiments are realistic because our theo-
retical model takes into account VLIW, EPIC and superscalar codes. Usu-
ally, not all register optimization methods, even those implemented inside
compilers, work for these three types of program semantics. Third and
last, our experiments clearly demonstrates nearly optimal results, which is
an important aspect in our case of combinatorial problems.



436 Touati

9.1. Computing RS

The first experiments check the efficiency of our Greedy-k algorithm
compared to optimal RS (computed by integer programming). The next
section summarizes our results.

9.1.1. Optimal versus Approximated Methods

Let RS denote the optimal register saturation computed by
intLP, and RS∗ the approximated RS as computed by our heuristics. The
experimental results show that our approximate algorithm is very efficient:
in almost all cases, it computes the exact register saturation. The max-
imal experimental error is 1, i.e., the optimal register saturation is one
larger than the saturation computed by our heuristics. We have unrolled
the loops to increase register pressure in order to study the efficiency of
our heuristics in larger DAGs. DAGs are the bodies of these unrolled
loops: the number of nodes in these unrolled loops ranges from 4 to 120.

Our approximated algorithm clearly computes nearly optimal solu-
tions in polynomial time. In the 134 DAGs used in this study (up to 120
nodes per DAG), we do not reach RS optimality in only seven cases. Our
worst empirical error is 1, i.e., RS∗ � RS � RS∗ + 1.

After evaluating the efficiency of our method, we use it to experimen-
tally study the RS behavior in unrolled loops.

9.1.2. RS Behavior in Unrolled Loops

In this experiment, we study the RS evolution as a function of the
unrolling degree in each loop. Figure 13 shows the plots of RS (computed
by our heuristics) versus the unrolling degree. Loops are unrolled from
1 to 20 times, producing DAGs with between 4 and 400 nodes, which
is sufficient to study the RS behavior in real applications. As we expect,
RS is evidently a non-decreasing function: since unrolling a loop produces
more values because of loop bodies duplication, RS could not decrease.
The RS versus the unrolling factor produces a function that can be one
of the two following cases:

1. constant or non strictly increasing because of recurrent data de-
pendences;

2. linear in the case of, for instance, fully parallel loops.

If the number of available registers is bounded, we must keep RS
under control. The next section summarizes our results.
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Fig. 13. RS evolution in unrolled loops.
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9.2. Reducing RS

In this section, we experimentally study our techniques for reducing
RS under critical path constraints. At first, we investigate the efficiency of
our heuristics versus the optimal results.

9.2.1. (Approximated) Value Serialization Heuristics versus Optimal
RS Reduction

Let us begin by stressing our heuristics to check their limitations. We
consider DAGs of loop bodies and try to reduce the register saturation
to the lowest possible value. This is done by setting the number of avail-
able registers R = 1. Our value serialization heuristics get sub-optimal
results for only seven of the 27 DAGs used in the experiment. The opti-
mally reduced RS is less than our heuristics results by two registers in the
worst case.

In the second set of experiments, we unroll the loops with multiple
factors (up to 6, with up to 80 node DAGs) and we try to reduce their RS
under a limit computed as the first power of two lower than the original
RS. For example, if the original RS is 12 then we reduce it to 8, etc.

Here, we also get a maximal experimental error of 2 registers.
We didn’t check for larger unrolling degrees because computing opti-

mal RS reduction of larger DAGs is computational intractable. We think
that the experiments that we have performed are sufficient to study the
efficiency of our strategies (the number of nodes in all these unrolled loops
ranges from 4 to 80).

After evaluating the efficiency of value serialization, we use it to
investigate unrolled loops.

9.2.2. Value Serialization Heuristics Behavior in Unrolled Loops

We study the limit of RS reduction versus the degree of loop unroll-
ing (we consider the DAG of the loop bodies after unrolling). Figure 14
plots RS reduced to 32 registers using our heuristics on various loops
with unroll factors ranging from 1 to 20. In almost all practical cases, RS
is maintained under the 32-register limit, except for Livermore-loop23. In
that case, RS is maintained under 32 until the loop is unrolled by a factor
of 12. After that, the register pressure is sufficiently high to always keep
the register need above 32. The reason is shared by both intrinsic data
dependences properties (intrinsic register pressure, i.e., register sufficiency)
and our heuristics limitations. If RS cannot be reduced below the limit, we
have to insert spill operations, which is outside the scope of this paper. A
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Fig. 14. RS reduction in unrolled loops (R = 32).
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special remark is that reduced RS in unrolled loops is not an increasing
function. That is, if we reduce the RS to R1 > R in the loop unrolled n

times, and to R2 > R in the loop unrolled n+1 times, this does not neces-
sary mean that R1 � R2 (see Livermore-loop23 in Fig. 14). The explana-
tion is that as more independent nodes are available in a DAG, the more
serialization opportunities are possible. Consequently, this results in more
freedom and more choices for our heuristics.

9.3. ILP Loss after RS Reduction

In this last section, we study the ILP lost due to RS reduction. We
evaluate the maximal theoretical ILP of a DAG G = (V , E, δ) as:

ILP(G) = |V |
CriticalPath(G)

The ratio used for expressing the ILP loss is

original ILP− new ILP
original ILP

We start by examining the efficiency of the value serialization heuris-
tics in terms of ILP loss.

9.4. Optimal versus Approximated ILP Loss

Let us examine the ILP loss in our experiments. Results can be
decomposed into five families, depending on the obtained RS and ILP loss
after reduction. We denote by RS and ILP the RS reduction and ILP
loss resulting from optimal intLP programs; we denote by RS∗ and ILP ∗
the RS reduction and ILP loss resulting from our heuristics. Then, the five
families of results are the following.

1. In the case where RS = RS∗, our algorithm succeeds in optimally
reducing RS. Then, the ILP loss may be:

(a) ILP = ILP ∗ (family 1). Our algorithm succeeds in opti-
mally reducing RS with the optimal ILP loss. 72.22% of
all the results belong to this family.

(b) ILP < ILP ∗ (family 2). Our algorithm succeeds in opti-
mally reducing RS but with sub-optimal ILP loss. 18.5%
of all the results belong to this family.

(c) ILP > ILP ∗ is not possible.
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2. In the case where RS > RS∗, our algorithm did not succeed in
optimally reducing RS. Then, the ILP loss may be:

(a) ILP = ILP ∗ (family 3). Our algorithm has sub-optimal
RS reduction but optimal ILP loss. 4.63% of all the results
belong to this family.

(b) ILP < ILP ∗ (family 4). Our algorithm has sub-optimal
RS reduction with sub-optimal ILP loss. Less than 1% of
all the results belong to this family.

(c) ILP > ILP ∗ (family 5). Our algorithm has sub-optimal
RS reduction but with super-optimal ILP loss. This case is
interesting: since our algorithm has sub-optimal RS reduc-
tion, it has extra registers which allow more ILP. 3.7% of
all the results belong to this family.

3. The case where RS < RS∗ is impossible because our heuristics
compute a valid RS∗.

Clearly, our RS reduction algorithm is very efficient: in most cases, it
optimally reduces RS with optimal ILP loss. Sub-optimal ILP loss is, in
most cases, accompanied by optimal RS reduction, while sub-optimal RS
reduction is mostly accompanied by super-optimal ILP loss. We get both
sub-optimal ILP loss and sub-optimal RS reducing in less than 1% of the
cases.

Having established the efficiency of value serialization, we use it to
study ILP loss in unrolled loops.

9.5. ILP Loss after RS reduction in Unrolled Loops

We unroll the loops up to 20 times to get larger DAGs (up to 400
nodes). We try to maintain their RS under 32 FP registers. Figure 15 plots
ILP loss according to unrolling degree. In most cases, our heuristics do
not produce a loss of ILP, i.e., critical paths do not increase. However, in
some cases, ILP loss exceeds 60% (the case of spec-spice-loop8) in order
to maintain a RS under 32.

As in the RS reduction experiments, the ILP loss is not an increasing
function. The explanation is that the more independent nodes are avail-
able in the DAG, the more lifetime interval serialization opportunities are
possible. Our heuristics have more freedom to choose the best interval
serialization that minimizes critical path growth. We note that, in these
experiments, some operations have long specified latencies (up to 17 for
an FP division). These long latencies can dramatically increases the crit-
ical path, since we may introduce serial edges that merge two long paths.
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Fig. 15. ILP loss in unrolled loops (R = 32).
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Before concluding, we wish to argue that the RS approach is a bet-
ter way to satisfy register constraints before ILP scheduling than existing
register need minimization approaches.

10. RELATED WORK AND DISCUSSION

The literature contains a lot of techniques for minimizing the regis-
ter requirement in superscalar (sequential) codes that are sensitive to ILP
scheduling (2,18,20,23,25,26). Others prefer to combine ILP scheduling with
register allocation. (5,8,16,24,28) All these techniques try to minimize the
register requirement. In our method, we use the contrary approach: we
maximize the register requirement in order to minimize the number of
edges added to the DAG, as previously done by Berson.(6) Minimizing the
register requirement is an inherently worse technique than saturating the
register requirement for many reasons, which we explain below.

10.1. Case Where Register Constraints are Obsolete

Given a DAG, we do not need to add serial edges if the RS does
not exceed the number of available registers. Unfortunately, the minimiza-
tion approach adds extra edges if the register requirement can be further
reduced, even if RS does not exceed the limit. For instance, look at
Fig. 16, where bold circles are the values to be stored in registers and bold
edges are the flow dependences. The initial DAG has a register saturation
equal to 4: this is because we can schedule the 4 operations {a, b, c, d}
so as to produce four values simultaneously alive. If the processor has at
least four registers, then the DAG is not modified before the scheduling
pass. However, with a minimization approach, the new DAG in Part (b)
is restricted to not require more than teo registers,5 regardless the number
of available registers. The DAG in Part (b) is more restrictive than the ini-
tial DAG, which is left unmodified by the RS analysis pass.

10.2. How many Edges are Introduced

If the inherent data dependences of a DAG produce restrictive register
pressure for an ILP scheduler (when RS exceeds the number of available
registers), the minimization approach adds more edges than the RS reduc-
tion approach. This is because our method introduces only the necessary
number of edges to reduce RS below the register limit. However, the mini-
mization approaches tries to reduce the register need to the lowest possible

5Here, we minimize the register requirement under critical path constraints.
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Fig. 16. RS reduction versus minimal register requirement.

level. This is not an appropriate approach, since it does not fully utilize
the available registers. For instance, look at Fig. 16 and assume we have
three registers available. Part (c) shows the new DAG produced by the RS
reduction pass: here, RS is reduced from 4 to 3, and hence we have fewer
serialization edges than those produced by the minimization approach pre-
sented in Part (b). Using the RS approach, the final allocator could use 1,
2, or 3 registers depending on the schedule. Using a register minimization
approach, the scheduler could use only 1 or 2 registers. Hence, the RS
approach helps the scheduler make better use of the available registers.

10.3. When both Methods are Equivalent

If the target processor is superscalar with out-of-order execution, and
if its dynamic scheduler is optimal and the register renaming hardware has
an infinite number of hidden registers, both methods (RS and register need
minimization) should be equivalent. With a limited number of hidden reg-
isters for renaming, and a sub-optimal runtime scheduler, our RS method
is likely to produce better code because it makes better use of the available
registers.

10.4. Our Methods Apply for Explicit Reading/Writing Offsets

Our DAG and processor model allows for explicit delays when read-
ing from and writing into registers. Thus, our method is more generic than
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existing techniques, and can be applied to superscalar, VLIW and EPIC
architectures. For the last two cases, special care must be taken when
reducing RS: we must prohibit non-positive cycles in the resulting DAGs.

10.5. In the case of a Global Scheduler

Our model assumes that there is only one possible definition per
value. This assumption is correct inside a basic bloc (BB), i.e., if the code
does not contain branches. In the case of a global control flow graph
(CFG), a static data dependence analysis may result in some values with
more than one definition because it cannot determine which execution
path is taken. We show in Ref. 30 how to extend RS analysis to a global
acyclic CFG (excluding loops), and its interaction with a global instruc-
tion scheduler that may move operations from one BB to another.

10.6. Comparison to URSA

Our work is an extension to URSA.(6,7) Their minimum killing set
technique tries to saturate the register requirement in a DAG by keeping
the values alive as long as possible: the authors proceed by keeping as
many children in a bipartite component alive as possible by computing the
minimum set which kills all the parent’s values. First, since the authors did
not formalize the RS problem, we can easily give examples to show that a
minimum killing set does not saturate the register need, even if the solu-
tion is optimal. Figure 17 shows an example where the RS computed by
our heuristics (Part (b)) is 6, where the optimal solution for URSA yields
a RS of 5 (Part (c)). This is because URSA did not take into account
the descendant values while computing the killing sets. Second, the valid-
ity of the killing function is an important condition to compute the RS
and unfortunately is not included in URSA. We showed in Section 3 that
invalid killing functions exist. So, the proof in Ref. 7 about the NP-com-
pleteness of RS computation is incomplete, since they did not prove the
validity of the computed killing function. Finally, the URSA DAG model
did not differentiate between the types of values and did not take into
account delays in reading from and writing into the registers file.

10.7. Resource Constraints

Our experimental results are presented in the form of joint statements
about critical path length and register requirement. Can anything formal
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Fig. 17. URSA drawback.

be said about machines with finite resources? Since our techniques assume
infinite resources, it is theoretically possible that edges inserted to decrease
register pressure might lead to unbalanced functional unit usage. Thus,
edges might accidentally dictate bursts of all integer, all memory, or all
floating point operations.

Let us answer this possible limitation. First, our work focus on data
dependence graphs. Thus, a schedule can certainly be found on a machine
with finite resources. Reporting resource conflicts at the graph level can
only be done with simple resource descriptions (no structural hazards, i.e.,
a FU is used during a contiguous interval of time), as done by Berson(6)

and Pinter in Ref. 26. This strategy gives exactly the same solution as
scheduling under resource and register constraints, i.e., it is nothing but
a combined approach of scheduling and register allocation. Second, the
FU usage may be decreased especially if we try to minimize the register
requirement. In our framework, we saturate the register requirement, thus
the RS concept helps us reduce the number of serialization edges added to
the DAG. Third and last, we give priority to register constraints over ILP
scheduler (but we are still sensitive to this later) because we believe that
spill code is more damaging to performance than a weak ILP extraction.

The methods of Ref. 6 and 26 combine resource and register con-
straints. Their methods are only studied for superscalar codes with a
unique register type, while our method works for VLIW, EPIC and super-
scalar codes with multiple register types. Furthermore, we did not read any
experimental results that highlight if the heuristics of Refs. 6 and 26 are
near or far from the optimal, while we propose nearly optimal heuristics.

11. CONCLUSION

In this paper, we formally study the RS notion to manage register
pressure in acyclic DAGs. The RS helps to avoid inserting spill code before
instruction scheduling and register allocation steps. We believe that regis-
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ter constraints must be taken into account before ILP scheduling, but by
using the RS concept instead of the existing strategies that minimize the
register need. Otherwise, the subsequent ILP scheduler is restricted even if
enough registers exist.

We give many fundamental results regarding the RS computation.
First, we prove that choosing an appropriated unique killer is sufficient to
saturate the register need. Second, we prove that fixing a unique killer per
value allows to optimally compute the register saturation with polynomial
time algorithms. If a unique killer is not fixed per value, we prove that
computing the register saturation of a DAG is NP-complete in the gen-
eral case (except for expression trees for instance). An exact formulation
using integer programming and an efficient approximate algorithm are pre-
sented. Our formal mathematical modeling and theoretical study enable us
to give nearly optimal heuristics.

Our experiments show that register constraints may be obsolete in
many codes, and can therefore be ignored in order to simplify the instruc-
tion scheduling process. The heuristics we use manage to reduce RS in
most cases while some ILP is lost in few DAGs.

If RS exceeds the number of available registers, we must reduce it
while minimizing the increase to the critical path. We prove that this
is an NP-hard problem. An optimal exact RS reduction method based
on integer programming is presented, as well as an efficient approximate
algorithm. If we assume writing offsets (such as those in VLIW and EPIC
codes), some optimal solutions may require the insertion of non-positive
cycles in the original DAG. These cycles may prevent the extended DDG
from being scheduled in the presence of resource constraints. A sufficient
and necessary condition to overcome this problem is to guarantee the
existence of a topological sort for the extended graph. This is done by
adding new constraints to the intLP formulation.

The size complexity of our intLP formulations depends only the size
of the input DAG (quadratic on the number of edges and nodes). This is
better than the size complexity of the existing technique in the literature
that model register constraints.(1,13,14) Indeed, these exact intLP systems
have a size complexity that depends on a worst-case total schedule time
factor, which does not depend on the size of the input DAG. Thus, the
resulting size complexity is pseudo-polynomial, and not polynomial as in
our intLP system.

An important problem (left for a future work) is the insertion of min-
imal spill code in data dependence graphs. The existing studies insert spill
operations either in sequential codes (regardless on FUs usage), or by iter-
ating ILP scheduling followed by spilling. We think that this problem must
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be taken into account at the data dependence graph level in order to break
this iterative problem.
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