
DOI: 10.1007/s10766-005-3590-6
International Journal of Parallel Programming, Vol. 33, Nos. 2/3, June 2005 (© 2005)

Language and Compiler Design
for Streaming Applications

Saman Amarasinghe,1,2 Michael l. Gordon,1
Michal Karczmarek,1 Jasper Lin,1 David Maze,1
Rodric M. Rabbah,1 and William Thies1

High-performance streaming applications are a new and distinct domain of
programs that is increasingly important. The StreamIt language provides
novel high-level representations to improve programmer productivity and pro-
gram robustness within the streaming domain. At the same time, the Strea-
mIt compiler aims to improve the performance of streaming applications
via stream-specific analysis and optimizations. In this paper, we motivate,
describes and justify the StreamIt language which include a structured model
of streams, a messaging system for control, and a natural textual syntax.

KEY WORDS: Stream computing; StreamIt; parallelizing compiler; tiled-
processor architectures; productivity.

1. INTRODUCTION

Applications that are structured around some notion of a “stream” are
prevalent to common computing practices, and there is evidence that stream-
ing media applications already consume a substantial fraction of the compu-
tation cycles on consumer machines.(1) Furthermore, stream processing—of
voice and video data—is central to a plethora of embedded systems, includ-
ing hand-held computers, cell phones, and DSPs. The stream abstraction is
also fundamental to high-performance systems such as intelligent software
routers, cell phone base stations, and HDTV editing consoles.

1 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139, USA. E-mail: {saman, mgordon, karczma, jasperln,
dmaze, rabbah, thies}@csail.mit.edu

2 To whom correspondence should be addressed.

261

0885-7458/05/0600-0261/0 © 2005 Springer Science+Business Media, Inc.



262 Amarasinghe et al.

Despite the prevalence of these applications, there is surprisingly little
language and compiler support for practical, large-scale stream program-
ming. Of course, the notion of a stream as a programming abstraction
was established decades ago,(2) and a number of special-purpose stream
languages exist today (see Ref. 3 for a review). Many of these languages
and representations are elegant and theoretically sound, but they are not
flexible enough to support straightforward development of modem stream
applications, and their implementations are too inefficient to use in prac-
tice. Consequently, most programmers resort to general-purpose languages
such as C or C++ to implement stream programs. Yet there are sev-
eral reasons why general-purpose languages are inadequate for stream
programming. Most notably, they do not provide a natural or intuitive
representation of streams, thereby reducing readability, robustness, and
programmer productivity. Moreover, because the widespread parallelism
and regular communication patterns of data streams are left implicit in
general-purpose languages, compilers are not stream-conscious and can-
not perform stream-specific optimizations. As a result, performance-criti-
cal codes are often expressed in a low-level assembly language and must
be re-implemented for each target architecture. This practice is labor-inten-
sive, error-prone, and very costly.

General-purpose languages are also poorly suited for the emerging
class of tile-based architectures(4–6) that are well geared for stream pro-
cessing. Perhaps the primary appeal of C is that it provides a “common
machine language” for von-Neumann architectures. That is, it abstracts
away the idiosyncratic differences between machines, but encapsulates their
common properties: a single program counter, arithmetic operations, and
a monolithic memory. However, the von-Neumann model does not hold in
the context of tiled architectures as there are multiple instruction streams
and distributed memory banks. Consequently, C can not serve as a com-
mon machine language, and in fact it provides the wrong abstraction
for the underlying hardware, and architecture-specific directives are often
needed to obtain reasonable performance. Thus the responsibilities of the
programmer are increased, and the portability of applications is hampered.

In this paper, we describe and justify StreamIt as a high-level, architecture
independent programming language for stream programming (Section 3). The
StreamIt language is designed to provide high-level stream abstractions that
improve programmer productivity and program robustness within the stream-
ing domain. Furthermore, it is intended to serve as a common machine lan-
guage for tile-based processors, and parallel computing substrates in general
(e.g., grids and clusters of workstations). At the same time, the StreamIt com-
piler aims to perform novel stream-specific optimizations to achieve the per-
formance of an expert programmer (Section 4).



Language and Compiler Design for Streaming Applications 263

In the following section, we begin with a characterization of the
streaming domain and motivate the design of StreamIt. Section 5 discusses
related work, and Section 6 summarizes and concludes the paper.

2. STREAMING APPLICATION DOMAIN

The applications that make use of a stream abstraction are diverse,
with targets ranging from embedded devices, to consumer desktops, to
high-performance servers. Examples include systems such as the Click
modular router(7) and the Spectrumware software radio;(8,9) specifications
such as the Bluetooth communications protocol,(10) the GSM Vocoder,(11)

and the AMPS cellular base station,(12) and almost any application devel-
oped with Microsoft’s DirectShow library,(13) Real Network’s RealSDK(14)

or Lincoln Lab’s Polymorphous Computing Architecture.(15)

We have identified a number of properties that are common to such
applications—enough so as to characterize them as belonging to a dis-
tinct class of programs which we will refer to as streaming applications.
We believe that the salient characteristics of a streaming application are
as follows:

1. Large streams of data. Perhaps the most fundamental aspect of
a streaming application is that it operates on a large (or virtu-
ally infinite) sequence of data items, hereafter referred to as a data
stream. Data streams generally enter the program from some exter-
nal source, and each data item is processed for a limited time
before being discarded. This is in contrast to scientific codes which
manipulate a fixed input set with a large degree of data reuse.

2. Independent stream filters. Conceptually, a streaming computation
represents a sequence of transformations on the data streams in the
program. We will refer to the basic unit of this transformation as
a filter: an operation that—on each execution step—reads one or
more items from an input stream, performs some computation, and
writes one or more items to an output stream. Filters are generally
independent and self-contained, without references to global vari-
ables or other filters. A stream program is the composition of fil-
ters into a stream graph, in which the outputs of some filters are
connected to the inputs of others.

3. A stable computation pattern. The structure of the stream graph
is generally constant during the steady-state operation of a stream
program. That is, a certain set of filters are repeatedly applied in
a regular, predictable order to produce an output stream that is a
given function of the input stream.



264 Amarasinghe et al.

4. Occasional modification of stream structure. Even though each
arrangement of filters, is executed for a long time, there are occa-
sional dynamic modifications to the stream graph. For instance, a
software radio re-initializes a portion of the stream graph when a
user switches from AM to FM. Sometimes, these re-initializations
are synchronized with some data in the stream, as when a network
protocol changes from Bluetooth to 802.11 at a certain point of a
transmission. There is typically an enumerable number of configu-
rations that the stream graph can adopt in any one program, such
that all of the possible arrangements of filters are known at compile
time.

5. Occasional out-of-stream communication. In addition to the high-
volume data streams passing from one filter to another, filters also
communicate small amounts of control information on an infre-
quent and irregular basis. Examples include changing the volume
on a cell phone, printing an error message to a screen, or changing
a coefficient in an upstream Finite Impulse Response (FIR) filter.

6. High performance expectations. Often there are real-time constraints
that must be satisfied by streaming applications. Thus, efficiency (in
terms of both latency and throughput) is a primary concern. Addi-
tionally, many embedded applications are intended for mobile envi-
ronments where power consumption, memory requirements, and
code size are also important.

3. LANGUAGE OVERVIEW

StreamIt includes stream-specific abstractions and representations that
are designed to improve programmer productivity in the domain of
streaming applications. StreamIt programs are represented as hierarchical
stream graphs consisting of filters as the fundamental processing blocks.
This section presents the StreamIt 2.0 syntax for describing filters and the
stream graph.

3.1. Filters

The basic unit of computation in StreamIt is the filter. An exam-
ple of a filter from our software radio (see Fig. 1) is the FIRFilter,
shown in Fig. 2. Each filter has an input channel from which it reads data,
and an output channel to which it writes data. The filter also contains
a work function, which describes the filter’s most fine grained execution
step in the steady state. Within the work function, a filter can commu-
nicate with neighboring blocks over implicit channels that support three



Language and Compiler Design for Streaming Applications 265

Fig. 1. A block diagram of our frequency-hopping software radio.

Fig. 2. An FIR filter in StreamIt.

operations: (1) pop () removes an item from the end of the channel and
returns its value, peek (i) returns the value of the item i spaces from
the end of the channel without removing it, and (3) push (x) writes x to
the front of the channel. The argument x is passed by value; if it is an
object, a separate copy is enqueued on the channel. Currently, the number
of items peeked, popped, and pushed by each filter must be constant from
one invocation of the work function to the next. In fact, as described in
the sequel, the input and output rates are declared as part of the work
function declaration; a violation of the declared rates may result in a run-
time error and the subsequent behavior of the program is undefined. We
plan to support variables input and output rates in a future version of
Streamlt.

Each filter also contains an init function that is called at the time of
initialization. This function allows the programmer to establish the initial



266 Amarasinghe et al.

state of the filter. For example, the FIRFilter calculates some weights
that will serve as coefficients for filtering. The init function may not push,
pop, or peek items; however, a filter may also declare a prework function
to be called in place of the normal work function on the first iteration. A
filter is instantiated using add, body, or loop statements, and the init func-
tion is called implicitly with the same arguments that were passed in the
instantiating statements.

Each filter has a fixed input type, output type, and I/O rates. The
input and output types are specified as part of the filter declaration; the
sample FIRFilter has an input and output type of float, represented as
float → float. The I/O rates are declared as part of the work function.
Any expression that can be resolved to a constant at compile time is a
valid I/O rate. The peek rate may be omitted if it is the same as the pop
rate.

3.1.1. Rationale

StreamIt’s representation of a filter is an improvement over general-
purpose languages. In a procedural language, the analog of a filter is a
block of statements in a complicated loop nest (see Fig. 3). This rep-
resentation is unnatural for expressing the feedback and parallelism that
is inherent in streaming systems. Also, there is no clear abstraction bar-
rier between one filter and another, and high-volume stream processing is
muddled with global variables and control flow. The loop nest must be
re-arranged if the input or output ratios of a filter change, and schedul-
ing optimizations further inhibit the readability of the code. In contrast,
StreamIt places the filter in its own independent unit, making explicit the
parallelism and inter-filter communication while hiding the grungy details
of scheduling and optimization from the programmer.

Alternatively, one could use an object-oriented language to implement
a stream abstraction (see Fig. 4). This avoids some of the problems asso-
ciated with a procedural loop nest, but the programming model is again
complicated by efficiency concerns. That is, a runtime library usually exe-
cutes filters according to a pull model, where a filter operates on a block
of data that it retrieves from the input channel. The block size is often
optimized for the cache size of a given architecture, thus hampering por-
tability. Moreover, operating on large-grained blocks obscures the funda-
mental fine-grained algorithm that is visible in a StreamIt filter. Thus, the
absence of a runtime model in favor of automated scheduling and optimi-
zation again distinguishes StreamIt.



Language and Compiler Design for Streaming Applications 267

Fig. 3. An optimized FIR filter in a procedural language. A complicated loop nest is
required to avoid mod functions and to use memory efficiently, and the structure of the loops
depends on the data rates (e.g., BLOCK−SIZE) within the stream. An actual implementation
might inline the calls to step.

3.2. Connecting Filters

StreamIt provides three constructs for composing filters into a commu-
nicating network. They are pipeline, splitjoin, and feedbackloop (see Fig. 5).
Each structure specifies a pre-defined way of connecting filters into a single-
input, single-output block, henceforth refereed to as a “stream”; a stream is
any instance of a filter, pipeline, splitjoin, or feedbackloop. A pipeline is for
building a sequence of streams, a split-join is for running streams in paral-
lel, and a feedback loop is or introducing cycles in the stream graph. Every
StreamIt program is a hierarchical composition of these stream structures.

The pipeline construct is for building a sequence of streams. The body
of a pipeline is a sequence of statements that are executed upon its instan-
tiation. Component streams are added to the pipeline via successive calls
to add. For example, in the AudioEcho in Fig. 6, there are four streams



268 Amarasinghe et al.

Fig. 4. An FIR filter in an object oriented language. A “pull model” is used by each filter
object filter object to retrieve a chunk of data from its source, and straight-line code connects
one filter to another.

in the pipeline: an AudioSource, an EchoEffect, an Adder, and a Speaker.
This sequence of statements automatically connects the four streams in the
order specified. There is no work function in a pipeline: the component
streams fully specify the behavior; the channel types and data rates are
also implicit from the connections.

The split-join construct is used to specify independent parallel streams
that diverge from a common splitter and merge into a common joiner. As
in a pipeline, the components of a split–join are specified with successive
calls to add. For example, the EchoEffect in Fig. 6 adds two streams that
run in parallel, the first is a Delay filter and the other is an identity filter.



Language and Compiler Design for Streaming Applications 269

Fig. 5. Stream structures supported by StreamIt: pipeline (left), splitjoin (middle), and a
feedbackloop (right).

Fig. 6. An echo effect in StreamIt. Extra items are pushed on to Delay’s output tape in the
prework function to cause the delay.



270 Amarasinghe et al.

The splitter specifies how items from the input of the split–join are
distributed to the parallel components. Currently we allow two types of
compiler-defined splitters: duplicate which replicates each data item and
sends a copy to each parallel stream, and roundrobin (i1, i2, . . . , ik), which
sends the first i1 data items to the stream that was added first, the
next i2 data items to the stream that was added second, and so on.
As shorthand, roundrobin(1) is equivalent to roundrobin (i, i, i, . . . ). An
unadorned roundrobin is equivalent to roundrobin(l). Lastly, if none of
the parallel components require any input, and there are no input items
to split, then roundrobin(0) may be used. Note that roundrobin can func-
tion as an exclusive selector if one or more of the weights are zero.

Similarly, the joiner is used to indicate how the outputs of the par-
allel streams are interleaved on the output channel of the split–join. The
only supported joiner is roundrobin, which is analogous to a round–robin
splitter.

The splitter and joiner types are specified with calls to split and join,
respectively. The EchoEffect uses a duplicate splitter so that each item
appears directly—via the identity filter—and as an echo—via the Delay
filter. The round–robin joiner interleaves the immediate signals with the
delayed ones. In AudioEcho, an Adder is used to combine each pair of
interleaved signals.

The feedbackloop construct provides a way to create cycles in the
stream graph. The Fibonacci stream in Fig. 7 illustrates the use of this
construct. Each feedback loop contains: (1) a body stream, which is the
block around which a backward “feedback path” is being created, (2) a
loop stream, which can perform some computation along the feedback
path, (3) a splitter, which distributes data between the feedback path and
the output channel at the bottom of the loop, and (4) a joiner, which
merges items between the feedback path and the input channel at the top
of the loop. These components are specified via calls to body, loop, split,
and join, respectively.

The splitters and joiners can be any of those for a splitjoin, with the
exception of roundrobin(0). The call to loop may be omitted if no com-
putation is performed along the feedback path.

The feedback loop has special semantics when the stream is first exe-
cuted. The loop’s joiner needs inputs from its feedback path before it can
fire. These inputs are provided by enqueue statements within the body of
the loop.

Evident in the Fibonnacci example of Fig. 7 is another feature of the
StreamIt syntax: inlining. The definition of any stream can be inlined at
the point of its instantiation, thereby preventing the definition of many
small stream structures that are used only once, and, moreover, providing



Language and Compiler Design for Streaming Applications 271

Fig. 7. A feedbackloop version of Fibonnaci.

a syntax that reveals the hierarchical structure of the streams from the
indentation level of the code.

3.2.1. Rationale

StreamIt differs from other languages in that it imposes a well-defined
structure on the streams; all stream graphs are built out of a hierarchi-
cal composition of pipelines, split–joins, and feedback loops. This is in
contrast to other environments that generally regard a stream as a flat
and arbitrary network of filters that are connected by channels. Arbitrary
graphs are very hard for the compiler to analyze, and equally difficult for
a programmer to describe. Most programmers either resort to straight-line
code that links one filter to another (thereby obscuring the stream graph),
or they use an ad-hoc graphical programming environment that admits no
good textual representation.

In contrast, StreamIt affords a clean textual representation of stream
graphs, and the comparison of StreamIt’s structure with arbitrary stream
graphs may be likened to the difference between structured control flow
and GOTO statements: although the structure may occasionally restrict
the expressiveness of the programmer, the gains in robustness, readability,
and compiler analysis are immense. Furthermore, the graphical program-
ming environment we have developed for StreamIt has the advantage that
every stream graph corresponds to a precise textual counterpart that is
easily edited by a programmer. Further, the hierarchical structure of the



272 Amarasinghe et al.

stream graph simplifies visualization, and hence the graphical development
environment is better suited for large scale application development.

3.3. Messages

StreamIt provides a dynamic messaging system for passing irregular,
low-volume control information between filters and streams. Messages are
sent from within the body of a filter’s work function, perhaps to change
a parameter in another filter. For example, in our software radio exam-
ple, the CheckFreqHop stage sends a message upstream to change the fre-
quency of the receiver if it detects that the transmitter is about to change
frequencies. The sender can continue to execute while the message is en
route, and the target method will be invoked in the receiver with the spec-
ified arguments when the message arrives. Since message delivery is asyn-
chronous, there can be no return value; only void methods can be message
targets.

The central aspect of the messaging system is a sophisticated timing
mechanism that allows filters to specify when a message is received rela-
tive to the flow of information between the sender and the receiver. Recall
that each filter executes independently, without any notion of global time.
Thus, the only meaningful notion of time for any two filters is in terms of
the data items that are passed through the streams from one to the other.

In StreamIt, one can specify a range of latencies for each message
delivery. This latency is measured in terms of an information “wavefront”
from one filter to another. For example, in the CheckFreqHop example of
Fig. 1, the sender indicates an interval of latencies, for example, between
4 and 6. Due to space limitations, we cannot define this notion precisely
(see Refs. 16 and 17 for the formal semantics), but the general idea is sim-
ple: the receiver is invoked when it sees the information wavefront that the
sender sees in 4–6 execution steps.

StreamIt also supports modular broadcast messaging. When a sender
wants to send a message that will invoke method M of the receiver R

upon arrival, it does not call M on the object R. Rather, it calls M on a
portal of which R is a member. Portals are typed containers that forward
all messages they receive to the elements of the container. Portals could be
useful in cases when a component of a filter library needs to announce a
message (e.g., that it is shutting down) but does not know the list of recip-
ients; the user of the library can pass to the filter a portal containing all
interested receivers. As for message delivery constraints, the user specifies
a single time interval for each message, and that interval is interpreted sep-
arately (as described above) for each receiver in the portal.



Language and Compiler Design for Streaming Applications 273

3.3.1. Rationale

Stream programs present a challenge in that filters need regular, high-
volume data transfer as well as irregular, low-volume control communica-
tion. Moreover, there is the problem of reasoning about the relative “time”
between filters when they are running asynchronously and in parallel.

A different approach to messaging is to embed control messages in
the data stream instead of providing a separate mechanism for dynamic
message passing. This does have the effect of associating the message time
with a data item, but it is complicated, error-prone, and leads to unread-
able code. Further, it could hurt performance in the steady state (if each
filter has to check whether or not a data item is actual data or control,
instead) and may also complicate compiler analysis. Finally, one can’t send
messages upstream without creating a separate data channel for them to
travel in.

Another solution is to treat messages as synchronous method calls.
However, this delays the progress of the stream when the message is en
route, thereby degrading the performance of the program and restricting
the compiler’s freedom to reorder filter executions.

We feel that the StreamIt messaging model is an advance in that
it separates the notions of low-volume and high-volume data transfer—
both for the programmer and the compiler—without losing a well-defined
semantics, where messages are timed relative to the high-volume data
flow. Further, by separating message communication into its own category,
fewer connections are needed for steady-state data transfer and the result-
ing stream graphs are more amenable to structured stream programming.

4. STREAMIT COMPILER

We have implemented a fully functional StreamIt compiler as an
extension to the Kopi Java Compiler, a component of the open-source
Kopi Project.(18) The compiler performs a number of stream-specific opti-
mizations, and targets a conventional uniprocessor machine, a networked
cluster of workstations, or the MIT Raw architecture. Raw consists of
a 2D mesh of 16 independent processor tiles with fast statically sched-
uled interconnect.(5) We have also developed a library that allows StreamIt
code to be executed as pure Java, thereby providing a rapid verification
mechanism.

The compilation process for streaming programs contains many novel
aspects because the basic unit of computation is a stream rather than
a procedure. In order to compile stream modules separately, we have
developed a runtime interface—analogous to that of a procedure call for



274 Amarasinghe et al.

traditional codes—that specifies how one can interact with a black box of
streaming computation. The stream interface contains separate phases for
initialization and steady-state execution; in the execution phase, the inter-
face includes a contract for input items, output items, and possible mes-
sage production and consumption.

Compiling for Raw involves constructing an expanded stream graph
from the input program, and then partitioning this into 16 sections to
fit on to the tiles of the chip.(19) The principal technique for doing this
involves fusing adjacent filters in the stream graph to form a single filter.
Vertical fusion performs fusion on successive filters in a pipeline, while hor-
izontal fusion joins the parallel streams in a split–join.

The StreamIt compiler also contains a set of domain-specific opti-
mizations for linear filters where each output is a weighted sum of the
inputs (e.g., FIR, FFT, and DCT). The compiler automatically detects
linear filters and performs large-scale algebraic simplification of adjacent
components, as well as automated translation into the frequency domain
when the transformation results in faster code. These techniques yield
average speedups of 450% for benchmarks with large linear components
(see Ref. 20 for details).

We have implemented a number of stream programs (Table I) to test
the performance of our compiler. Our benchmarks include several small
kernels which would typically be used as parts of larger applications, along
with some larger systems.

Results of the compiler are given in Table II. For each application,
we compare the throughput of StreamIt with a hand-written C program,
running the latter on either a single tile of Raw or on a Pentium IV. For
Radio, GSM, and Vocoder, the C source code was obtained from a third
party; in other cases, we wrote a C implementation following a reference
algorithm. For each benchmark, we show MFLOPS (which is N/A for
integer applications), processor utilization (the percentage of time that an
occupied tile is not blocked on a send or receive), and throughput.

5. RELATED WORK

A large number of programming languages support a concept of a
stream (see Ref. 3 for a survey). Those that are perhaps most related to
StreamIt are synchronous dataflow languages such as LUSTRE(21) and
ESTEREL(22) which require a fixed number of inputs to arrive simulta-
neously before firing a stream node. However, most special-purpose stream
languages do not contain features such as messaging and support for mod-
ular program development that are essential for modem stream applica-
tions. Also, most of these languages are so abstract and unstructured that



Language and Compiler Design for Streaming Applications 275

Table I. Application Characteristics

Number of constructs in the program

Total
Lines of Feedback no of

Benchmark Description code Filters Pipelines Splitjoins loops filters

FIR 64 tap FIR 125 5 1 0 0 132
Radar Radar array front-end(15) 549 8 3 6 0 52
Radio FM Radio with 525 14 6 4 0 26

an equalizer
Sort 32 element Bitonic Sort 419 4 5 6 0 242
FFT 64 element FFT 200 3 3 2 0 24
Filterbank 8 channel Filterbank 650 9 3 1 1 51
GSM GSM Decoder 2,261 26 11 7 2 46
Vocoder 28 channel Vocoder(26) 1,964 55 8 12 1 101
3GPP 3GPP Radio Access 1,087 16 10 18 0 48

Protocol(27)

Table II. Performance Results

250 MHz Raw processor C on a 2.2 GHz
Intel Pentium IV

C on a
StreamIt on 16 tiles single title

Number Throughput Throughput Throughput
Utilization of tiles (per 105 (per 105 (per 105

Benchmark (%) used MFLOPS cycles) cycles) cycles)

FIR 84 14 815 1188.1 293.5 445.6
Radar 79 16 1,231 0.52 App. too large 0.041
Radio 73 16 421 53.9 8.85 14.1
Sort 64 16 N/A 2,664.4 225.6 239.4
FFT 42 16 182 2,141.91 468.9 448.5
Filterbank 41 16 644 256.4 8.9 7.0
GSM 23 16 N/A 80.9 App. too large 7.76
Vocoder 17 15 118 8.74 App. too large 3.35
3GPP 18 16 44 119.6 17.3 65.7



276 Amarasinghe et al.

the compiler cannot perform enough analysis and optimization to result
in an efficient implementation.

At an abstract level, the stream graphs of StreamIt share a number
of properties with the synchronous dataflow (SDF) domain as considered
by the Ptolemy project.(23) Each node in a SDF graph produces and con-
sumes a given number of items, and there can be delays along the arcs
between nodes (corresponding loosely to items that are peeked in Strea-
mIt). As in StreamIt, SDF graphs are guaranteed to have a static sched-
ule and there are a number of nice scheduling results incorporating code
size and execution time.(24) However, previous results on SDF scheduling
do not consider constraints imposed by point-to-point messages, and do
not include StreamIt’s level of programming language support.

The Imagine architecture is specifically designed for the streaming
application domain.(1) It operates on streams by applying a computation
kernel to multiple data items off the stream register file. The compute ker-
nels are written in Kernel-C while the applications stitching the kernels are
written in Stream-C. Unlike StreamIt, with Imagine the user has to manu-
ally extract the computation kernels that fit the machine resources in order
to get good steady-state performance for the execution of the kernel.(25)

6. CONCLUSIONS AND FUTURE WORK

This paper presents StreamIt, a novel language for high-performance
streaming applications. Stream programs are emerging as a very important
class of applications with distinct properties from other recognized appli-
cation classes. This paper presents a fundamental programming paradigm
for the streaming domain.

The primary goal of StreamIt is to raise the abstraction level in
stream programming without sacrificing performance. The StreamIt model
for defining filters, and the methodology for filter composition, and mes-
saging will improve programmer productivity and program robustness
within the streaming domain. Also, we believe that StreamIt is a viable
common machine language for distributed and parallel architectures (e.g.,
see Refs. 4–6), just as C is a common machine language for von-Neumann
machines. StreamIt abstracts away the target’s granularity, memory lay-
out, and network interconnect, while capturing the notion of indepen-
dent processors that communicate in regular patterns. Fission and fusion
algorithms can automatically adjust the granularity of a stream graph to
match that of a given target.

We have a number of extensions planned for the next version of the
StreamIt language. The current version is designed primarily for uniform
one-dimensional data processing, but constructs for hierarchical frames of



Language and Compiler Design for Streaming Applications 277

data would be useful for image processing. Moreover, a future version
will support dynamically varying I/O rates of the filters in the stream.
We expect that such support will require new language constructs—for
instance, a type-dispatch splitter that routes items to the components of
a split–join based on their type, and a fall-through joiner that pulls items
from any stream in a split–join as soon as they are produced.

Our immediate focus is on developing a high-performance optimiz-
ing compiler for StreamIt that can match the performance of hand-coded
applications, such that the abstraction benefits of StreamIt come with no
performance penalty.

ACKNOWLEDGMENTS

This work was supported in part by DARPA Grant DBT6396-C-0036
and NSF ITR ACI-0325297. For more information about StreamIt, visit
http: //www. cag. csail.mit.edu/streamit/.

REFERENCES

1. S. Rixner, W. Dally, U. Kapasi, P. Mattson, J. Owens, B. Khailany, and A. Lopez-
Lagunas, A Bandwidth-Efficient Architecture for Media Processing, in Int. Symp. on
Microarchitecture, pp. 3–13 (December 1998).

2. H. Abelson and G. Sussman, Structure and Interpretation of Computer Programs, MIT
Press, Cambridge, MA (1985).

3. R. Stephens, A Survey of Stream Processing, Acta Informatica 34(7):491–541 (1997),
URL citeseer.nj.nec.com/stephenas95survey.html.

4. K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and M. Horowitz, Smart Memories:
A Modular Recongurable Architecture (2000).

5. E. Waingold et al., Baring it all to Software: The Raw Machine, MIT-LCS Technical
Report 709, Cambridge, MA (1997).

6. K. Sankaralingam, R. Nagarajan, S. Keckler, and D. Burger, A Technology-Scalable
Architecture for Fast Clocks and High ILP, UT Austin Tech Report 01-02 (2001).

7. E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, The Click
Modular Router, ACM Trans. Comput. Syst. 18(3): 263–197 (2000), URL
http://www.acm.org/pubs/citations/journals /tocs/2000-18-3/p26%3-kohler/.

8. D. Tennenhouse and V. Bose, The Spectrum Ware Approach to Wireless Signal Pro-
cessing, Wireless Netw. (1999).

9. V. Bose, M. Ismert, M. Welborn, and J. Guttag, Virtual Radios, IEEE/JSAC, Special
Issue on Software Radios (April 1999).

10. B. Volume and B. July, Bluetooth Specification, Vol. 1, Bluetooth Consortium (July
1999).

11. M. Mouly and M. B. Pautet, The GSM System for Mobile Communications, Cell&Sys,
Palaiseau, France (1992).

12. EIA/TIA, Mobile Station–Land Station Compatibility Spec., Technical Report 553,
ANSI/EIA/TIA (1989).



278 Amarasinghe et al.

13. Microsoft Corporation, Microsoft DirectShow, Online Documentation (2001).
14. RealNetworks, Software Developer’s Kit, Online Documentation (2001).
15. J. Lebak, Polymorphous Computing Architecture (PCA) Example Applications and

Description, External Report, MIT Lincoln Laboratory (August 2001).
16. B. Thies, M. Karczmarek, and S. Amarasinghe, StreamIt: A Language for Streaming

Applications, MIT-LCS Technical Memo TM-620, Cambridge, MA (August 2001).
17. W. Thies, M. Karczmarek, M. Gordon, D. Maze, J. Wong, H. Hoffmann, M. Brown,

and S. Amarasinghe, StreamIt: A Compiler for Streaming Applications, Technical
Memo TM-622, MIT-LCS, Cambridge, MA (December 2001).

18. V. Gay-Para, T. Graf, A.-G. Lemonnier, and E. Wais, Kopi Reference Manual,
http://www.dms.at/kopi/docs/kopi.html (2001).

19. M. I. Gordon et al., A Stream Compiler for Communication-Exposed Archi-
tectures, in Proc. of the 10th Int. Conf. on Architectural Support for Program-
ming Languages and Operating Systems, San Jose, CA (October 2002), URL http:
//cag.1cs.mit.edu/commit/papers/02/streamit-asplos.pdf.

20. A. A. Lamb, W. Thies, and S. Amarasinghe, Linear Analysis and Optimization of
Stream Programs, in Proc. of the SIGPLAN ’03 Conf. on Programming, Language
Design and Implementation, San Diego, CA (June 2003).

21. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, The synchronous data-flow pro-
gramming language LUSTRE, Proc. IEEE 79(9):1305–1320 (September 1991), URL
citeseer.nj.nec.com/halbwachs91synchronous.html.

22. G. Berry and G. Gonthier, The Esterel Synchronous Programming Language: Design,
Semantics, Implementation, Science of Computer Programming, 19(2):87–152 (1992).

23. E. A. Lee, Overview of the Ptolemy Project, UCB/ERL Technical Memorandum
UCB/ERL M01/1, Dept. EECS, University of California, Berkeley, CA (March 2001).

24. S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from Data-
flow Graphs, Kluwer Academic Publishers (1996), URL http://www.wkap.nl/book.htm/0-
7923-9722-3, 189 pages.

25. U. J. Kapasi, P. Mattson, W. J. Dally, J. D. Owens, and B. Towles, Stream Scheduling,
in Proc. of the 3rd Workshop on Media and Streaming Processors, pp. 101–106 (2001).

26. S. Seneff, Speech transformation system (spectrum and/or excitation) without pitch
extraction, Master’s thesis, Massachussetts Institute of Technology (1980).

27. 3rd Generation Partnership Project, 3GPP TS 25.201, V3.3.0, Technical Specification
(March 2002).


