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Dynamic structured adaptive mesh refinement (SAMR) techniques along with
the emergence of the computational Grid offer the potential for realistic sci-
entific and engineering simulations of complex physical phenomena. However,
the inherent dynamic nature of SAMR applications coupled with the hetero-
geneity and dynamism of the underlying Grid environment present significant
research challenges. This paper presents application/system sensitive reactive
and proactive partitioning strategies that form a part of the GridARM auto-
nomic runtime management framework. An evaluation using different SAMR
kernels and system workloads is presented to demonstrate the improvement
in overall application performance.
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tured adaptive mesh refinement; application/system sensitive reactive and pro-
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1. INTRODUCTION

Dynamically adaptive simulations based on structured adaptive mesh
refinement (SAMR) techniques can yield highly advantageous ratios for
cost/accuracy when compared to methods based on static uniform approx-
imations. Parallel/distributed SAMR implementations lead to interesting
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research problems in dynamic resource allocation, data-distribution, load
balancing, communication, and coordination. Furthermore, the underlying
Grid infrastructure is dynamic and heterogeneous in nature. As a result,
configuring, managing, and optimizing the execution of dynamic SAMR
applications to exploit the computational power of the heterogeneous Grid
environment remains a significant challenge.

GridARM(1) is an autonomic runtime management framework that
monitors application and system state and provides adaptation strategies
to optimize the performance of SAMR applications in distributed and
dynamic Grid execution environments. Key GridARM components pre-
sented in this paper include reactive and proactive partitioning strategies
based on application/system runtime state and performance estimation.
The experimental evaluation of these runtime management schemes for
different SAMR kernels and system workloads demonstrates an improve-
ment in overall application performance.

The conceptual model of the GridARM framework is illustrated in
Fig. 1. Application sensors monitor the state of the SAMR grid hierarchy
and the nature of its refined regions, and characterize the application in
terms of metrics such as computation/communication requirements, stor-
age requirements, activity dynamics, and the nature of adaptations. Sys-
tem sensors characterize the current state of the underlying computational
resources in terms of CPU, memory, bandwidth, availability, and access
capabilities. The characterization of current application/system state drives
predictive performance functions and models that can estimate applica-
tion performance. The GridARM deduction engine uses current state and
adaptation policies to formulate prescriptions for algorithms, configura-
tions, and parameters, and defines normalized work and resource met-
rics that characterize the runtime state. Using these metrics as inputs, the
autonomic runtime manager then defines a hierarchical distribution mech-
anism, configures and deploys appropriate partitioners at each level of
the hierarchy, schedules and maps application working-sets onto virtual
resources, and tunes the SAMR application within the Grid environment.

The rest of this paper is organized as follows. Section 2 describes
the design and evaluation of the application-sensitive partitioning frame-
work. Section 3 discusses the system-sensitive partitioning strategy. Sec-
tion 4 details the implementation and evaluation of the SAMR proactive
partitioning schemes. Section 5 presents concluding remarks.

2. AUTONOMIC APPLICATION-SENSITIVE PARTITIONING

The choice of an appropriate partitioner depends on the application
configuration and state, since partitioners typically optimize a subset of
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Fig. 1. Conceptual model of the GridARM framework.

the application requirements at the expense of others. SAMR applications
are dynamic in nature (i.e., their requirements change with time as the
application proceeds) and hence the current SAMR application state
can only be determined at runtime. ARMaDA(2) dynamically selects and
configures partitioning algorithms at runtime to optimize the overall per-
formance of SAMR applications. The partitioners used include a selec-
tion from software tools such as GrACE (Grid Adaptive Computational
Engine)(3) and Vampire.(4)

2.1. Application State Characterization and Partitioner Selection

ARMaDA builds on our previous work(5) that experimentally stud-
ied the behavior of structured domain-based partitioners and defined an
approach for characterizing the state of SAMR applications. In ARMaDA,
the current application state is monitored using simple geometric opera-
tions from the structure of the SAMR grid hierarchy, expressed as sets
of bounding boxes at various levels of refinement. Three primary met-
rics are used: (i) computation-to-communication ratio (“CCratio”) deter-
mines whether the application state is computationally-intensive or com-
munication-dominated; (ii) application dynamics (“Dynamics”) estimate
the rate of change of application refinement patterns; and (iii) nature of
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adaptations (“Adapt”) captures the adaptation pattern, i.e., whether refine-
ments are scattered or localized. These are computed as follows.

CCratio =
∑

(Volume of bounding boxes)
∑

(Surface area of bounding boxes)
, (1)

Dynamics = Size of (Current state boxes ∩ Previous state boxes), (2)

Adapt = Volume of refinement regions
Domain volume

∗ Number of refinement patches. (3)

The ARMaDA framework maintains a history of application state by
storing the structure of the SAMR grid hierarchy for two preceding regrid
steps. This avoids possible thrashing due to very frequent state changes. If
Mr is a metric computed at regrid step r, its normalized metric ratio is
computed using this three-step sliding window as

Mratio = currMr ∗ currMr−2

(currMr−1)
2

(4)

Three normalized ratios are computed corresponding to the three met-
rics, viz., computation/communication ratio “Cratio”, application dynam-
ics ratio “Dratio”, and adaptation ratio “Aratio”. Using low and high
thresholds and application-dependent weights, these ratios are combined
to characterize the state of the SAMR application. The characterized
application state is then mapped to appropriate partitioners using policies
derived heuristically from previous research.(5)

The ARMaDA framework configures the selected partitioner with
appropriate partitioning parameters (such as partitioning granularity) and
invokes it to partition and load balance the SAMR grid hierarchy. The
granularity is based on the requirements of the current application state,
though it may be overidden by a user defined value. ARMaDA uses effi-
cient and inexpensive mechanisms and provides optimizations to ensure
that the runtime overheads of state characterization and partitioner selec-
tion do not offset the benefits of adaptation.

2.2. Evaluation of Application-Sensitive Partitioning

The experimental evaluation of ARMaDA consists of measuring the
overall execution times for the different partitioners used individually,
including SFC, G-MISP+SP, pBD-ISP, and their adaptive combinations.
Only the partitioning strategy and associated granularity are varied. All
other parameters are kept constant.
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Table I. ARMaDA Execution Time for VectorWave 2D and RM2D Applications

VectorWave2D on Frea RM2D on Blue Horizon

32 processors 64 processors

Partitioner Execution Partitioner Execution
evaluated time (sec) evaluated time (sec)

SFC 637.478 SFC 264.041
G-MISP+SP 611.749 G-MISP+SP 214.745
pBD-ISP 592.05 pBD-ISP 199.738
ARMaDA with 470.531 ARMaDA with 190.431

SFC start G-MISP+SP start

The first experiment is conducted on 32 processors of “Frea”, a
64-node Linux Beowulf cluster at Rutgers University, using the Vector-
Wave2D3 application. The application uses a base grid of size 128*128
with three levels of factor 2 space–time refinements. Regriding is per-
formed every four time-steps at each level and the application runs for
60 coarse level time steps. The VectorWave2D application is primar-
ily computation-dominated, requiring good load balance and reduced
communication and data migration costs. SFC and pBD-ISP partitioners
optimize communication and data migration, while G-MISP+SP gives
good load balance. As shown in Table I, the ARMaDA partitioner with
SFC start improves performance by 26.19% over the slowest partitioner,
and the overhead is 0.0616% of the total time, which is negligible.

The second experiment is conducted on 64 processors of “Blue Hori-
zon”, the NPACI IBM SP2 system at the San Diego Supercomputing Cen-
ter, using the RM2D4 application. RM2D uses a 128*32 base grid and
executes for 60 iterations with three levels of factor 2 refinements and
regriding every 4 time-steps at each level. The execution speedup pro-
vided by ARMaDA (Table I) is 4.66%, 11.32%, and 27.88% over pBD-ISP,
G-MISP+SP, and SFC partitioners respectively. The overhead is 0.415 sec-
onds and is minimal compared to overall execution times.

3The VectorWave2D application forms a part of the Cactus 2-D numerical relativity tool-
kit solving Einstein’s and gravitational equations.

4RM2D is the 2-D compressible turbulence kernel solving the Richtmyer–Meshkov
instability.
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3. REACTIVE SYSTEM-SENSITIVE PARTITIONING

3.1. Characterizing System State

The GridARM runtime management framework reacts to system
capabilities and current system state to select and tune distribution param-
eters while dynamically partitioning and load balancing the SAMR grid
hierarchy. Current system state is obtained at runtime using the NWS(6)

resource monitoring tool. If the total work W is to be distributed among
K processors, the work Wi assigned to the ith processor can be computed
as Wi = CRi × W, where CRi represents the combined work partitioning
ratio for processor i computed using current system information such that

CRi = wcR
C
i + wmRM

i + wbR
B
i and

K∑

i=0

CRi = 1, (5)

where RC
i , RM

i , and RB
i are work partitioning ratios based on CPU load,

available memory, and link bandwidth, respectively. wc, wm, and wb are
the application-specific weights associated with relative CPU, memory, and
bandwidth availabilities such that wc + wm + wb = 1. Note that

K∑

i=0

RC
i =

K∑

i=0

RM
i =

K∑

i=0

RB
i = 1. (6)

3.2. Evaluation of Reactive System-Sensitive Partitioning

The system-sensitive partitioner(7) is evaluated on a 32-node
Linux-based workstation cluster using the RM3D5 application. The appli-
cation uses three levels of factor 2 space–time refinements on a base mesh
of size 128*32*32. The experimental setup consists of a synthetic load gen-
erator (for simulating heterogeneous loads on the cluster nodes) and an
external resource monitoring system (i.e., NWS). The evaluation compares
the execution time and load balance generated for the system sensitive par-
titioner with those for the GrACE(3) infrastructure which distributes the
workload equally among processors. As illustrated in Fig. 2, system-sensi-
tive partitioning reduces the execution time by about 18% for 32 nodes.
Figure 3 shows the system-sensitive workload assignment on a cluster
consisting of 4 nodes with relative capacities 16%, 19%, 31%, and 34%.
The system-sensitive partitioner reduces imbalances by about 45%.

5RM3D is the 3-D Richtmyer–Meshkov instability solver encountered in compressible fluid
dynamics and has been developed by Ravi Samtaney as a part of virtual test facility at
Caltech ASCI/ASAP Center.
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Fig. 2. Runtime improvement using system-sensitive partitioning.

Fig. 3. Workload assignments for system-sensitive partitioner.

4. PROACTIVE SAMR PARTITIONING STRATEGIES

Parallel/distributed SAMR applications are sensitive to CPU, mem-
ory, and bandwidth requirements, and their performance may degrade
severely due to increased CPU and/or network loads and reduced available
memory. There are three extreme cases in Eq. (5) which lead to three
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different proactive partitioning strategies, developed for the RM3D appli-
cation: (i) CPU-based runtime partitioning: wc = 1, wm = 0, wb = 0, CRi =
RC

i and work is partitioned based on CPU load status; (ii) Memory-based
runtime partitioning: wm = 1, wc = wb = 0, CRi = RM

i and work is parti-
tioned based on available memory; and (iii) Bandwidth-based runtime par-
titioning: wb = 1, wc = wm = 0, CRi = RB

i and work is partitioned based
on link bandwidth.

4.1. CPU-based Runtime Partitioning

Performance Functions (PF)(8) describe the behavior of a system or
application in terms of changes in one or more of its attributes. The exe-
cution time of a computation-intensive program increases linearly with the
number of jobs sharing the same processor. The SAMR application execu-
tion time can be estimated as a function of CPU load, application work
W , and refinement level LV , given by Ti = T × Li = PFc(Wi, LVi) × Li,

where Li represents the length of the CPU queue for processor i. The
RM3D time performance function is empirically defined in Eq. (7), where
ai is a heuristic coefficient derived from previous research.(9)

T = PFc(W, LV )

= a0 + a1W + a2LV + a3W × LV + a4W
2 + a5LV 2

+a6W
2 × LV + a7W × LV 2 + a8W

2 × LV 2. (7)

To minimize disparity in execution times, the work partitioning ratio
is adjusted at runtime such that the execution time at the next time step
is identical within an acceptable tolerance. The adjustment factor for each
processor is defined by

fi(t) = Tavg(t)

Ti(t)
, where Tavg(t) =

K∑

i=0
Ti(t)

K
, (8)

where Ti(t) and Tavg(t) are the estimated execution time for processor i and
the average estimated execution time, respectively, at time step t . Once the
adjustment factor is determined, the work partitioning ratio for processor i

at the next time step is computed and normalized as

RC
i (t + 1) = RC

i (t) × fi(t) and RC
i (t + 1)′ = RC

i (t + 1)

K∑

i=0
RC

i (t + 1)

. (9)
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4.2. Memory-based Runtime Partitioning

The performance of SAMR applications may degrade on heavily
loaded processors that have little available memory because of frequent
page faults. The memory-based partitioning strategy optimizes perfor-
mance by minimizing the number of page faults and balancing work
among processors. The memory function for RM3D is empirically defined
as AM = PFM(W) = a0 + a1W , where a0 = 8187.5036, a1 = 0.1348959,
and AM is the memory usage corresponding to work W .

The processors are divided into different groups according to their
available physical memory space. Let Mi be the available physical mem-
ory on processor i and MT1 and MT2 denote a two-level threshold that
describes the memory characteristics. If Mi < MT1, processor i belongs
to the low memory group (X−) with frequent page faults. If Mi > MT2,
processor i belongs to the high memory group (X+) with rare or normal
page faults. If Mi is between MT1 and MT2, processor i is in moderately
loaded group (X) with occasional page faults. The number of processors
in group X−, X+, and X are represented by N−, N+, and N , respectively.
When both N+ and N− are greater than zero, work assigned to proces-
sors in group X− is partially transferred to processors in group X+, with
no change in work for processors in group X. In other cases, the current
work assignment is kept unchanged. Let W− be the entire work assigned
to the processors in group X− and let P1 be the transferring percentage.
Then, W−×P1 denotes the work to be transferred while avoiding overload-
ing the processors in group X+. To ensure an even transfer of work, let
U− denote the unit of work being transferred to one processor in group
X+ such that

U− = W− × P1

N+ , where W− =
N−
∑

i=0

Wi. (10)

In order to achieve the desired optimization, a processor in group X+
must guarantee that its available memory space is greater than MT1 after
it accepts the work transfer. In doing so, it must estimate the memory
usage of its current work Wi and additional work after the transfer. Let
the work for processor i after the transfer be W ′

i such that W ′
i = Wi +U−.

In order to avoid overloading after the transfer, each processor in group
X+ must satisfy the following condition.

[Mi − {PFM(W ′
i ) − PFM(Wi)}] > MT1. (11)
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The processors in group X+ are sorted in the ascending order of
available memory Mi . Upon substituting W ′

i = Wi + U− into Eq. (11),
the checks are performed for processor i (with least available memory
onwards) in group X+ to test if the condition in Eq. (11) can be met. If
the condition cannot be met, further reduction to the work transfer (U−)

is performed and the remaining work is left for the next processor. If the
condition can be met, the algorithm attempts to transfer the remaining
work from the previous processor as well. A similar check as in Eq. (11) is
performed for the remaining work and further reduction may be possible
to avoid overloading processors in group X+. After estimating the work
transfer, each processor obtains new work W ′

i and the memory-based work
partitioning ratios for the next time step are computed as

RM
i = W ′

i

K∑

i=0
W ′

i

. (12)

4.3. Evaluation of CPU-based Proactive Partitioning

The proactive runtime partitioning strategies are integrated within the
GridARM framework and are evaluated using the RM3D application on
Beowulf clusters at Rutgers University and University of Arizona. Three
scenarios are established for this evaluation: (i) Lightly loaded scenario:
75% of the processors are lightly loaded and the other 25% are heavily
loaded; (ii) Moderately loaded scenario: 50% are lightly loaded and the
other 50% are heavily loaded; and (iii) Heavily loaded scenario: 25% are
lightly loaded and the other 75% are heavily loaded.

In this evaluation, a synthetic program adapts the CPU load dynamics
among processors in order to establish the three different load scenarios.
Table II presents the performance gain for the RM3D application on 32
and 64 processors using the CPU-based strategy under different load sce-
narios. Without CPU load adaptation, the work is assigned almost evenly
among processors regardless of their CPU load status that leads to longer
application execution time when some processors are heavily loaded. How-
ever, when the CPU-based proactive partitioning algorithm is used, work
is assigned to processors based on their CPU load status and the perfor-
mance of RM3D improves significantly. Moreover, better performance can
be achieved under lightly and moderately loaded scenarios while there are
not enough lightly loaded processors to accept more work for the heavily
loaded scenario. Furthermore, better performance can be obtained with a
large number of processors since the work assigned to each processor is
reduced.
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Table II. CPU-based Partitioning, 32/64 Processors (Base Grid: 128∗32∗32)

Execution time Execution time
No. of without CPU with CPU Percentage

Scenarios procs. adaptation (sec) adaptation (sec) improvement (%)

Lightly 32 4908.7 2901.1 40.9
loaded 64 4904.78 2827.29 42.36

Moderately 32 4976.78 3378.65 31.35
loaded 64 5049.72 3281.31 35.02

Heavily 32 5170.52 4140.56 20.45
loaded 64 5119.89 3587.89 29.92

4.4. Evaluation of Memory-based Proactive Partitioning

In this evaluation, the memory availability of processors is controlled
by a synthetic memory consuming program in order to establish the three
different memory usage scenarios. Figure 4 illustrates the memory availabil-
ity on eight processors for the moderately loaded scenario and the corre-
sponding work assignment using the memory-based proactive partitioning
approach. Table III presents the performance gain on eight processors using
the memory-based proactive partitioning strategy. Without this scheme, the
work is partitioned evenly among processors regardless of their memory
availability and thus the RM3D application experiences long delays. How-
ever, with the memory-based algorithm, the application work is reassigned
to processors according to memory availability, resulting in a significant
reduction in execution time. The results also demonstrate that better per-
formance is achieved under moderately and heavily loaded scenarios since
page faults occur frequently due to lesser available memory.

Fig. 4. Memory-based scheme: moderately loaded scenario, 8 processors.
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Table III. Memory-based partitioning, 8 Processors (Base Grid: 128∗32∗32)

Execution time Execution time
without memory with memory Percentage (%)

Scenarios adaptation (sec) adaptation (sec) improvement

Lightly loaded 6922.14 5210.87 24.72
Moderately loaded 15890.47 7401.61 53.42
Heavily loaded 16962.1 8284.84 51.16

5. CONCLUSION

This paper presented application and system sensitive reactive and
proactive partitioning strategies to optimize the performance of SAMR
applications in distributed and dynamic Grid execution environments.
These strategies form a part of the GridARM autonomic runtime man-
agement framework. The current application state is characterized in
terms of application-level metrics such as computation/communication
requirements, storage requirements, activity dynamics, and the nature
of adaptations. The performance prediction functions are experimentally
formulated in terms of the current system state such as CPU load,
available memory, and bandwidth. The GridARM framework uses the
runtime state information to redistribute and load-balance the applica-
tion in order to address changing application/system requirements and
maximize performance. The experimental evaluation of these runtime
management strategies for different SAMR kernels and system workloads
demonstrates an improvement in overall application performance.
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