
DOI: 10.1007/s10766-005-3581-7
International Journal of Parallel Programming, Vol. 33, Nos. 2/3, June 2005 (© 2005)

Empirical Optimization for a Sparse
Linear Solver: A Case Study

Yoon-Ju Lee,1 Pedro C. Diniz,1 Mary W. Hall,1
and Robert Lucas1

This paper describes initial experiences with semi-automated performance tun-
ing of a sparse linear solver in LS-DYNA, a large, widely used engineering
application. Through a collection of tools supporting empirical optimization,
we alleviate the burden of performance tuning for mapping today’s sophis-
ticated engineering software to increasingly complex hardware platforms. We
describe a tool that automatically isolates code segments to create benchmark
subsets for the purposes of performance tuning. We present a collection of
automatically generated empirical results that demonstrate the sensitivity of
the application’s performance to optimization parameters. Through this case
study, we demonstrate the importance of developing automatic performance
tuning support for performance-sensitive applications.

KEY WORDS: Memory hierarchy optimization; performance tuning.

1. INTRODUCTION

Developers of today’s scientific and engineering applications for high-end
computing platforms spend an inordinate amount of their time tuning the
performance of their application, often far more time than is required to
achieve an initial, working implementation. Further, performance tuning
must be repeated each time the code is ported to a new architecture. The
process of manual performance tuning involves focusing in on a few key

1Information Sciences Institute, University of Southern California, 4676 Admiralty Way,
Suite 1001, Marina del Rey, CA 90292-6695, USA. E-mail: {yoonju, pedro, mhall,
rflucas}@isi.edu

165

0885-7458/05/0600-0165/0 © 2005 Springer Science+Business Media, Inc.



166 Lee et al.

computational components of an application. For each component, the pro-
grammer derives a sequence of different implementations for performing the
same computation. Each variant is first debugged, and then its performance
characteristics are evaluated. This lengthy process continues until the pro-
grammer either arrives at a suitable variant or, as is often the case, decides
to give up on further performance tuning. New variants may be required for
different input data sets, or as the application is ported to other platforms.

We illustrate the complexity of this process with an example taken
from LS-DYNA. The LS-DYNA application is a general-purpose, nonlin-
ear finite element program capable of solving a vast array of engineering
and design problems ranging from bioprosthetic heart valve operation to
automotive crash and earthquake engineering.(1) The LS-DYNA applica-
tion is a commercial derivative of DYNA originally developed at Lawrence
Livermore National Laboratory. It was originally designed to take explicit
time steps, allowing it to model strong shocks and contact. Recently it
has been enhanced to take implicit time steps as well. This improves both
accuracy and time to solution in problems like springback. The computa-
tional bottleneck of implicit LS-DYNA is the solution of a large sparse
system of symmetric indefinite linear equations. The default multifrontal
sparse solver used in LS-DYNA was developed by one of the authors,(2)

and is the computation that is the focus of this paper.
The current implementation has been ported to four different paral-

lel platforms, requiring substantial performance tuning at each port. The
code is primarily written in FORTRAN, but different parallel versions
use OpenMP, MPI and architecture-specific language extensions. Certain
parameters of the algorithm are known by the author to be important
to the application’s sequential and parallel performance, and certain algo-
rithms are more appropriate, depending on execution context. For this rea-
son, implementation variants of the solver’s sub-computations have been
developed to improve performance for particular problem sizes and archi-
tectures, corresponding to different algorithms and different parameter
values. The author would have benefitted greatly from tools to support the
generation and selection among these variants.

The goal of this paper is to examine in detail the performance tuning
process of the application developer for this solver and use this as a guide
towards developing effective tool support to enhance programmer produc-
tivity and improve the quality of the result. A key observation is that
much of what the developer did could be systematized and automated.
This work is being performed in the context of the ECO project, which is
based on the notion of model-guided empirical optimization, whereby code
variants are generated and executed with representative input data sets so
that performance can be measured and compare.(3,4) We begin by describ-



Empirical Optimization for a Sparse Linear Solver 167

ing LS-DYNA’s solver in more detail in Section 2. Section 3 describes
a code isolator tool, which generates executable sub-programs from large
applications, preserving the behavior of the sub-program when run in the
context of the full program. We describe code generation strategies to
derive variants and their parameter values in Section 4, to accomplish
different optimization goals. In Section 5, we focus in on a collection of
results based on the selection of a particular performance-oriented param-
eter. Subsequently, we present related work and a conclusion.

2. LS-DYNA SOLVER

A computational bottleneck of LS-DYNA consists of finding the
solution of a very large, sparse, symmetric, indefinite matrix. Depending
on the specific size and structure of the input data set, the factorization of
this sparse matrix or multiple forward and backward solutions will domi-
nate the run time of the application.

Figure 1(a) depicts a multifrontal elimination tree, which represents
how a large sparse matrix has been transformed into a tree of smaller,
dense problems (the individual triangles). These small dense problems are
called “frontal matrices”. The equations in the children of a given node
of the tree are eliminated before the equations in their parent. After elim-
inating the equations in the child nodes, the computation will update (in
a sparse fashion) the entries in the parent node and then proceed to elim-
inate the equations in the parent node.

Because the frontal matrices are dense, they can be factored using
highly optimized arithmetic routines such as those found in the BLAS3.
This is illustrated in Fig. 1(b), in which a dense symmetric frontal
matrix is subdivided into panels, with triangular diagonal blocks. Once the

Fig. 1. LS-DYNA solver.



168 Lee et al.

equations in the leading panel have been eliminated, the remaining pan-
els can be updated with dense matrix–matrix multiplication kernels. These
matrix–matrix multiplies are naturally written in Fortan to use SAX-
PY inner loops. Selection of panel size (height and width) significantly
impacts register usage, instruction-level parallelism and memory hierar-
chy behavior, and thus was an optimization parameter that was evalu-
ated empirically by the application developer. The computation within a
panel is fully unrolled. Thus, too small a panel leads to under-utilization
of resources, while too large a panel can lead to stalls waiting on over-
committed resources. Finding the appropriate panel size is therefore archi-
tecture specific. Tools to automate selection of panel size for the SAXPY
implementation would greatly accelerate the process of performance tuning
for a new architecture.

Alternatively, the matrix–matrix multiplies can be implemented using
dot products (SDOT), which can be used in place of the SAXPY kernels.
For the SDOT-based kernels, the parameters include the number of elimi-
nated equations and the block size for the updated columns. These param-
eters affect memory hierarchy performance, and the appropriate values are
also architecture specific. Tool support to derive optimal values of these
parameters would also be useful.

Whether SAXPY or SDOT will perform better is a complex function
of the size of the frontal matrix, the numerical properties of the matrix,
the precision of the arithmetic, and architectural features of the com-
puter that performs the calculations. For example, SAXPY loops tuned
for vector processors will in general not perform well when factoring
large frontal matrices on cache-based machines, as the latter typically
do not have sufficient main memory bandwidth to feed the arithme-
tic units. Further, even for a fixed architecture, neither the SAXPY nor
the SDOT matrix–matrix multiply kernels is expected to be universally
optimal even on a specific architecture, as the frontal matrices are of vary-
ing sizes. It would be highly desirable to have a tool that could iden-
tify where each of the many possible implementations is optimal, and
dynamically switch between them during the application’s execution. At
a higher level, the ordering of equations in the factorization is another
parameter that can significantly impact performance, as is discussed else-
where.(5)

Ordering the equations in the factorization, deciding between SAX-
PY and SDOT, and selecting parameter values for panel sizes and block
sizes have all been done manually to date. In the remainder of the paper,
we describe tools to support this process. We also present a collection
of empirical results, obtained automatically, that measure the performance
impact of varying panel size for SAXPY and block size for SDOT.



Empirical Optimization for a Sparse Linear Solver 169

3. ISOLATING CODE FRAGMENTS

Large application codes can consist of millions of lines of code; the
current LS-DYNA is almost half million lines of code. Typically, the key
computations in such a code comprise only a small fraction of the over-
all size.2 Further, the overall program may execute for hours, or sometimes
even days. To tune application performance, it would be far less cumber-
some to run just the key computation, isolated from the rest of the pro-
gram. This permits bypassing the irrelevant computation and facilitating
quick compiles and runs of the variants.

Fig. 2. A code isolator.

For this purpose, we have developed a tool called a code isolator.(6)

The goal of the code isolator is to produce an isolated version of the code
that can be compiled and executed with inputs representative of the origi-
nal program, and initializing the machine state such that execution of the
isolated code segment mimics the performance behavior of the computa-
tion when executing in the full program.

Figure 2 presents an overview of how the code isolator achieves these
results. Let us assume that a core computation has been selected for iso-
lation. Identifying code that merits isolation is beyond the scope of this

2 This is often referred to as the 90-10 rule of thumb: a program typically spends 90% of
its time in 10% of the code.



170 Lee et al.

paper, but a number of automatic or user-directed techniques can be used;
as examples, the user could select and annotate the computation, it could
be selected by the compiler as a result of profiling, or it could be triggered
by code that failed to meet a user’s performance expectations.(7)

As is shown in Fig. 2(a), the code isolator instruments the original
application to capture initial machine state and representative input data
values, just prior to executing the code to be isolated. The tool generates
a version of the isolated code, as shown in Fig. 2(b), with the data set and
machine state initialized. The isolated code is encapsulated in a function,
which is invoked by a main program.

We have implemented the code isolator in the Stanford SUIF com-
piler as part of the ECO project,(3,8) with some modest manual interven-
tion, and we describe its features in the remainder of this section. We
first describe how to generate isolated code that can be compiled, followed
by code that can be executed and subsequently describe how to initialize
machine state of the isolated code.

3.1. Compilable Isolated Program

The first step of the code isolator is to automatically extract from
application programs key code segments, such as a loop nest computa-
tion. In Fig. 2, a code segment is selected from the original program to
create the isolated procedure called OutlineFunc(〈InputParameters〉). The
isolated procedure is generated by the outline transformation based on the
SUIF compiler library.

Outlining takes a body of code and forms a function; input data that
is live on entry to the code is passed as a parameter. The isolated program
consists of two parts: the main procedure and the outlined procedure (see
Fig. 2(b)). The main procedure calls the outlined procedure and includes
all parameters in its local symbol tables.

3.2. Executable Isolated Program

In the second step, the code isolator creates an executable program.
The set 〈InputParameters〉 must be initialized prior to invoking the out-
line procedure in the isolated program. First of all, if the isolated code
includes undefined sizes of arrays, then the lower and upper bounds of
array sizes are determined through instrumenting the original program.
Second of all, data values are extracted from the original program, and are
initialized in the isolated program. In Fig. 2(a), the StoreInitialDataValues
module saves input parameter data from the original program into a file.



Empirical Optimization for a Sparse Linear Solver 171

In Fig. 2(b), the SetInitialDataValues module assigns initial data values to
the 〈InputParameters〉 before setting up the call to the outlined proce-
dure in the main procedure of the isolated program, by reading the input
data from a file.

3.3. Setting the Machine State

In the final step of the code isolator, the state of the machine from
the original program is captured through instrumentation, and is set dur-
ing initialization in the isolated code. The machine state describes all rel-
evant state of the target architecture, including register, cache memory,
TLB, and so on, that will impact the performance of the isolated code. In
Fig. 2(a), the CaptureMachineState module executes just prior to the iso-
lated code fragment in the original program. As a starting point of this
research, we focus on achieving comparable cache behavior from the orig-
inal code.

The tool must identify what data accessed by the isolated code is
already in cache, and ideally, it is also important to know where the data
is located in cache to predict when replacement will occur. For these pur-
poses, we capture an address trace for a small portion of the code that
executes immediately prior to the isolated code fragment. Using a cache
simulator, we determine which of these addresses remain in cache at the
entry of the isolated code. We also capture an address trace for the iso-
lated code, and determine what data accessed by the isolated code will be
in cache as a result of executing its preceding code. To reduce the amount
of preceding code that must be traced, we use analysis to identify how
much code must be executed to achieve the comparable cache state. Con-
ceptually, we examine the code prior to the isolated code fragment in a
reverse traversal. Using an adaptation of the region-based interprocedural
array data-flow analysis described in,(9) we determine the minimum data
footprint of each code region. When analysis can prove that the data foot-
print of preceding code exceeds the cache capacity, there is no need to
traverse the code further. This is the point in the preceding code where
address tracing should begin.

The module SetMachineState initializes the cache to include the cache
blocks identified by the analysis to capture the machine state, previously
described. To set the machine state in the isolated code, after initializing
the data values, we flush the cache. Subsequently, we prefetch into cache
the desired cache blocks. Using the array index of the first element of the
cache line, we insert prefetch instructions into the source code. On the SGI
Origin, our target architecture, we insert a set of #pragma prefetch−ref
directives, which are supported by the MIPSpro compiler.(10)



172 Lee et al.

4. GENERATING AND SEARCHING VARIANTS

Once a core computation has been isolated, the compiler needs to
generate a collection of program variants to be tested and compared. If we
consider the LS-DYNA solver in Section 2, the variants include different
optimization parameters (unroll factors for SAXPY’s panels, unroll factors
and tile size for SDOT’s blocks), different algorithm choices (SAXPY ver-
sus SDOT and different equation orders), and the composition of different
variants.

For specific optimization parameters such as unroll factor selection or
tile size, it is somewhat straightforward to generate the variants, although
it is more difficult to determine which variants are of interest. Compiler
analyses and models such as reuse analysis and modeling of cache behav-
ior can suggest appropriate loop ordering options, which loops should be
unrolled, which loops should be tiled, and other optimizations such as
copying and prefetching for cache, as discussed in previous work.(4) Select-
ing a particular parameter value requires searching the space of possi-
ble values for that parameter. That search space can be quite large, and
searching the entire space can be prohibitively expensive in the general
case. Thus, it is important to exploit compiler knowledge of optimization
properties to prune from the search unprofitable parameter values. For
example, a tile size whose footprint exceeds the cache size is too large.
Once we consider multiple levels of the memory hierarchy, our prelimi-
nary experience suggests enough constraints can be derived on variants
and parameters to limit the search to something manageable, a subject of
current and future work.(3,4)

For algorithm variants, user guidance is required, both to implement
the different variants, and to indicate that the two are equivalent. A lin-
guistic mechanism called a selector for specifying variants and dynamic
criteria for selection of variants is described elsewhere.(5) In the absence of
user-specified selection criteria, a tool could automatically search the space
of alternative implementations under different run-time conditions.

5. EXPERIMENTS

We now examine the benefits of an empirical approach to derive
the selection of a parameter value for a specific target high-performance
machine and for a selected phase of the solution of a sparse linear system
of equations—the factorization phase as described in Section 2. We pres-
ent preliminary experiments for two variants of the elimination step in the
factorization phase. One step uses a SAXPY-based kernel computation for
which we vary the panel size. Another step uses a SDOT-based kernel for



Empirical Optimization for a Sparse Linear Solver 173

which we vary the block size. Our target single processor platform consists
of a 195 Mz MIPS R10K CPU with a MIPS R10010 FPU, a main mem-
ory of 3 GB, L1 data and instruction caches of 32 KB each and a unified
instruction/data L2 cache of 4 MB. The entire application was compiled
with the native F90 compiler with the –03 flags.

5.1. Input Data Set

For this experiment we used a data set derived from an automotive
crash problem, named Hood, which simulates the mechanical deformation
of a hood of a vehicle in a frontal impact scenario as depicted in Fig. 3.
This Hood data set input consists of a sparse-matrix for a linear system
with 235 K equations using approximately 59 MB of primary storage. The
symbolic decomposition of the system yields an elimination tree with 14,663
super-nodes. The distribution of the size of the resulting frontal matrices is
depicted in Fig. 4(a). There are a large number of small nodes in the tree
and relatively few large ones, near the root. The largest frontal matrix has
approximately 2100 equations. For a specific implementation of the algo-
rithm using SDOT kernels, Fig. 4(b) shows the factorization time on average
for each sub-matrix size, while Fig. 4(c) presents the cumulative execution
time distribution based on sub-matrix size. As can be seen from the figures,
despite the distribution heavily biased towards smaller frontal matrices, the
bulk of the work is concentrated in the larger, less numerous matrices, as
the amount of work per sub-matrix is cubic.

Fig. 3. Hood frame deformation in a frontal impact scenario.



174 Lee et al.

100 300 500 700 900 11001300150017001900 2100
0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
r 

of
 O

cc
ur

en
ce

s

Sub-matrix Size
100 300 500 700 900 11001300150017001900 2100

0

1

2

3

4

5

6

7

8

T
im

e 
(s

ec
s)

T
im

e 
(s

ec
s)

Sub-matrix Size
100 300 500 700 900 11001300150017001900 2100

0

1

2

3

4

5

6

7

8

Sub-matrix Size

(a) (b) (c)

Fig. 4. Sub-matrix size distribution (a), factorization time (b), and cumulative factorization
time (c) for the Hood input data set.

5.2. Panel Size for SAXPY Kernels

In this experiment, we compute the performance of the SAXPY ker-
nels as a function of panel shape. For each run, we execute the solver
holding the panel shape fixed for all sub-matrix sizes. We have focused
our attention on the selection of the panel size and ratio of its height and
width, i.e., the number of equations that are eliminated from a panel of
columns of the matrix during an elimination.

Panel shape is designated by xRyC, with varying designations of x

and y corresponding to the number of rows and columns in a panel,
respectively. For each panel shape, we perform within an inner loop body
the entire execution of the SAXPY operation resulting in the elimina-
tion of the pivot block from a panel of columns of the triangular matrix.
The code transformation applied is unroll-and-jam;(11) two outer loops of a
3-deep loop nest are unrolled and the resulting inner loop bodies are fused
together.

To support this experiment for a wide variety of panel shapes, we
have developed a set of FORTRAN code generation functions specific to
the triangular nature of the storage of the matrix. These code generators
create a partial calling tree that generates the subroutines that carry out
the elimination. It also includes the sophisticated code that handles the
boundary condition when the number of equations being updated does
not evenly divide the number of equations in the panel. The code gener-
ation functions also modify the code that invokes these subroutines and
are responsible for sweeping through the entire sub-matrix of each node
in the elimination tree as described in Section 2. For each panel selec-
tion, the script that supports the experiment generates the appropriate file
with the corresponding functions and recompiles and links the applica-
tion generating a new executable image. This approach aims at reducing
the size of the executable since accumulating all of the binaries in a sin-
gle executable could lead to instruction cache misses. For each panel size,



Empirical Optimization for a Sparse Linear Solver 175

the scripts generate three new subroutines. These vary in size according to
the panel shape as their internal loops are explicitly unrolled. Given the
already large executable size of the selected target application, the added
image size is very negligible. Lastly, the script and code generation func-
tion can also include library calls to PAPI(12) to monitor the execution
behavior of the code for each panel through the elimination process.

Figure 5 presents the speedup results for several of the panel shapes.
The baseline execution time for the performance comparisons is the fac-
torization time in which individual equations are eliminated from all the
remaining equations using Gaussian-Elimination (GE) within each frontal
matrix. The results do not include the panel shapes of 1R1C as the current
code generation scheme would generate too many subroutine calls, nega-
tively biasing the performance of the generated code. In the future we plan
to address this issue by modifying the call-chain appropriately. For all of
the results reported here we collected the data corresponding to five execu-
tions and used the average of the three median runs, i.e., we have ignored
the best and worst performing runs.

Overall the results show a maximum speedup of 2.6 for the panels
with shapes 10R2C and 10R6C over the single equation GE implemen-
tation. (Note that these speedups are less than previously reported speed-
ups in(8) as we have manually improved the performance of the baseline
by the application of scalar replacement.) We see from the results that it
is more beneficial to unroll rows versus columns. For example, the result
for 4R2C is 1.17 times faster than that of 2R4C, presumably due to more
data reuse for data in different rows within a column. The results also
reveal a saturation effect reflecting diminishing returns for very substantial

1C 2C 3C 4C 5C 6C 7C 8C
0

0.5

1

1.5

2

2.5

3

S
pe

ed
up

Number of Columns Updated

2R

4R

6R

8R

10R

Number of Equations
Eliminated

Fig. 5. Hood speedup on MIPS R10K target machine.



176 Lee et al.

programming and verification efforts. This is due to register pressure and
floating-point stalls for large unroll factors.

We are currently investigating automatic ways of understanding the
implication of architecture features that directly contribute to this behav-
ior. For example, larger panel selection and subsequent unrolling can lead
to increased required bandwidth and register pressure. The inability of a
compiler to adequately reschedule FP operations in the presence of pipe-
line hazards can also lead to further performance degradation.

5.3. Block Size for SDOT Kernels

We also present preliminary results for varying the block size for
the alternative SDOT-based kernels. The block size for the SDOT ker-
nels determines the length of the inner product loops. Unlike the previous
experiment, the unroll factors for the two innermost loops are held fixed at
unroll factors of four each. As in the previous experiment, we have instru-
mented this implementation using PAPI, to measure both wall-clock time
and values of various performance monitors.

Figure 6 depicts the performance of block sizes for distinct sub-matrix
sizes. Each curve represents a particular block size. As each sub-matrix
occurs multiple times during a given factorization, the results reflect the
average MFLOPS for each sub-matrix size.3 The results reveal the opti-
mal selection of the block size for three regions of the space of sub-matrix
sizes for this input data. A block size of 128 yields the best results for
the small sub-matrices of Region1 (less than 255). In Region2 (between 255
and 265), the block size of 48 works best. Finally, the block size of 64 pro-
duces the best performance for the large sub-matrices in Region3 (greater
than 265). Using these regions in an adaptive strategy, we measured the
performance of an adaptive implementation that dynamically selects one
of these three block sizes depending on the region of the sub-matrix size.
The additional curve, called Adaptive, presents the results of this dynamic
strategy, which leads to the best overall performance.

Table I provides insight into how the block size impacts performance
as a function of sub-matrix size. The table depicts the performance results
in terms of both FLOPS and Cache Misses for L1 and L2 caches for the
five different block sizes and the Adaptive algorithm, given fixed unroll
factors. Among the five fixed block sizes, the best results are obtained
for a block size of 64, revealing that the L1 cache behavior is best for
the smallest block size, whereas L2 behavior improves as the block size
increases. The best result has neither the smallest number of L1 cache

3 The x-axis in this plot bins the sub-matrix size in bins of size 5.



Empirical Optimization for a Sparse Linear Solver 177

45 105 185 275 340 455 600 780 900 1260
100

110

120

130

140

150

160

170

S
P

O
L

F
M

Sub-matrix Size

32

48

64

96

128

Adaptive

Block SizeRegion 1 Region 2 Region 3

Fig. 6. MFLOPS distribution with different block sizes.

Table I. Performance Results for Different Block Sizes, Using SDOT

Block size FLOPS L1 Cache misses L2 Cache misses

32 135.33M 339M 9.1M
48 139.65M 380M 8.6M
64 140.83M 400M 7.6M
96 139.02M 671M 7.4M
128 127.68M 1599M 7.2M

Adaptive 141.25M 395M 7.9M

misses nor the smallest number of L2 cache misses, but rather represents
the “sweet spot" in simultaneously optimizing for both levels of the mem-
ory hierarchy. When we use the Adaptive block size selection, the number
of FLOPS increases by around 0.42M beyond that of a block size of 64.
The results for a block size of 64 are close to that of the Adaptive algo-
rithm, since from Fig. 4(c), roughly 84% of the execution time is spent on
sub-matrix sizes in Region 3, while Region 1 and 2 account for less than
7% and 10% of the execution time, respectively.

5.4. Discussion

Taken together, these results show that automating the search for
optimization parameters is within the capabilities of current compilation
systems and can identify parameters yielding the optimal performance
for a particular architecture and input data set. Interestingly, the optimal



178 Lee et al.

parameter values identified through this automatic approach were also
found by the developer using a manual strategy, but required a substan-
tial increase in effort over our approach. There is much work to be done
to compose a collection of variants and parameter values, but this is the
subject of current work in the ECO project.(4)

6. RELATED WORK

There are several on-going research projects in empirical optimization
of scientific libraries, ATLAS,(13) PhiPAC(14) and domain-specific libraries
UHFFT,(15) FFTW,(16) and SPIRAL.(17) The ATLAS system generates
high performance implementations of the Basic Linear Algebra Subrou-
tines (BLAS) based on empirical performance data. The PHiPAC system
generates highly tuned implementations of matrix multiply, with perfor-
mance comparable to hand-tuned vendor libraries, by searching a large
space of potential optimizations. The FFTW system uses a combination
of static models and empirical techniques to optimize FFTs. The SPI-
RAL system generates optimized digital signal processing (DSP) libraries
by searching a large space of implementation choices and evaluating their
performance empirically.

There has been extensive research on improving the cache perfor-
mance of scientific applications (e.g., Refs. 11, 18 and 19). Loop opti-
mizations for improving data locality, such as tiling, interchanging and
skewing, focus on reducing cache capacity misses as well as conflict misses
which play an important factor on the performance of tiled loop nests
(see e.g., Refs. 20–23). Most of the work in this area has focused on the
development of analytical, static models, rather than relying on empirical
performance measures. As such researchers have developed a wide range
of models for cache miss analysis with varying degree of accuracy and
cost,(24,25) as a way to guide the application of data transformations (e.g.,
tile copying(26)).

Other researchers have also recognized the lack of adequate pro-
gramming language support for applications that must react to changing
environments. Currently, programmers must intermix their application
code with run-time system calls that implement the desired adaptation
or optimization policies. The resulting code is complex and virtually
impossible to port and maintain. In ADAPT,(27) researchers have defined
new languages used exclusively to specify adaptation policies, triggering
events and performance metrics. Programmers develop their base applica-
tion textually independently from their adaptation specification. An alter-
native approach extends existing languages to provide hints or directives to



Empirical Optimization for a Sparse Linear Solver 179

the compiler about the dynamic nature of the application. Adve et al.(28)

describe an extension to the class hierarchy of an objected-oriented model
of computation that defines three basic concepts for dynamic adaptation—
adaptors, metrics and events.

7. CONCLUSIONS

This paper has presented a case study illustrating how software tools
can be used to greatly accelerate the process of performance tuning, lead-
ing to better application performance as well as increasing productivity
of programmers of high-end systems. Examining issues in optimizing LS-
DYNA has influenced the technology we are developing in the ECO pro-
ject.(3) In this paper, we have described a tool for isolating code segments
from large programs, such that the isolated code can be used in place
of running the full application. We have described automatic code gener-
ation of parameterized implementation variants. We have also presented
a set of results where parameterized variants are generated and com-
pared for a sparse solver in LS-DYNA. Our long-term goal is to develop
tools and methodologies that allow a programmer to discover performance
bottle-necks by a mixture of static analysis and profiling, automatically
generating variants using known compiler-based optimizations, and empir-
ically determining the best. This will dramatically reduce the human time
and cost associated with performance optimization that inevitably crops
up when codes are ported to new systems or extended to address new
problems.

ACKNOWLEDGMENT

Work sponsored by the National Science Foundation (NSF) under
award ACI-0204040.

REFERENCES

1. LS-DYNA User’s Manual V. 960, Livermore Software Technology Corporation,
http://www.lstc.com (March 2001).

2. C. Ashcraft and R. F Lucas, A Stackless Multifrontal Method, in Proc. 10th SIAM
Conference on Parallel Processing for Scientific Computing (March 2001).

3. N. Baradaran, J. Chame, C. Chen, P. Diniz, M. Hall, Y. Lee, B. Liu, and R. Lucas,
ECO: An Empirical-based Compilation and Optimization System, in Proc. of the
Workshop on Next Generation Software, held in conjunction with IPDPS’03 (April
2003).



180 Lee et al.

4. C. Chen, J. Chame, and M. Hall, Combining Models and Guided Empirical Search
to Optimize for Multiple Levels of the Memory Hierarchy, in Int. Symposium on Code
Generation and Optimization (CGO’05) (March, 2005).

5. P. Diniz and B. Liu, Selector: An Effective Technique for Adaptive Computing,
in Proc. of the 15th Workshop on Languages and Compilers for Parallel Computing
(LCPC’02) (July, 2002).

6. Y. Lee and M. Hall, A Code Isolator: Isolating Code Fragments from Large pro-
grams, in Proc. of the 17th Workshop on Languages and Compilers for Parallel Com-
puting (LCPC’04) (September, 2004).

7. J. S. Vetter and P. Worley, Asserting Performance Expectations, in Proc. of Supercom-
puting’02 (November, 2002).

8. P. Diniz, Y. Lee, M. Hall, and R. Lucas, A Case Study Using Empirical Optimization
for a Large, Engineering Application, in Proc. of the Workshop on Next Generation
Software, held in Conjunction with IPDPS’04 (April, 2003).

9. M. Hall, S. Amarasinghe, B. Murphy, S. Liao, and M. Lam, and M. Lam, Interpro-
cedural Parallelization Analysis in SUIF, in ACM Trans. on Programming Languages
and Systems (2005).

10. MIPSpro C and C++ Pragmas, Document Number 007-3587-003, 1998, 1999 Silicon
Graphics, Inc.

11. S. Carr and K. Kennedy, Improving the Ratio of Memory Operations to Floating-
Point Operations in Loops, in ACM Trans. on Programming Languages and Systems
(TOPLAS), 15(3), pp. 400–462 (July, 1994).

12. K. London, J. Dongarra, S. Moore, P Mucci, K. Seymour, and T. Spencer, End-user
Tools for Application Performance Analysis, Using Hardware Counters, Intl. Confer-
ence on Parallel and Distributed Computing Systems (August, 2001).

13. C. Whaley and J. Dongarra, Automatically tuned linear algebra software, in. Proc. of
Super-computing ’98 (1998).

14. J. Bilmes, K. Asanovic, C.-W. Chen, and J. Demmel, Optimizing Matrix Multiply using
PHiPAC: Portable High-Performance ANSI-C Coding Methodology, in Proc. of the
ACM International Conference on Supercomputing ’97 (1997).

15. D. Mirkovic and S.L. Johnsson, Automatic Performance Tuning in the UHFFT
Library, in Proc. of the International conference on Computational Science (ICCS’01)
(May, 2001).

16. M. Frigo, A Fast Fourier Transform Compiler, in Proc. of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’99) (June,
1999).

17. J. Xiong, J. Johnson, R. Johnson, and D. Padua, SPL: A Language and Compiler for
DSP Algorithms, in Proc. of the ACM Conference on Programming Language Design
and Implementation (PLDI’01) (June, 2001).

18. M. Wolf and M. Lam, A Data Locality Optimization Algorithm, in Proc. of the
1991 ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI’91) (June, 1991).

19. M. Wolfe, More iteration space tiling, in Proc. of Supercomputing ’89 (November,
1989).

20. J. Chame and S. Moon, A Title Selection Algorithm for Data Locality and Cache
Interference, in Proc. of the 1999 ACM International Conference on Supercomputing’ 99
(June, 1999).

21. S. Coleman and K. McKinley, Tile Size Selection Using Cache Organization and Data
Layout, in Proc. of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’95) (June, 1995).



Empirical Optimization for a Sparse Linear Solver 181

22. G. Rivera and C.-W. Tseng, Data Transformations for Eliminating Conflict Misses, in
Proc. of the ACM Conference on Programming Language Design and Implementation
(PLDI’98) (June, 1998).

23. M. Lam, E. Rothberg, and M. Wolf, The Cache Performance and Optimization of
Blocked Algorithms, in Proc. of the 4th International conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS’91) (April, 1991).

24. S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck, Exact Analysis of the Cache
Behavior of Nested Loops, in Proc. of the 2001 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI’01) (June, 2001).

25. S. Ghosh, M. Martonosi, and S. Malik, Precise Miss Analysis for Program Trans-
formations with Caches of Arbitrary Associativity, in Proc. of the 8th International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’98) (October, 1998).

26. O. Temam, E. Granston, and W. Jalby, To Copy or not to Copy: A Compile-time
Technique for Assessing When Data Copying Should be Used to Eliminate Cache
Conflicts, in Proc. of Supercomputing ’93 (November, 1993).

27. M. Voss and R. Eigenmann, High-Level Adaptive Program Optimization with ADAPT,
in Proc. of the ACM SIGPLAN Conference on Principles and Practice of Parallel Pro-
cessing (PPoPP’01) (June, 2001).

28. V. Adve, V. Lam, and B. Ensink, Language and Compiler Support for Adaptive Dis-
tributed Applications, in Proc. of the ACM SIGPLAN Workshop on Optimization of
Middleware and Distributed Systems (OM’01) (June, 2001).


