
DOI: 10.1007/s10766-005-3580-8
International Journal of Parallel Programming, Vol. 33, Nos. 2/3, June 2005 (© 2005)

Generic Programming
and High-Performance Libraries

Douglas Gregor,1,5 Jaakko Järvi,2 Mayuresh Kulkarni,3
Andrew Lumsdaine,1 David Musser,3
and Sibylle Schupp4

Generic programming is an especially attractive paradigm for developing libraries
for high-performance computing because it simultaneously emphasizes generality
and efficiency. In the generic programming approach, interfaces are based on sets
of specified requirements on types, rather than on any particular types, allowing
algorithms to inter-operate with any data types meeting the necessary require-
ments. These sets of requirements, known as concepts, can specify syntactic as
well as semantic requirements. Besides providing a powerful means of describing
interfaces to maximize software reuse, concepts provide a uniform mechanism for
more closely coupling libraries with compilers and for effecting domain-specific
library-based compiler extensions. To realize this goal however, programming lan-
guages and their associated tools must support concepts as first-class constructs.
In this paper we advocate better syntactic and semantic support to make concepts
first-class and present results demonstrating the kinds of improvements that are
possible with static checking, compiler optimization, and algorithm correctness
proofs for generic libraries based on concepts.
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1. INTRODUCTION

Software libraries are an important means of achieving software reuse and
capturing domain-specific knowledge. Libraries are particularly important
in high-performance computing because significant domain expertise—
necessary to support the application area and necessary to support high
performance—must be captured. Typically, software libraries are consid-
ered to be collections of functions and data types. In this paper, we
propose a broader view of libraries and advocate the generic program-
ming approach to library construction. With the generic programming
approach, libraries can be much more tightly coupled to compilers, allow-
ing libraries to provide highly-reusable data types and algorithms, but
domain-specific optimizations and analyses as well.

Several aspects of generic programming make it particularly attrac-
tive for developing libraries for high-performance computing. Generic pro-
gramming emphasizes finding the most general (or abstract) formulations
of algorithms and then implementing efficient generic representations of
them. Although these two features, generality and efficiency, are often con-
sidered to be opposing forces, generic algorithms are expected to be usable
in as many situations as possible without sacrificing any performance at
all.

A key aspect of generic programming is that generic algorithms are
specified in terms of abstract properties of types, not in terms of particu-
lar types. Following the terminology of Stepanov and Austern, we adopt
the term concept to mean the formalization of an abstraction as a set of
requirements on a type (or on a set of types).(1) These requirements may
be semantic as well as syntactic. Concepts are central to generic program-
ming and provide a unifying basis for providing maximally reusable algo-
rithms and for effecting closer coupling between compilers and libraries,
thus enabling domain-specific optimizations and analyses.

Although many languages have support for “generics,” concepts are
not true first-class entities in current programming languages. As a result,
it is difficult to fully leverage the potential of generic programming in
modern software construction. For example, the work in Ref. 2 describes
serious scalability issues and other difficulties that arise when attempt-
ing to realize generic programming in languages that do not support the
expression of even simple concepts (e.g., those including only syntactic
requirements). Section 2 analyzes the expression of syntactic requirements
for concepts and their use in library development.

In almost all programming languages and all uses of concepts in
actual software development practice to date, semantic requirements have
only appeared in externally and informally expressed concepts, such as
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in the SGI concept descriptions for the STL,(1, 3) rather than in a
machine-checkable concept language. The main exceptions have been the
tagging of certain operators with semantic attributes such as commuta-
tivity and associativity, and checking for their presence during instantia-
tion; e.g., in the Axiom computer algebra system(4) or in very high level
prototyping languages like Maude(5) (which does allow the expression of
semantic equations within the language, but does not back them up with
formal inference capabilities beyond their use as rewriting rules in sym-
bolic executions). In Section 3 we discuss less limited forms of semantic
constraint checking implemented in STLlint, a tool we developed for static
checking of C++ programs that use the STL or other libraries in the same
spirit.(6, 7) We further discuss even more general forms of semantic con-
straint checking that are feasible using formal proof-checking methods.

In addition to constraints on functionality, semantic concepts can
include performance constraints. We have experimented extensively with
expression and organization of such constraints in algorithm concept taxo-
nomies. A major use of such taxonomies is to provide a well-developed
standard to refer to while designing and implementing a generic algo-
rithm library. We began by developing sequential algorithm concept taxo-
nomies(8) for two fundamental problem domains, sequence algorithms
from the STL and graph algorithms from BGL.(9) In these cases, use-
ful performance constraints to place on the algorithms were already fairly
well-understood at the level of asymptotic bounds, but making distinc-
tions between some of the algorithms in these domains requires more pre-
cision; finding ways to express that precision so that the constraints can
make useful distinctions has been a major focus of the work. With par-
allel and distributed algorithms, there are additional challenges in devel-
oping a library standard in terms of concept taxonomies, as we discuss in
Section 4.

2. SYNTACTIC CONCEPTS

A concept consists of four different kinds of requirements: asso-
ciated types, function signatures, semantic constraints, and complexity
guarantees. The associated types of a concept specify mappings from the
modeling type to other collaborating types (such as the mapping from
a container to the type of its elements). The function signatures specify
the operations that must be implemented for the modeling type. Alterna-
tively, these can be expressed as valid expressions, which specify operator
and function invocations that must be supported by the modeling type or
types. A syntactic concept consists of just associated types and function
signatures, whereas a semantic concept also includes semantic constraints
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and complexity guarantees.(10) A concept may incorporate the require-
ments of another concept, in which case the first concept is said to refine
the second. Types that meet the requirements of a concept are said to
model the concept.

Syntactic concept requirements have traditionally been specified infor-
mally in documentation(9, 11, 12) due to the lack of proper language sup-
port. Although C++ has proven successful for generic programming despite
its lack of language support, we have also applied the generic program-
ming approach to several object-oriented languages, including Generic Java,
C#, and Eiffel, and have reported notable difficulties.(2) These languages
use subtyping to constrain type parameters. Even though subtype-based
constraints may not to be ideal for generic programming, most of the
difficulties we encountered originate from how languages define subtyping,
rather than being inherent to subtype-based constraints. Current object-
oriented languages could be extended to better support generic program-
ming without drastic modifications to or departing significantly from the
object-oriented paradigm. In particular, this section discusses how express-
ing associated types and constraints on them could be better supported,
and describes extensions needed to support concept-bounded polymorphism,
constraint propagation, and multi-type concepts.

2.1. Concept-Bounded Polymorphism

Generic programming has its roots in the higher-order programming
style often used in functional programming languages.(13) Functions are
generalized by type and function parameters. The higher-order style can
express generic functions, but has the obvious disadvantage of requiring a
large number of parameters for generic functions; each function that the
implementation of a generic function relies on must be explicitly passed to
the generic function. This style obtains genericity using only unconstrained
parametric polymorphism.

The C++ template system(14) implements unconstrained paramet-
ric polymorphism and has been used extensively for generic program-
ming.(9, 12) However, the lack of first-class support for concepts in the
language has spawned various usability problems. First, the compiler is
unable to verify that a data type passed to a generic (template) function
models the concepts required by the algorithm. For syntactic concepts,
passing a non-conforming data type usually results in lengthy error mes-
sages referring to the implementation of the generic function instead of
the actual point of error at the function call.(15) Second, the compiler
is unable to verify (even syntactically) that a generic function uses only
the operations defined in the concepts it requires. Thus, errors in generic



Generic Programming and High-Performance Libraries 149

function implementations often go unnoticed until a user provides a data
type meeting only the minimal stated requirements (but not the implicit
requirements of the generic function). Finally, it is often desirable to select
from several implementations of a function based solely on the concepts
modeled by the arguments, a process we refer to as concept-based overload-
ing. For instance, when applying a sorting algorithm to a data structure,
we must consider how the elements in the data structure are accessed: if
they can only be accessed linearly (as with a linked list) we might select a
default algorithm, but if they can be accessed efficiently via indexing (as
with an array) we can apply the more-efficient quicksort algorithm.

Ad hoc techniques exist in C++ to address the above shortcomings,
although all are incomplete. Concept checking (16, 17) verifies syntactic
concept conformance of arguments to generic functions, reducing the
amount of irrelevant and misleading information in error messages, while
post-processing of compiler error messages(15) eliminates redundant infor-
mation and improves clarity. Concept archetypes,(16,17) on the other hand,
are minimal syntactic models of concepts that can be passed to generic
functions to verify that the generic functions do not require syntax not
captured in a concept. Concept-based overloading has enjoyed more suc-
cess in C++, both via the widely-used method of tag dispatching(12)

and via arbitrary overloading.(18) While each of these techniques has
proven useful, C++ still lacks a coherent system for expressing concept
constraints on type parameters.

A rudimentary approach for expressing constraints on type parame-
ters is the where clause mechanism, various forms of which can be found
in CLU,(19) Theta,(20) and Ada.(21) A where clause lists function signa-
tures in the declaration of a generic function. The listed functions must
exist at each call site, and are implicitly passed into the generic function.
This makes calls to generic functions less verbose. Where clauses do not,
however, provide a way to group requirements into reusable entities, i.e.,
concepts.

Haskell type classes(22) provide constraint mechanisms that share
much in common with concepts. Type classes contain function signatures,
and optionally their default implementations. Type class constraints define
the “context,” the set of functions that can be used in a generic func-
tion. The functions in required contexts are implicitly passed into the
generic function. Types must be explicitly declared to be instances of type
classes. Thus, when using type classes to represent concepts, the model-
ing relation between types and concepts is by nominal conformance. Type
classes provide a relatively direct representation for concepts. Type clas-
ses cannot, however, properly encapsulate associated types, as discussed in
Ref. 2.
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ML signatures are a structural constraint mechanism that can rep-
resent syntactic concepts. A signature describes the public interface of a
module, or structure as it is called in ML. A signature declares which type
names, values (functions), and nested structures must appear in a struc-
ture. A signature also defines a type for each value, and a signature for
each nested structure. The ML mechanism for constrained genericity is
functors, which are metafunctions from structures to structures. Each argu-
ment of a functor is constrained to conform to a particular signature. This
is less than ideal for generic programming, where one wants to constrain
the type parameters of a single function. Each structure parameter to a
functor must be passed in explicitly, which makes calls verbose.(2)

2.2. Associated Types

Associated type constraints are a mechanism to encapsulate con-
straints on several functionally dependent types into one entity. For exam-
ple, consider Figs. 1 and 2 showing two concepts from the domain of
graphs. The Incidence Graph concept requires the existence of vertex and
edge associated types, and places constraints on them.

All but the most trivial concepts have associated type requirements,
and thus a language for generic programming must support their expres-
sion. Within C++, associated types (and other concept information) are

Expression Return Type or Description

Edge::vertex type Associated vertex type
source(e) Edge::vertex type
target(e) Edge::vertex type

Fig. 1. Graph Edge concept. Type Edge is a model of Graph
Edge if the above requirements are satisfied. Object e is of type
Edge.

Expression Return Type or Description

Graph::vertex type Associated vertex type
Graph::edge type Associated edge type
Graph::out edge iterator Associated iterator type
out edge iterator::value type == edge type
edge type models Graph Edge
out edge iterator models Iterator
out edges(v,g) out edge iterator
out degree(v,g) out edge iterator

Fig. 2. Incidence Graph concept. Type Graph is a model of
Incidence Graph if the above requirements are satisfied. Object g
is of type Graph and object v is of type Graph::vertex type.
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typically encapsulated within traits classes.(23) Generic Java and C# do
not, however, provide a way to access and place constraints on type mem-
bers of generic type parameters. Nevertheless, associated types can be
emulated using other language mechanisms. A common idiom used to
work around the lack of support for associated types is to add a new type
parameter for each associated type. This approach is frequently used in
practice. The C# IEnumerable<T> interface, from the Generic C# collec-
tion library, for iterating through containers serves as an example. When a
type implements IEnumerable<T> it must bind a concrete value, the value
type of the container, to the type parameter T. The graph concepts in
Figs. 1 and 2 can be expressed as follows:

interface GraphEdge<Vertex>{
Vertex source();
Vertex target();

}
interface IncidenceGraph<Vertex, Edge, OutEdgeIter>

where Edge : GraphEdge<Vertex>,
OutEdgelter: IEnumerable<Edge>{

OutEdgeIter out edges(Vertex v);
int out degree(Vertex v);

}
The main problem with this technique is that it fails to encapsulate

associated types and their constraints into a single concept abstraction.
Every use of a concept as a constraint of a generic function or a refine-
ment declaration must list all of its associated types, and all constraints on
those types. In a concept with several associated types, this becomes bur-
densome. In the study described in Ref. 2, the number of type parameters
in generic algorithms was often more than doubled due to this effect.

Adding a direct representation for associated types to an object-
oriented language, such as Generic C#, can be achieved by allowing mem-
ber types in interfaces. Such members are place-holders for types, for
which interfaces can place subtype constraints. Classes implementing such
interfaces must bind a concrete value to every member type.

As an example, using member types the graph concepts from Figs. 1
and 2 could be expressed as:

interface GraphEdge{
type Vertex;
Vertex source();
Vertex target();

}
interface IncidenceGraph {
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type Vertex;
type Edge : GraphEdge;
Vertex == Edge. Vertex;
type OutEdgeIter: IEnumerable<Edge>;
OutEdgeIter out edges(Vertex v);
int out degree(Vertex v);

}
The GraphEdge interface declares the member type Vertex and the In-

cidenceGraph interface has two associated types: Vertex and Edge. Note
the two constraints: Edge must be a subtype of GraphEdge; and Vertex
must be the same type as the associated type, also named Vertex, of Edge.
The member types correspond directly to the associated types in Fig 2,
and the subtype constraints correspond to requirements that types model
concepts. A translation from the member type representation for asso-
ciated types into the above described emulation that uses an extra type
parameter for each associated type is described in Ref. 24.

2.3. Constraint Propagation

Mainstream object-oriented languages do not support constraint propa-
gation; the constraints on the type parameters to generic types do not auto-
matically propagate to uses of those types. For example, although a con-
tainer concept may require that its iterator type model a specified iterator
concept, any generic algorithm using that container concept will still need to
repeat the iterator constraint. As another example, consider the declaration
of a function for finding the first neighbor of a vertex in a graph;

G Vertex first neighbor<G, G Vertex,
G Edge, G OutEdgeIter>(G g, G Vertex v)

where G : IncidenceGraph
<G Vertex, G-Edge, G OutEdgeIter >;

Without constraint propagation, the declaration becomes:

G Vertex first neighbor<G, G Vertex,
G Edge, G OutEdgeIter>(G g, G Vertex v)

where G: IncidenceGraph
<G Vertex, G Edge, G OutEdgeIter>,

G Edge: GraphEdge<G Vertex>,
G OutEdgeIter: IEnumerable<G Edge>;

The additional constraints in this example merely repeat proper-
ties of the associated types of G which are already specified by the
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Expression Return Type or Description

mult(v, s) V
mult(s, v) V

Fig. 3. Vector Space concept. Types V and S model the Vector
Space concept if, in addition to the type S modeling the Field
concept and the type V modeling the Additive Abelian Group
concept, the above requirements are satisfied. Object v is of type
V and object s is of type S.

IncidenceGraph interface. A type cannot be bound to G unless it inherits
IncidenceGraph. This requires the type to provide the associated types
Vertex, Edge, and OutEdgeIter, which must satisfy the constraints specified
in the IncidenceGraph interface. Thus, the compiler could safely assume
that G Vertex, G Edge, and G OutEdgeIter in the generic first neighbor
function also satisfy the constraints in IncidenceGraph. Not making this
assumption greatly increases the verbosity of generic code and adds extra
dependencies on the exact contents of IncidenceGraph, thus breaking the
encapsulation of the concept abstraction. This problem is not inherent
to subtype-based constraint mechanisms. For example, the Cecil language
automatically propagates constraints to uses of generic types (See Ref. 25,
Section 4.2). Constraint propagation can be implemented by copying the
type parameter constraints from each interface to each of the uses of the
interface.

2.4. Constraining Multiple Types

Some abstractions define interactions between multiple independent
types, in contrast to an abstraction with a main type and several associ-
ated types. An example of this is the mathematical concept Vector Space
in Fig. 3 (more examples can be found in Ref. 26).

In this example it is tempting to think that the scalar type should
be an associated type of the vector type. For example, the template class
vector<complex<float>> would have complex<float> as its scalar type.
However, in general, the scalar type of a vector space is not determined by
the vector type. The popular linear algebra subroutine library LAPACK
contains examples that demonstrate this. One such example is the CLA-
CRM subroutine, which multiplies a complex matrix by a real matrix. The
vector-scalar multiplications performed in this subroutine contain multi-
plications between complex<float> and float, which are significantly more
efficient than converting the second argument to a complex number and
performing complex multiplication.(27) Modeling the scalar type of a vec-
tor as an associated type would lead to this inefficient algorithm.
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It is cumbersome to express multi-type concepts using object-oriented
interfaces and subtype-based constraints. One must split the concept into
multiple interfaces:

interface VectorSpace Vector<V, S>

:AdditiveAbelianGroup <V>

{V mult(S); }
interface VectorSpace Scalar<V, S> : Field<S>

{V mult(V);}
Algorithms that require the Vector Space concept must specify two

constraints now instead of one. In general, if a concept hierarchy has
height n, and places constraints on two types per concept, then the num-
ber of subtype constraints needed in an algorithm is 2n, an exponential
increase in the size of the requirement specification. The constraint prop-
agation extension discussed in Section 2.3 ameliorates this problem; the
exponential increase in the number of requirements can be avoided. How-
ever, the interface designer must still separate concepts in an arbitrary
fashion. This could be overcome by an automatic translation of multi-type
concepts into several interfaces.

3. SEMANTIC CONCEPTS WITH PERFORMANCE REQUIREMENTS

Semantic concepts extend syntactic concepts by formalizing the
behavior that all models of the concept must exhibit. Conformance to a
concept is therefore a (partial) specification of behavior that can be veri-
fied mechanically. We augment these semantic concepts with performance
requirements that ensure predictable and efficient performance of algo-
rithms. Semantic concepts provide a solid framework in which semantic
requirements and axioms can be described, allowing compilers to verify and
use concept modeling to improve the development and use of domain-spe-
cific libraries. Unlike user-defined optimizations for single data types, the
ability for concepts to describe myriad data types that cross-cut various
domains makes concepts especially attractive as a way to unify analyses and
optimizations for built-in types with those for user-defined types. In addi-
tion, independently developed libraries can be safely composed and take
mutual advantage of library-specified analyses and optimizations. In this
section we discuss the use of semantic concepts with performance require-
ments for static analysis and checking, optimization, and algorithm correct-
ness proof checking.

3.1. Static Analysis

STLlint(6, 7) is a static checker for C++ programs that makes use
of library-supplied semantic specifications (e.g., from the C++ standard
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Fig. 4. A misguided optimization of a routine that extracts and
erases students with failing-grades from the incoming data struc-
ture.

template library). By analyzing the behavior of abstractions at a high level
and ignoring the implementation of the abstractions, STLlint is able to
detect errors in the use of libraries that could not be detected with tradi-
tional language-level checking. For example, STLlint allows one to extend
the use of semantic properties beyond simple attribute tag checking to
include static detection of range violations (e.g., dereferencing a past-the-
end iterator), or missing properties such as the somewhat subtle “multi-
pass” requirement imposed in the Forward Iterator concept. Central to the
design of STLlint is the notion of abstraction via concept and data-type
specifications, which permit STLlint to analyze and check programs at a
very high level of abstraction.

The example code in Fig. 4 was presented in an introductory C++
text book(28) to illustrate the dangers of iterator invalidation. Iterator
invalidation occurs when an operation alters a data structure such that
iterators referring to elements of that data structure can no longer be
used safely. The invalidation behavior of operations varies greatly across
domains, but the semantic iterator concept—including requirements per-
taining to invalidation—cross-cuts various domains. STLlint permits static
checking of iterators by analyzing at the concept level, and is thereby able
to uncover this error to produce a meaningful, high-level error message:

Warning: attempt to dereference a singular iterator
if (fgrade(∗iter)) {
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STLlint extends the notion of concept archetypes discussed in Sec-
tion 2.1 to semantic archetypes, which emulate the behavior of the most
restrictive model of a particular concept. These concept archetypes are
used by STLlint to check that generic functions do not require additional
semantic guarantees beyond what is stated by the semantic concept itself.
For instance, the STL max element generic algorithm, which returns an
iterator to the maximum element of a sequence, depends on the multi-
pass property of Forward Iterators, which permits an algorithm to tra-
verse the elements in a sequence multiple times. STLlint can detect the
semantic errors resulting from mischaracterizing the concept requirements
of max element using a semantic archetype of an Input Iterator, which
permits only one traversal of the sequence.

Although not the main emphasis of STLlint, it does incorporate spec-
ifications of refinement relations in an algorithm concept taxonomy. An
algorithm thus declares the concept it models most specifically. Algo-
rithm specification extensions are introduced via entry/exit handlers for a
particular concept: entry handlers check preconditions and exit handlers
check/enforce postconditions. For example, sorting algorithms introduce a
sortedness property that can be used in checking for proper use of algo-
rithms that require it, such as binary search.

3.2. Optimization

A concept-based static analysis of a program provides information
vital to optimization of that program. We have investigated two forms of
concept-based optimization: concept-based rewriting and algorithm selec-
tion based on concepts.

The Simplicissimus optimizer(29) is an abstraction of the simpli-
fier component in a compiler. While a traditional simplifier performs
expression-level rewrites such as x + 0 → x when x is a built-in inte-
ger, Simplicissimus instead applies rewrite rules based on the concepts of
the data types. For instance, the rewrite rule x + 0 → x is semantically
valid when (x, +) models the Monoid concept. Figure 5 illustrates two
concept-based rewrite rules, including their concept requirements and sev-
eral concrete instances. For instance, the right-identity rule x + 0 → x

can be applied to many operations on built-in data types, such as float-
ing-point multiplication and integer bitwise and along with user-defined
operations on abstract data types such as string concatenation and matrix
multiplication. The right inverse rule for the Group concept (second row
of Fig. 5) illustrates additional optimizing rewrites. The two concept-
based rules have several advantages over the ten specific instances we have
given:
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Fig. 5. Concept-based rewrite rules can be instantiated for
many user-defined and built-in data types, reducing the num-
ber of rewrite rules required while increasing the scope and
effectiveness of each rule.

1. Additional instances can be generated from the two concept-based
rules. Thus, while the list of instances is always incomplete, the
concept-based rules encapsulate every data type that models the
appropriate concepts, requiring no further user intervention.

2. The concept-based rules are directly related to and derivable from
the axioms governing the Monoid and Group concepts.

3. Introduction of a new data type without concept-based rewrite
rules requires revisiting existing rewrite rules to determine which
rule may apply. However, since concept analysis is a necessary first
step for use of a new data type with a generic algorithm, optimi-
zation via concept-based rewrite rules comes essentially “for free.”

While optimization can be performed for a single set of predeter-
mined concepts, our experience with Simplicissimus has shown that the
ability to extend the optimizer with user-defined rewrite rules is of par-
amount importance. These rules are often library specific, incorporat-
ing some degree of domain knowledge and often specializing general
expressions to specific function calls. For instance, an arbitrary-precision
floating point number f can be inverted via the expression 1.0 / f, but
high-performance numerical libraries such as LiDIA(30) often provide a
more-efficient Inverse() function. The author of LiDIA would therefore
introduce the rewrite rule 1.0 / f→f.Inverse() whenever f is a LiDIA data
type. Specializing rewrite rules such as these can improve performance par-
ticularly when multiple generic libraries are used in conjunction.(31)

Simplicissimus is limited to expression-level transformations based only
on local information. STLlint, on the other hand, provides global analysis
based on user- or library-defined concepts. STLlint’s high-level static analy-
sis can compute flow-sensitive properties of user-defined data types to sug-
gest algorithmic optimizations. For instance, STLlint produces the following
warning when given a program that first sorts a data structure and later
attempts to perform a linear search through that data structure:



158 Gregor et al.

Warning: potential optimization: the incoming sequence [first, last) is sorted,
but will be searched linearly with this algorithm. Consider replacing this algo-
rithm with one specialized for sorted sequences (e.g., lower bound):

vector<int>::iterator i = find v.begin(),v. end(), 42);

STLlint only suggests optimizations: it does not have enough semantic
information to verify or implement them. However, complete verification
of the semantic constraints needed to enable optimization would permit
high-level optimizations that improve the asymptotic performance, e.g., by
transforming a linear search into a binary search.

3.3. Proving Correctness of Generic Algorithms

The kinds of semantic checks and suggestions for optimizations
performance by STLlint are achieved with specialized inference meth-
ods. We have begun experiments to show that it is feasible to extend
the use of concepts in mainstream programming to include more gen-
eral semantic requirements. For example, the aforementioned max element
algorithm also requires that the sequence element type have a compar-
ison functor defined on it (either by an overloading of the < opera-
tor or supplied through a functor passed to max element) and that it
obey the axioms of the Strict Weak Order concept (see Fig. 6). Pres-
ence or absence of a functor with a suitable signature can be detected
in languages such as ML or Haskell through the use of signatures.
This is possible even in C++, currently through the use of the Boost
Concept-Checking Library(16, 32) but possibly in the future with con-
cept constraints expressed within the language as proposed by Stroust-
rup and Dos Reis(33−35) to the C++ standards committee. In none of
these cases, however, is there provision to check for satisfaction of the
axioms.

To implement a general semantic checking capability we are taking
advantage of recent advances in proof languages and proof-checking sys-
tems that permit development and use of proofs at a generic level. In such
a system, proofs can themselves be generic components, in the sense that
one can express a proof once and subsequently instantiate it many times
to prove more specific cases, in much the same way as one does with
generic algorithms.

This strategy enables a second key idea, which is to concentrate on
the specification and use of semantic properties of generic library compo-
nents, rather than broader classes of software. There are several advan-
tages to such concentration of effort. One is the greater payoff for the
(considerable) effort required to carry out proofs, by amortization over the
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Fig. 6. Axioms of a Strict Weak Order concept. From these axi-
oms two additional properties of E, symmetry and reflexivity, can
be derived as theorems, showing that E is in fact an equivalence
relation. These axioms are the minimal requirements on < for
correctness of many search or sorting-related algorithms, includ-
ing ST’s max element, binary search, sort, etc. Although they are
specified in the C++ standard,(14) there is currently no require-
ment on compiler or library implementors for any kind of formal
check for their satisfaction when instantiating generic algorithms
like max element.

many possible instances. Another is that we do not depend on acceptance
and mastery of this technology by large number of programmers; it need
only be carried out by the relatively small number of software designers
and programmers involved in generic library development. Programmers
who merely use the libraries do not need to be able to produce or to
understand the proofs involved.

The proofs needed in semantic concept-checking are thus supplied
by library component developers along with the specified concept require-
ments of the components. Therefore the language processor must only do
proof checking, not proof search. As is well-known in the automated or
interactive theorem proving research community, it is much more efficient
to check a given proof than it is to search for an a priori unknown proof.

For this approach to work, the proof language and checking capabil-
ity must itself support generalization and specialization in a natural and
effective way. A key breakthrough in this area is K. Arkoudas’s notion of
a Denotational Proof Language (DPL),(36) which he has implemented in
his Athena language and proof checker. DPL proofs can be written at a
sufficiently abstract level that they can be instantiated to prove properties
showing constraints are satisfied in many different instance, just as generic
algorithms can be instantiated many different ways to produce different
useful concrete algorithms.

Proof checking in Athena. The Athena language is really two dis-
tinct (but interwoven) languages: one for ordinary computation, and one
for proof. The computation (or expression) language is similar to ML
(but with Scheme-like syntax); in particular, it has first-class functions, in
that they can be passed into, and returned from, other functions. Athena
has proof language constructs similar to those for ordinary computa-
tion, including first-class methods, the analog of ordinary functions, whose
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purpose is to carry out proofs, updating the assumption base, an asso-
ciative memory of propositions that have been asserted or proved in a
proof session. The assumption base is fundamental to Athena’s approach
to deduction; all proof activity centers around it.

The proof language analog of expression is called a deduction. Like
expressions, deductions are executed. Proper deductions (ones which cor-
rectly use primitive or programmed inference methods) produce theorems
and add them to the assumption base; improper deductions result in an
error condition.

Organizing axioms, proofs, and theorems for reuse in Athena. An
apparent drawback of the Athena language is its lack of of code organi-
zation capabilities above the level of functions or methods; i.e., module,
class, package or namespace constructs commonly found in mainstream
languages intended for development of large programs. Nor is there a type
parameterization construct like generics or templates, making it appear
that functions, methods, axioms, theorems, and proofs must be “concrete,”
that is, about specific functions and constants, rather than generic.

We have been able to show, however, that we can achieve both good
organization and genericity without such additional constructs, by tak-
ing advantage of Athena’s first-class functions and methods. We package
up sets of axioms into functions, pass them around to other functions
and methods that need them—and only to those functions and methods,
so no others have to search through them or have name conflicts with
them. Furthermore, we simulate type-parameterization simply by parame-
terizing functions and methods by functions that carry operator mappings.
This approach is illustrated in the way we have already formalized—and
used in proofs—numerous properties of ordering concepts (such as partial
ordering, strict weak ordering, total ordering); algebraic concepts (such as
monoid, group, ring, integral domain, field), and sequential computation
concepts (such as container, iterator, range).

4. PARALLEL AND DISTRIBUTED ALGORITHM CONCEPTS

In most of the literature, the performance of parallel and distributed
algorithms is typically indicated only in terms of asymptotic bounds on
numbers of messages and time complexities, omitting other performance
issues. For example, local computation at a node is rarely accounted
for. However, mobile and sensor networks, where local computation is
at a premium, are becoming increasingly common. Thus, when decid-
ing between algorithms, a designer should be aware of how much local
computation is involved. In addition to specifying requirements, concept
descriptions can also organize and present detailed actual performance
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measurements. A comprehensive parallel and distributed algorithm con-
cept taxonomy thus aids in our understanding of algorithms, helps in the
design of new ones (based on situations where no known algorithms for
a particular concept refinement exist), and helps a system designer to pick
the correct algorithm for a particular application.

The distributed algorithms concept taxonomy we are developing(37)

classifies algorithms on seven orthogonal dimensions: (1) Problem. This
classifies the algorithms based on the problem that they solve. (2) Topol-
ogy of the underlying network. Some algorithms are designed for special-
ized topologies, while others are for arbitrary topologies. Further refining
this concept leads to some of the well known topologies like ring, com-
pletely connected graph, etc. (3) Tolerance to component failures. Some
algorithms do not tolerate any failures while some can tolerate partic-
ular kinds of failures. Further refining this concept leads to Byzantine
and non-Byzantine failures of nodes and links. (4) Method of informa-
tion sharing between processes. We have thus far concentrated on mes-
sage passing. (5) Strategy of the algorithm. Further refining this concept
leads to well known paradigms like centralized control, distributed con-
trol, randomized, compositional, heart beat, probe echo, etc. (6) Tim-
ing properties required from the underlying network. Further refining this
concept leads to synchronous, asynchronous, and partially-synchronous
networks. (7) Process management. This classification accounts for static
and dynamic process management capabilities and for algorithms that
allow new nodes to join in dynamically as opposed to those that do
not.

We have begun exploring the development of a parallel algorithms
taxonomy, and a corresponding generic library based on the data-
parallel programming paradigm. Data-parallel programming can achieve
greater efficiency than what is possible with current automated paral-
lelizing compilers that transform sequential programs into parallel ex-
ecutables. This is true also of programming directly with low-level
concurrency and communication mechanisms, such as threads, processes,
locks, semaphores, and messages, but data-parallel programs can gen-
erally be expressed at a higher level of abstraction. The programmer
still thinks and programs in parallel, but more abstractly, thus reduc-
ing the complexity of parallel programming. As an alternative to a full
data-parallel programming language, our concept-based library approach
leverages the capabilities of a mainstream base language (in our case,
C++) while concentrating the desired new functionality into library mod-
ules. Moreover, this generic programming approach is infinitely extensi-
ble and is adaptable—by design—to the needs of particular application
domains.
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5. CONCLUSION

The generic programming approach to the development of high-
performance domain-specific libraries focuses on isolating the core data
type functionality and performance requirements into concepts. Concepts
are important as documentation of the requirements of generic algo-
rithms, but are inadequately supported in existing programming languages.
We have described several features missing from mainstream object-
oriented programming languages required for expressing syntactic con-
cepts, including associated types and constraint propagation. We have
further motivated the need for first-class concept support in languages
by presenting concept-based static analyses, compiler optimizations, and
proof techniques capable of improving the development and use of
domain-specific libraries within mainstream programming languages.

Our future work will involve unifying the notions of syntactic,
semantic, and performance requirements on concepts into a single, cohe-
sive syntax for a mainstream programming language. The initial stage
of development will involve constructing development tools—a compiler,
static analysis framework, and optimization framework—for the concept
syntax. Based on these development tools we will adapt our existing
generic libraries(9, 12, 38) and also develop new libraries in new application
areas to take full advantage of concept-aware compilation.
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