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Symbolic simulation and uninterpreted functions have long been staple tech-
niques for formal hardware verification. In recent years, we have adapted
these techniques for the automatic, formal verification of low-level embed-
ded software—specifically, checking the equivalence of different versions of
assembly language programs. Our approach, though limited in scalability, has
proven particularly promising for the intricate code optimizations and com-
plex architectures typical of high-performance embedded software, such as for
DSPs and VLIW processors. Indeed, one of our key findings was how easy
it was to create or retarget our verification tools to different, even very com-
plex, machines. The resulting tools automatically verified or found previously
unknown bugs in several small sequences of industrial and published example
code. This paper provides an introduction to these techniques and a review
of our results.
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1. INTRODUCTION

Symbolic simulation and uninterpreted functions have long been staple
techniques for formal hardware verification. In recent years, we have
adapted these techniques for the automatic, formal verification of low-level
embedded software. This paper provides an introduction to these tech-
niques and a review of our results.

Formal verification means proving that properties hold about models
of systems. “Proving” is in the sense of mathematical proof—a far higher
level of assurance than can be obtained using conventional techniques.
“Properties” and “models” refer to fundamental limitations of any (formal
or informal) validation technique—some notion of desired behavior must
be defined, and the analysis must be done at some level of modeling, e.g.,
source code, object code, processor microarchitecture, gates, transistors,
etc. Historically, formal verification was too difficult and labor-intensive
to be used beyond pedagogical examples and a small number of the most
safety-critical systems.

The past 15 years, however, have witnessed a revolution in formal
verification, primarily for hardware verification, but beginning to affect
software verification as well. Currently, all major microprocessor manu-
facturers have significant formal verification teams, and all major VLSI
CAD vendors as well as several start-ups sell formal verification tools. The
most commercially successful formal verification technique—checking the
equivalence of two similar blocks of combinational logic—has largely sup-
planted the formerly standard and extremely time-consuming process of
RTL-to-gate simulation.

This resurgence of formal verification has many causes, ranging from
the staggering verification complexity of modern computer systems to the
new, highly automated verification algorithms. A key factor, though, was a
paradigm shift: seeing formal verification as just another part of the over-
all verification strategy and justifying formal verification based on finding
more bugs with less effort. This paradigm shift emphasized automatic or
easy-to-use techniques, even if they lacked mathematical power. And the
new paradigm targeted specific verification problems that were challeng-
ing enough (for existing methods) to be practically important, yet small
or easy enough to be amenable to the new, automatic formal verification
techniques.

Like hardware, embedded software appears to be an excellent
application domain to benefit from the new formal verification approaches.
Fundamentally, embedded software shares with hardware—and differs
from desktop and enterprise software—the frequent need for extreme opti-
mization. The software must hit hard performance, power consumption,
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and code-size targets. Code that is slightly too big might necessitate
moving to a larger, more expensive device, or code that is slightly too slow
might result in unacceptable, non-real-time performance. Therefore, very
aggressive optimization is the norm, including possible manual tuning of
synthesis(hardware)/compiler(software) output. Compounding the problem,
the underlying embedded processor is often designed with similar optimi-
zation goals—maximum performance at lowest cost or power, with mini-
mal consideration to the ease of writing or understanding code. Embedded
processors (including DSPs) often are highly non-orthogonal, have many
specialized instructions, and perform many operations in parallel, with the
resulting artefacts (exposed pipelines, long branch delays, VLIW, etc.). All
of these features enable very highly optimized, high-performance code, but
they also greatly complicate code generation and optimization. Finally, the
embedded market is less tolerant of defective software than some other
software markets, because patching embedded software in the field can be
too difficult, too expensive, or unacceptable to customers. All of these fac-
tors point toward very demanding verification requirements. Even a lim-
ited tool, if sufficiently automatic and easy-to-use, and if it helps find bugs
faster, would be enormously valuable.

In this paper, we review our research towards developing such tools.
We have explicitly chosen to mimic the most successful formal hard-
ware verification technique—checking the combinational equivalence of
two similar blocks of hardware—and define our problem as checking
whether two similar segments of assembly code compute the same results.
We envision the primary target of our approach to be the automated
verification of highly aggressive, intricate optimizations of small, critical
segments of code. To make the approach usable on practical examples,
it is necessarily approximate. For example, our approach abstracts away
details of bit-precision and datapath, so bit-level optimizations or major
algorithmic changes might be erroneously declared inequivalent. In almost
all cases, the approximation is safe—equivalent code might be flagged
as inequivalent, but not vice-versa—but there are rare situations, which
we will note, where our approach might make errors in the other direc-
tion as well. Nevertheless, our prototype tools running on real software
samples have proven very promising, for example, finding bugs in soft-
ware previously believed to be equivalent, or confirming that difficult-
to-understand optimizations were done correctly. Furthermore, we have
found it easy to retarget our approach for different processor architec-
tures, including very complex ones, suggesting that the approach is broadly
applicable.
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Fig. 1. A simple example: is this XOR?

2. BASIC CONCEPTS

We focus on the particular verification task of comparing two seg-
ments of assembly-language code to see if they have equivalent functional-
ity. We further restrict ourselves to code that performs some computation
as a function of inputs (e.g., a low-level computational kernel), rather than
reactive software (e.g., the operating system), which would correspond to
the harder problem of sequential hardware verification. As a further sim-
plifying assumption, we assume that the two code segments are similar—
our techniques would be unlikely to be successful on a major algorithmic
restructuring, but experimentally, we have successfully verified code that
had undergone aggressive optimizations (e.g., software pipelining).

The general approach is to compute a formal representation of what
each code segment does, and then to compare the formal representations
for equivalence. The questions that must be answered are: what sort of
representation to use, how to compute the effect of a code segment, how
to compare two representations for equivalence, and how to make the
theory efficient enough to be useful in practice. Because our approach is
based on ideas from combinational hardware verification, and because the
ideas are easier to present in that context, we first illustrate the verification
approach for hardware.

2.1. Symbolic Simulation for Hardware Verification

Consider the problem of verifying whether two combinational logic cir-
cuits are functionally equivalent. For example, consider verifying whether
the simple circuit in Fig. 1 is equivalent to an XOR gate.

An obvious approach would be to simulate (model the behavior of)
the circuit for all possible input combinations. For the simple circuit with
two inputs, this takes 22 trials. For anything non-trivial, the exponential
number of possible input combinations is impractical.

A better approach is symbolic simulation.(1) Rather than simulating
the circuit with specific, concrete values on the inputs, we insert variables
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at the inputs and compute symbolic expressions for what the circuit would
compute at each point. In the example, we could label the primary inputs
with the variables y and z, and then build an expression for each gate
output as a function of its inputs7—labeling the OR gate with (y ∨ z), the
NAND gate with ¬(y ∧ z), and the AND gate with (y ∨ z) ∧ ¬(y ∧ z).
We would then use an automatic decision procedure to check whether
(y∨z)∧¬(y∧z) is logically equivalent to (y⊕z). An alternative formaliza-
tion would be to introduce a new variable for each gate output and add
constraints that relate the inputs of each gate to its output—if we assign
variable a to the output of the OR gate, b to the output of the NAND
gate, c to the output of the AND gate, and d to the output of the specifi-
cation XOR, we would get the expression (a ≡ y∨z)∧(b ≡ ¬(y∧z))∧(c ≡
a∧b)∧(d ≡ (y⊕z))∧¬(c ≡ d). A satisfying assignment to that expression
is a witness to the inequivalence of the two circuits.

The two symbolic simulation formalizations have different characteris-
tics. We dub the first one the “functional translation,” because it computes
all values as functions of the inputs. The expression size can grow expo-
nentially, but the number of variables is fewer. This approach is commonly
used with efficient representations for Boolean functions, such as BDDs.(2)

We dub the alternative formalization the “relational translation,” because
it introduces a relation for each component in the circuit. The expression
size is guaranteed to be linear, but the number of variables (and hence the
complexity of deciding equivalence) is larger. The relational translation is
typically used in practice with efficient SAT solvers.

With either translation style, we can see the same general advantages
and disadvantages of symbolic simulation. The basic advantage is that the
simulation covers all possible input combinations—it provides formal veri-
fication effectively by exhaustive simulation. Furthermore, it is clearly easy
to write the simulator, because simple rules can be used to handle each
gate or component of the system being verified. This simplicity holds even
if the system is complex, e.g., a very large system, or one with unusual
arbitration or timing rules. As long as it is easy to write a conventional
simulator for the system, it is equally easy to write a symbolic simulator.
The obvious disadvantage of symbolic simulation is the unavoidable worst-
case exponential blow-up for the symbolic expressions or for the complex-
ity of deciding equivalence of expressions.

Though these ideas are simple and limited, they form the core of
modern, practical tools for verifying equivalence of combinational hard-
ware—when strengthened with optimizations and heuristics to make the
techniques scalable to practical problems. In the next subsection, we adapt

7We use ⊕ for XOR, ≡ for equivalence/XNOR, ∧ for AND, ∨ for OR, and ¬ for NOT.
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symbolic simulation to embedded software, and later, we will introduce the
optimizations and heuristics that we needed to verify practical software
examples.

2.2. Symbolic Execution of Software

The exact same ideas from symbolic simulation of hardware can be
used for symbolic execution of software. Instead of computing the val-
ues on wires in a circuit, we compute the values of the architectural state
(registers, memory, flags) at each point in a program. Instead of a gate-
level simulator to compute the effect of each gate in a circuit, we use an
ISA (instruction-set architecture) simulator to compute the effect of each
instruction.

For example, consider the following simple segment of code for the
Fujitsu Elixir DSP:

msm dx, a0, a1
bge ok
add dx, cx

ok: mov (x0++1), dx

The first instruction multiplies registers a0 and a1 and adds the
result to register dx. This instruction also sets condition codes, so the fol-
lowing branch instruction branches to label ok if the result was nonneg-
ative. The add instruction adds register cx to dx. The mov instruction
stores the contents of register dx into the memory location pointed to by
index register x0, and then increments x0 to point to the next memory
location.

If we symbolically simulate the trace that skips the add, (We will con-
sider handling control flow in a moment.) we find at the end of the trace
that:

dx = initial dx + f (initial a0, initial a1)

x0 = initial x0 + 1

memory = write(initial memory, initial x0, initial dx + f (initial a0,

initial a1))

where the symbols that start with initial denote the initial values at the
start of the program, the function f computes the effect of the msm
instruction, and the function write(m, a, v) computes the memory state
that results from writing value v to address a in the memory state m.
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To verify the equivalence of two segments of code, we symbolically
execute each segment, and then use a decision procedure to check whether
the results are provably equivalent.

The basic approach for handling control flow is to enumerate all pos-
sible execution paths through the code sequence. One could imagine the
verification tool examining control flow paths one at a time, comparing
them between the two programs being verified. Alternatively, one could
imagine computing a large conditional expression indicating the function
that would be computed for each register (and memory, etc.) depending
on what conditions cause which control flow path to be executed. For
example, returning to the simple code fragment above, there are two paths
through the code, so the verification tool could analyze the two paths one
at a time. For each path, the verification tool records the branch condi-
tions that were assumed in order to follow that control path, and uses
these conditions as assumptions during the equivalence check. Alterna-
tively, the verification tool could compute a conditional expression for the
values computed on both paths, e.g., for register dx, we would end up
with:

dx =

⎧
⎪⎨

⎪⎩

if initial dx + f (initial a0, initial a1) � 0 then
initial dx + f (initial a0, initial a1)

else
initial dx + f (initial a0, initial a1) + initial cx

Obviously, the number of paths can be extremely large (or infinite),
so we make some simplifying assumptions and resort to some approxima-
tions. For example, at a branch, we can test if the formal verification deci-
sion procedure can prove whether the branch will be taken or not, based
on the symbolic expressions computed for the machine state at that point.
If so, we need explore only the path that is guaranteed to be taken. For
branches where both paths must be explored, a heuristic we used was to
insist that the branching structure be “compatible” in the two programs
being compared—if one program reaches a branch, the other program
must also reach a branch such that the branching condition is the same, or
the negation (so that taken/not-taken paths can be reordered); if not, the
two programs are declared to be “not verifiably equivalent” by the tool.
In practice, these heuristics worked well for the examples we were target-
ing: the kernels involved mainly fixed-iteration loops, which our approach
essentially unrolled, and the forward (non-loop) branching structure was
similar because of our assumption that the two programs were structur-
ally similar. However, more sophisticated control-flow analysis is a critical
area for future work.
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To make the control-flow analysis tractable, we do not model interrupts,
and we assume that no computation is performed on the program counter
(other than branch offsets, which we ignore by analyzing at the assembly
language level rather than encoded machine instructions).

We emphasize that architectural complexity of the target processor
is not a difficult challenge for this approach. The simulator is only at
the ISA level, which is generally quite easy to model. Writing an ISA
simulator simply involves understanding the programmer-visible machine
state (registers, flags), and then implementing the computation performed
by each machine instruction listed in the programmer’s reference manual.
Making the simulator symbolic simply requires changing the data types
of the variables in the simulator to hold symbolic expressions instead of
numeric values. (The problem of verifying that a processor correctly exe-
cutes instructions as specified by the ISA is the completely separate prob-
lem of processor verification, for which there is a rich literature.)

What is a challenge for our approach is the size of the symbolic
expressions and the complexity of reasoning about them. If the symbolic
simulator is bit-accurate, then the complexity will blow-up, much as brute-
force approaches to combinational hardware verification do. The problem
is especially bad for the types of software that we are targeting, because
common computations like multiplication provably cause BDDs and most
other efficient representations for Boolean functions to grow exponen-
tially.(3) If we give up bit-accuracy and treat registers and memory loca-
tions as unbounded integers (as is typically done in software analysis),
then the verification problem, even restricted to comparing the results of
two control-flow path, becomes undecidable in general. What is needed is
an abstraction that hides complexity, yet is accurate enough to analyze
common optimizations correctly.

2.3. Uninterpreted Functions and Datapath Abstraction

Our main abstraction mechanism for hiding the complexity of oper-
ations is the use of uninterpreted functions, i.e., a function about which
nothing is known other than its name and that it is a function in the
mathematical sense (different calls with the same input values produce the
same result). For example, if we know that a = x and that b = y, then we
know that f (a, b) = f (x, y), regardless of what the function f is.

Uninterpreted functions naturally abstract away the details of hard-
ware datapath operations (e.g., whether a multiplier actually multiplies),
allowing the verification to focus on the higher-level problem of what
operations are being applied to what operands. Uninterpreted functions
have been widely and successfully used for formal hardware verification
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for precisely this separation of control and datapath complexity, e.g., in
semi-automated(4) and automatic(5) microprocessor verification, as well as
for more general hardware.(6,7) In the example from the preceding subsec-
tion, we had built symbolic expressions assuming that f represented the
processor’s multiply operation, but if the two code segments being verified
produced the same symbolic expression, then they are provably equivalent,
regardless of the details of what operation f performs.

Note that the abstraction is safe—the abstraction will not cause two
inequivalent programs to be declared equivalent—but is sometimes too
conservative. For example, the abstraction loses the ability to prove that
multiplying by 2 is equivalent to a left-shift, since multiplying a number
x by 2 would be modeled using one uninterpreted function, e.g., f (x, 2),
whereas the left-shift would use a different uninterpreted function, e.g.,
g(x), and the abstraction loses all information about how f and g might
be related. Similarly, the theory loses any knowledge that, for example,
multiplication is commutative or associative. We will discuss how we deal
with these issues in practice in Section 3. Of course, on a real processor,
the hardware implementation of multiplication might not be commutative
or associative due to rounding or similar effects; if we wish the verification
tool not to assume commutativity or associativity, the uninterpreted func-
tion abstraction, with no additional information, would likely be exactly
the correct level of abstraction.

Not only do uninterpreted functions hide the complexity of data
operations, they also make the verification problem itself computation-
ally easier. In particular, the verification task consists of building sym-
bolic expressions involving uninterpreted functions and comparisons, and
the logic consisting of uninterpreted functions and equality is decidable.(8)

Furthermore, practically efficient decision procedures exist for many vari-
ants of this logic.

2.4. Decision Procedures

The verification approach we have described so far is to use symbolic
execution to build up symbolic expressions for what each code segment
computes, using uninterpreted functions to hide datapath complexity. The
verification task, then, consists of comparing two symbolic expressions to
see if they are equal. For that, we need efficient decision procedures for
the logic of uninterpreted functions and equality.

There is an extensive literature on automated decision procedures,
which we cannot survey comprehensively. In this section, we give only
some intuition about how the decision procedures work, some examples of
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Fig. 2. Congruence closure example. Suppose we assert that a = b and b = c, and wish
to prove that f (a) = f (c). When we assert a = b, the decision procedure creates nodes for
the terms a and b, and groups them into an equivalence class. For b = c, the decision proce-
dure does the same, then merges the two equivalence classes. To check whether f (a) = f (c),
the decision procedure creates nodes for f (a) and f (c). Since the two nodes have the same
function symbol, and their arguments are already proven equivalent, they are grouped into
an equivalence class, too.

the logical theories they can handle, and some pointers to the leading deci-
sion procedures currently used for automated verification.

Intuitively, a decision procedure for this logic must handle the usual rea-
soning for Boolean logic as well as support the reasoning needed to analyze
equality comparisons and uninterpreted function calls. The Boolean aspects
are handled much as in Boolean satisfiability solvers, e.g., case-splitting,
backtracking, and conflict analysis.(9−13) For the uninterpreted functions
and equality, there are currently two general approaches being used: congru-
ence closure(14) and reduction to propositional logic.(8) In the congruence
closure approach, the decision procedure tracks all terms in the formula,
building up equivalence classes of terms proven to be equivalent. Two terms
involving uninterpreted functions are proven equivalent iff they call the same
function, and the corresponding arguments have already been proven equiv-
alent. Figure 2 shows a short example of this procedure. In the alternative
approach of reducing to propositional logic, new propositional variables are
introduced to represent equality terms, and new propositional clauses are
added to enforce symmetry and transitivity of equality, as well as functional
consistency. The resulting propositional formula is solved using a Boolean
SAT solver. Historically, the reduction-to-propositional-logic approach was
invented first, but was too inefficient in practice; only recently have more
efficient reductions been developed(15) that make both approaches effective
on practical problems.

In practice, additional theories beyond uninterpreted-functions-with-
equality are very useful. For example, a theory of memories/arrays is cru-
cial for reasoning about code that access large arrays in memory. The
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theory consists of functions read(mem, addr), which given a memory and
an address, returns a value, and write(mem, addr , val), which given a
memory, address, and value, returns a new memory in which the write has
taken place, and the key axiom is that

read(write(mem, addr1, val), addr2)

=
{

val if addr1 = addr2
read(mem, addr2) otherwise

Another invaluable theory for handling practical problems is linear (aka
Presburger) arithmetic, consisting of addition of terms, and multiplication
by constants. Support for linear arithmetic is especially important when
verifying low-level software because of the need to reason about memory
addressing calculations. (Standard Peano arithmetic, with multiplication of
terms, is undecidable.) For applications that involve bit-level reasoning, a
theory for handling bit-vectors is useful. Fortunately, all of these theories
are decidable, and there exist standard methods for building decision pro-
cedures for combinations of decidable theories.(14,16,17)

There are several efficient implementations of these combined deci-
sion procedures publicly available. The most well-known currently are (in
chronological order): the Stanford Validity Checker (SVC),(18) Integrated
Canonizer and Solver (ICS),(19) Cooperating Validity Checker (CVC),(20)

UCLID,(7) Simplify,(21) and CVC Lite (CVCL).(22) All of these tools sup-
port roughly the same combination of decidable theories, including unin-
terpreted functions and axioms for modeling memories. UCLID does not
support full linear arithmetic, but the others do. Performance varies, with
each tool being better than the others for some problems. De Moura and
Rueß provide a recent performance comparison.(23) For our work, we used
SVC. It supports the key theories that we needed: boolean logic, uninter-
preted functions with equality, memory read/write, and linear arithmetic.
Furthermore, it was stable and available at the time we commenced this
research in 1998. For a project starting today, the other modern decision
procedures should be considered as well.

3. FROM THEORY TO PRACTICE

The preceding section described our theoretical framework: symboli-
cally execute the software using a decidable logic, with some abstractions
to reduce complexity, and then compare the results with a decision pro-
cedure. Moving from theory to practice, required handling many prac-
tical details. Our improvements to the theoretical framework can be
grouped into three general categories: handling specific architectural and
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programming idiosyncrasies of real examples, improving the efficiency of
the verification, and strengthening the decision procedure to reduce false
errors.

3.1. Handling Real Processors and Real Coding Styles

Most of the complexity of real processors and code examples turned
out to be straightforward to handle. For example, condition codes (which
indicate whether the result of an operation is negative, zero, or overflow)
can be handled in symbolic execution just as any other register is. Condi-
tional branch instructions simply refer to the condition codes. No special
modeling is required.

Accurately modeling memory addressing was important for computing
correct verification results on real code examples. In particular, when ver-
ifying software written in a high-level language, arrays are assumed to be
disjoint objects, and the read/write functions described earlier are typi-
cally applied to each array separately (e.g., a write to an array A does
not change the state of array B). In contrast, we model all of memory (or
each bank of memory in a system with multiple banks) as a single array
with all reads and writes directed at this array using the read/write func-
tions. This approach leads to larger symbolic expressions, but is needed
because it correctly handles relative addressing (e.g., address arithmetic
performed on index registers, based on knowing the layout of data in
memory). Embedded software is often highly optimized based on the exact
layout of data in memory.

Modulo addressing is one of the more complex addressing modes that
we modeled. Many DSPs and embedded processors have modulo or circu-
lar addressing modes, which compute auto-increment and auto-decrement
of index registers modulo a specified modulus. We handle these address-
ing modes with a simple if-then-else. For example, an auto-increment on
an index register x0 would be treated as:

if (x0 + 1 � m) then (x0 + 1 − m) else (x0 + 1),

where m is the modulus. The tool is not actually computing the mathemat-
ical modulo operator (e.g., if x0 > 2m), but fortunately, real processors
typically perform the same computation as our tool for these addressing
modes, rather than true mathematical modulo. Note that we handled this
addressing mode using linear arithmetic; in general, having decision proce-
dure support for linear arithmetic proved indispensible for address calcu-
lations.
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Embedded processors have been quick to adopt modern ISA
innovations such as predication and VLIW, because embedded software
applications are typically recompiled, eliminating the need for legacy binary
compatibility. The basic functionality of predication is easy to model: for
each register modified by a predicated instruction, the verification tool
generates a conditional expression that evaluates to the new value if the
predicate is true or the old value if the predicate is false. (Predicated
branches are conditional branches, handled as described earlier.) The par-
allel execution of instructions in a VLIW is also trivially handled by the
symbolic execution. We symbolically execute each instruction in the very-
long-instruction-word one-by-one, but don’t update the register file until
after all instructions have read their operands. The resulting behavior is
identical to parallel execution.

Some embedded processors have lengthy delay slots, which result from
removing interlocks and exposing the processor’s pipeline to the program-
mer, the goal being to provide maximum performance at minimum cost
even if it complicates the programmer’s model. Fortunately, because the
delay slots are the logical consequence of the processor’s pipeline, the sym-
bolic simulator can model delay slots easily using queues. For branch
delay slots, we keep a small queue of pending branches. Each branch
instruction gets queued, along with a counter indicating how many delay
slots remain for that branch. Each clock cycle, all counters are decre-
mented. Before each instruction fetch, we check whether a branch at the
head of the queue is ready to be taken. Similarly, for read-after-write
delay slots, we extend the data structure used to hold register values. In
the basic verification approach, each programmer-visible register is mod-
eled by a variable that can hold the symbolic expression for the value of
that register. Instead, we replace this variable with a queue of symbolic
expressions, which stores the pending writes to that register (see Fig. 3).
Whenever a result is written to a register file, the latency of the oper-
ation is checked in a table, and the result is written into the appropri-
ately delayed queue entry. Reads from the register file return the current
value. After every clock cycle, all the register-value queues advance one
step; if there is no write to a register in that cycle, it keeps its current
value.

Dynamic resource conflicts. As shown in Fig. 3, the combination of
predication, parallel instructions, and delay slots (with different laten-
cies for different instructions) can result in potential conflicts, in which
several instructions attempt to write a given register at the same clock
cycle. Our verification approach can detect such situations by storing a
write history in the pending write queue. Each write-history is a list of
predicate-(symbolic)value pairs. The decision procedure can be used to
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Delay Lookup Table

Conflict Checker

Pending Writes Queue

Current Value

Writes

Reads value

pred pred

pred

value value

value

Write Histories

Fig. 3. Register model. This figure shows the data structures used to hold the “value” of
each register. In the basic verification algorithm, only the “Current Value” variable would
exist, and reads and writes would access and update this variable. To handle delay slots, we
add a queue of pending writes. Reads still come from the Current Value, but values to be
written are queued depending on their latency. The queue advances one position to the left at
each clock cycle, updating the Current Value as appropriate. The attempt to write to a queue
slot that is already full indicates a resource conflict. To handle predication with delay slots,
we store write-histories in the pending writes queue, rather than values. Each write-history is
a list of predicate-value pairs. We verify that at most one predicate in a write history can be
true, otherwise there is a conflict. Since the simulator is symbolic, the “values” are actually
symbolic expressions denoting the value as a function of the initial values.

verify whether any writes scheduled for a given clock cycle conflict with
one another.

Finally, indirect branches and jump tables required special handling.
A key simplification in our verification approach is the separation of
our analysis of control flow from our analysis of data computation. In
low-level code, however, a common idiom for control flow is the indi-
rect branch—branching to an address that had been read or written to
memory or register as a data value. We found an easy solution to han-
dle the common, practical case, in which branch targets are only loaded
and stored, but not used in computation. The solution is to expand the
concept of a “value” to be two-sorted: data values (including addresses
used to index into memory), and control values, which can be only labeled
control flow points in the program. Computation is not allowed on the
control values, but they can be read and written from memory, stored
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in registers, and, most importantly, used as branch targets. This solution
handles common cases of indirect branches, such as subroutine/coroutine
linkage, jump tables, or virtual function dispatch.

3.2. Improving Verification Efficiency

Context management. Our verification method is based on a depth-
first exploration of possible control flow of the programs. For the tool
to run efficiently, it must quickly recall the previous state of the partially
simulated trace during backtracks. We call this state a context. When a
branch (that cannot be proven to be unconditional) is encountered, the
current context is pushed onto a stack. When backtracking, the sym-
bolic execution can continue from this point by popping to the previously
saved context. In our initial implementations, our tools maintained the
stack of contexts. In later implementations, SVCs internal context manage-
ment had become sufficiently stable that we used it instead. This change
greatly sped up our verifier, since using the decision procedure’s context
management allowed the decision procedure to reuse its own computa-
tions.

Constant propagation was an obvious and simple optimization that
sometimes resulted in large speed gains. Our general principle was to have
the symbolic execution engine do as much non-symbolic execution as pos-
sible, to minimize the burden on the decision procedure.

Rewriting memory expressions. The main source of expression-size
blow-up in our industrial examples came from memory accesses. For
example, consider a loop (for the Fujitsu Elixir) that copies data from one
array to another:

do endloop, 512 ; ; repeat 512 times to label endloop
mov a0, (x1++1) ; ; a0 gets next word from memory
mov (x2++1), a0 ; ; write a0 to memory

endloop :

After the first iteration, the memory will contain the symbolic expression
write(m, x2, read(m, x1)), where m, x2, and x1 denote the contents of the
memory and index registers at the start of the loop. After another itera-
tion, the symbolic expression for memory will grow to:

write(write(m,x2,read(m,x1))︸ ︷︷ ︸
previous iteration′s memory

, x2+1, read(write(m,x2,read(m,x1))︸ ︷︷ ︸
previous iteration′s memory

,x1+1)).
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The expression is growing exponentially! To reduce the blow-up of
memory expressions, we introduced some sound-but-incomplete rewriting
rules:

1. When a write is performed, the existing memory is scanned to
check if the address being written has already been used. Since the
new write overrides the older write, the older one can be removed,
e.g., write(write(m, a, v0), a, v1) becomes write(m, a, v1). This sim-
plification is extremely useful for loops that repeatedly write to a
temporary storage location.

3. When a read is performed, we “peel off” any writes that can
be proven not to be to the same location as the address
being read, e.g.,read(write(write(m, a0, v0), a1, v1), a2) becomes
read(write(m, a0, v0), a2), if the decision procedure can prove the
a1 can never be equal to a2.

3. Similarly, when a read is performed, if the decision procedure can
prove that the address being read is always equal to the address
that has been written, the result is simply the value that was writ-
ten, e.g., read(write(m, a0, v0), a2) simplifies to v0, if the decision
procedure can prove that a0 = a2.

In the array-copying example above, if the verification tool can prove that
the arrays don’t overlap (based on knowledge of the memory layout), then
these rewriting rules will cause the expression size to grow linearly rather
than exponentially.

Functional vs. relational translation. Recall from Section 2.1 that there
are two ways to build the symbolic expression for a program or cir-
cuit: the functional or the relational translation. The functional translation
uses fewer symbolic variables, but potentially generates exponential expres-
sion size; the relational translation generates linear-size symbolic expres-
sions, but requires many more symbolic variables. Other researchers have
argued for the superiority of the relational translation.(24) Our experi-
ence was different, and we continued to use the functional translation.
Our domain-specific expression-rewriting was able to keep our symbolic
expressions reasonably small in most practical cases, and the additional
variables introduced by the relational translation severely impacted the
performance of our decision procedure. Perhaps a newer decision proce-
dure would be better able to handle the relational translation, but the abil-
ity of ad hoc, sound-but-incomplete rewriting to reduce expression size
should not be ignored. In the longer term, we expect the right approach
will be to use a functional translation as long as possible, with rewriting
to reduce expressions size, and then introducing intermediate variables as
in the relational translation only when needed.
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3.3. Reducing False Inequivalence

In addition to rewriting to improve efficiency, we also relied on
domain-specific expression rewriting to strengthen the decision procedure.
The basic problem is that we rely on uninterpreted functions to model
most operations on data (almost everything except addition and subtrac-
tion), and the theory of uninterpreted functions with equality is too weak
to capture many properties we need to verify equivalence. For example,
common optimizations include using shifts to replace multiplication/divi-
sion by powers of 2, or exploiting commutativity/associativity to group
and reorder computations. Using only uninterpreted functions, our veri-
fication approach would falsely declare the optimized code inequivalent,
because uninterpreted functions do not in general obey the properties used
in the optimization.

Axioms. Our solution is to allow the user to specify additional
properties, which we dub “axioms”, that specific uninterpreted function
symbols are assumed to obey. For example, if we use an uninterpreted
function symbol MULT to denote multiplication, we can specify that MULT
is commutative by

MULT assert (= (MULT argMULT1 argMULT2)
(MULT argMULT2 argMULT1))

In general, user-specified axioms could make the logic undecidable. Instead,
our approach is simply to use these axioms as rewriting rules to generate
additional facts in an ad hoc manner. For example, whenever the verification
tool generates an expression involving MULT like8 (MULT a b), the verifi-
cation tool will use the axiom as a pattern to generate the assertion (=
(MULT a b) (MULT b a)). The result is a sound application of the user-
specified axioms, but is not complete: not all implications of the axioms
will be computed. The ability to specify axioms was crucial to strengthen
the decision procedure enough to produce useful results, and fortunately,
we found that only a few axioms were enough in our experiments (e.g.,
commutativity of multiplication, equivalence of shift to multiplication by
2, etc.).

Expression normalization. This optimization can be considered a spe-
cial, extra powerful axiom. The basic problem is that arithmetic with
multiplication is undecidable, so we cannot expect the decision procedure
to handle arbitrary arithmetic expressions. On the other hand, programs
often generate complex arithmetic expressions, so we want a more pow-
erful means to check equivalence. The solution is to rewrite arithmetic

8SVC uses LISP-like syntax: the first symbol after the parentheses is the function being
called.
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expressions heuristically into a normal form, to increase the likelihood
that mathematically equivalent expressions can be proven equivalent by
the decision procedure.

The heuristics consist of a number of transformations and simplifica-
tions in an attempt to bring the two expression to a reduced form. Con-
stants in additions and in multiplications are evaluated as much as possible.
Address expressions are simplified based on the memory layout (e.g., if
memory location a + 3 is being accessed, and we know that a + 3 = b,
then we replace the reference to a + 3 by b). In a sequence of multipli-
cations and divisions, the divisions are moved to the end. Most impor-
tantly, the arguments of multiplications are reordered according to a fixed
order. Although these transformations are obviously not complete, they
are sound and were sufficiently powerful to handle all the instances that
arose in the industrial examples.

3.4. False Equivalence

We have strived to be conservative in all of our abstractions and
approximations, so that our verification approach will not erroneously
declare two programs equivalent if they are not. Our effort, then, focuses
on reducing the false inequivalences—cases where the verification approach
declares two programs inequivalent, even though they are actually equiva-
lent.

However, because we do not model the processor at a bit-accurate
level, with finite word sizes and precisions, there do exist some aspects of
our verification approach where we might falsely declare programs to be
equivalent. For example, our theory will declare (x + y) − z to be equiv-
alent to (x − z) + y, although the two expressions have different over-
flow behavior on finite-sized words. Similarly, we do not model a finite-size
memory, so our verification approach might declare two programs equiv-
alent even though in reality, one of them might take a memory protection
fault when the other wouldn’t. In general, the use of pure uninterpreted
functions is safe, even when considering exceptions or finite-precision, but
all the other theories (linear arithmetic, memory, user-defined axioms) are
potentially problematic.

This is the most serious weakness of our verification method. If we
consider the tool a debugging aid rather than a certification of correctness,
however, and given that the verification is completely automatic, the tool
should still be useful despite this theoretical limitation.
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4. EXAMPLE EXPERIMENTS

To assess the practical usefulness of our approach, we have applied it
over the years to a few different embedded processors and DSPs. In this
section, we review these results.

4.1. Fujitsu Elixir DSP

Our first effort to apply this verification approach(25,26) was for the
Fujitsu Elixir, a 16-bit, fixed-point DSP used in cellular telephones. We
were fortunate to obtain a set of four matched pairs of code.9 Each pair
consists of two subroutines that were believed to be functionally equiva-
lent.(27) One subroutine was production code taken from a cellular tele-
phone application, hand-written by experts. The other was compiled from
an allegedly equivalent C program, using a highly optimizing compiler.(27)

The examples range in size from 37 lines to 190 lines of code for the com-
piled version.

All errors discovered were found completely automatically. When an
error was discovered, we generally considered the hand-written code to be
“golden”, modified the other program to fix the problem, and repeated the
verification.

Yhaten: Yhaten was the smallest example and had no errors.
Hup: The Hup example contained only one branch to check a round-

ing flag and set the appropriate register, followed by a fixed-count loop to
calculate a sum and multiplication.

The tool found two errors. The first is that the compiled code lacked
the aforementioned branch to check the rounding flag. The tool detected
this error due to discrepancies between the two control-flow graphs. The
second error was that a register used in modulo addressing was set to a
fixed value in the generated version, but was set from a memory location
in the hand-coded version.

Kncal: Kncal contained a number of branches, a fixed count loop to
calculate a division as well as a much more interesting array of operations,
such as shifting, negating and logical ANDing.

The first error located was that the compiled code used a logical
shift where the hand code used an arithmetic shift. Depending on the
value of the input this could generate different results. Another error was
that, along a particular trace through several branch choices, the compiled
code attempted to access a temporary memory location that had not been
set properly. Errors of this sort (missed initialization along one particular

9The code is proprietary, so we cannot give listings or detailed descriptions of functionality.



80 Currie et al.

Represents a terminal block

Represents a TRUE branch
Represents a FALSE branch
Represents a branch with no condition

Represents an intermediate block

Fig. 4. Branching structure for Dt pow. This diagram is the CFG unfolded into a tree,
showing all possible paths through the routine.

trace) are common and can be extremely difficult to detect if the branch-
ing structure is complex.

Dt pow: Dt pow was the largest example and the most complex in
terms of branching structure (Fig. 4).

Further complicating this example was the extensive use of auto-
incrementing and decrementing in the hand-coded version, making it diffi-
cult to determine which memory addresses were being accessed by visual
inspection alone.

The tool found several errors in this example. There is a trivial com-
putation error (order of operations), apparently resulting from a typo
in the C code. In the compiled code, several computed results were not
being stored properly. More interestingly, there are several distinct cases of
missed initializations along particular traces. For example, both programs
contain a branch to allow the program to skip initialization of several
memory locations. In the hand-written code, if this branch is taken, those
addresses would have default values instead. In the compiled code, how-
ever, if the branch is taken, default values are not properly supplied. The
most interesting bug is one that we believe is a missed initialization along
an involved sequence of branch choices in the expert hand-written code.

In summary, we emphasize that in all examples, all bugs were discovered
automatically using the tool. The examples were small, but were sufficiently
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Table I. Tool Performance on Fujitsu Elixir Examples

Example Size Time SVC Time Mem

Yhaten 37 39 s 25 s 38 MB
Hup 47 8 h 36 m 7 h 56 m 69 MB
Kncal 69 1 s 1 s 3.4 MB
Dt Pow 190 12 s 9 s 3.9 MB

tricky that the bugs had eluded previous detection. We also note that most
bugs resulted from errors in the C program, and not the compiler.

Performance: The performance for each example is given in Table I.
“Size” is the number of lines of code in the compiler-generated version.
“Time” is the total wall clock time taken by the program to verify the
assembly code, after all errors were corrected. “SVC Time” is the time that
the program spent in SVC. “Mem” gives the maximum memory used dur-
ing the verification. The memory usage was shared between SVC and our
program, but most of the execution time was spent in SVC. Only Hup
performed poorly, because of the rewriting—the more expensive rewriting
rules were ineffective, but were repeatedly called while the program’s main
loop was unrolled. Turning off the useless optimizations would have accel-
erated the runtime substantially. Overall, we find the performance for ver-
ifying small, intricate code to be reasonable. The tests were run on a Sun
Ultra 60 (360 MHz) with 1280 MB of memory.

4.2. Texas Instruments’ 320C62x VLIW DSP

Our next effort to apply our verification approach targeted the
more complex ISAs of modern VLIW processors.(28,29) Texas Instruments’
TMS320C6x family of VLIW digital signal processors(30) is both commer-
cially important and also the epitome of this architectural style, so we tar-
geted the family for our research. In particular, we targeted the C62x family,
which are 32-bit fixed-point DSPs that are code-compatible with the more
powerful C64x fixed-point family and the C67x floating-point family.

In the C6x processors, instructions are grouped into “execute pack-
ets” of up to eight instructions, and these packets can be executed one
per clock cycle. The design can attain very high performance, but is highly
non-orthogonal. Each of the eight instructions goes to a specific functional
unit. The functional units have specific capabilities, and there are limited
resources for routing data among the functional units and register files.
Careful code-tuning is imperative to achieve maximum performance. How-
ever, the processor has no interlocks—most potential conflicts in resource
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utilization are disallowed statically during code generation, but some cases
produce undefined results. We will elaborate on this point below.

The other main architectural feature that both enhances performance
and complicates code generation and verification is the pipeline. The pro-
cessor is heavily pipelined, with instructions taking up to 11 cycles to com-
plete. Table II summarizes the pipeline. The pipeline has no interlocks,
which simplifies the hardware (more performance at lower cost) but com-
plicates the code. In particular, multiply and load instructions have long
latencies and require 1 and 4 delay slots, respectively. Instructions in these
delay slots see the old value of the register. Multiple writes to a register
in a single clock cycle are illegal, and in most cases, this can be detected
during code generation.

Another artifact of the programmer-visible pipeline is that there is
a long branch delay—five delay slots (i.e., the next five packets fetched
following a branch always execute, regardless of whether the branch is
taken or not)—because the branch doesn’t affect the Program Address
Generation stage until it reaches the Execute 1 stage. Branch instruc-
tions may appear in the delay slots of other branches, so the five pack-
ets fetched following a branch might not be contiguous in memory. The
results may be unintuitive, but they follow naturally from the pipeline
definition.

To complicate matters further, but also to allow very compact and
efficient code, all instructions are predicated, i.e., each instruction in each
execute packet specifies a register and a condition (equal-zero or not-
equal-zero), and only executes if that register is zero or not zero. Pred-
ication can eliminate many branches, increasing the size of basic blocks
and the amount of instruction-level parallelism available.(31) Unfortunately,
predication and the absence of pipeline interlocks means that many reg-
ister-write conflicts may or may not happen, depending on the values of
registers at runtime. The processor manual specifically states that these sit-
uations cannot be detected, but that the result is undefined when they
happen.(30,Section3.7.6) Our verification tool was able to detect (or verify
the absence of) these dynamic conflicts, using the write-history technique
described in Section 3.1.

Overall, the architecture follows the VLIW philosophy and is opti-
mized for maximum performance with minimal hardware, with no consid-
eration for easy code generation or verification. The apparent complexity
of the programmer’s model, however, is not arbitrary, but the logical con-
sequence of the exposed parallelism and pipeline. Accordingly, we found
that although the code is error-prone for a human to read or write, it was
relatively easy to create a simulator for the processor—even a symbolic
simulator—that captures the correct semantics.
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Table II. C62x Processor Pipeline

Stage Description

Program Address Generate Determine address of the fetch packet

Program Address Send Send address of the fetch packet to
memory

Program Wait Program memory access happens

Program Data Receive CPU receives fetch packet from memory

Dispatch Determine the next execute packet in
the fetch packet and send it to the
appropriate functional units

Decode Decode instructions in functional units

Execute 1 Evaluate predicates. Read operands. For
load and store instructions, do address
generation and write address modifica-
tions to register file. For branch instruc-
tions, affect the Program Address Gen-
erate stage. For single-cycle instructions,
write results to a register file

Execute 2 Load and store instructions send
address (and data for store) to memory.
Most multiply instructions complete

Execute 3 Data memory accesses are performed.
Store instructions complete

Execute 4 For load instructions, CPU receives data

Execute 5 For load instructions, write the data
into a register

The processor pipeline is 11 stages deep. Instructions are grouped into
“execute packets” of up to eight instructions that proceed through the
pipeline in parallel. Note that different instruction types write results with
different latencies. This table is summarized from Ref. 30, Table 6-1.

As the challenge problem for our verification tool, we found an article,
written by an expert, explaining how to optimize code for high-performance
DSPs.(32) The most difficult example in the article demonstrates software
pipelining(33) a short loop, with code supposedly for the TI C6200. The
basic idea is to rearrange the computation such that portions of different
loop iterations execute at once, similarly to hardware pipelining. A prologue
is required to start the pipelined computation, and an epilogue is required
to “flush the pipeline” at the end of the computation.

Figure 5 gives the desired functionality in C. Figure 6 gives partially
optimized, but unpipelined assembly code, which is reasonably readable.
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Figure 7 gives the software pipelined code presented in the article. Intui-
tively, the @-signs in the comments indicate which iteration of the original
loop is being processed by which instructions. For example, the first itera-
tion of the unpipelined loop corresponds to the LDW instructions on lines
17 and 18 of Figure 7, followed by the SUB instruction on line 25, the
branch on line 27, the multiply on line 31, and so forth. It is also crucial
to remember the five branch delay slots. The performance improvement is
that the loop kernel now runs in 2 cycles instead of 10.

We ran our tool on this example, comparing the pipelined and un-
pipelined programs. To our surprise, the tool discovered a bug: the result
of the first iteration is never written, and there is an extra result written
at the end. A fix, which our tool verified as correct, is to move a STW
instruction from the epilog to the prolog. We published our results,(28)

void example1(float  out,float  input1,float  input2)
{

int i;

for(i= 0 ; i < 100;i++)
{

out[i]=input1[i]   input2[i];
}

}

Fig. 5. Software pipelining example. This C code specifies the desired functionality. (Listing
taken from.(32))

Fig. 6. Unpipelined assembly code. According to the article,(32) the compiler was unwilling
to pipeline the loop because of possible aliasing between the inputs and the output. The cor-
respondence with the C code is fairly clear.
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Fig. 7. Software pipelined assembly code. If the inputs are declared to be const, the com-
piler performs software pipelining, resulting in much more efficient code. But, does this do
the same thing as Fig. 6? (Listing taken from Ref. 32.)

and an astute reader subsequently discovered that our verification tool was
wrong, and that the example is actually correct!(34)

What happened? The code in the article turned out to be for the
floating-point C67x family, although it was described as code for the
fixed-point C62x family. We wrote our tool based on the C62x, where
multiplies take 2 cycles; on the C67x, multiplies take 4 cycles. In retro-
spect, an example allegedly for a fixed-point DSP obviously should not
use floating-point data, but since our tool uses uninterpreted functions
for data operations, we did not notice. We made a trivial change to our
verifier (changing the latency table entry for the multiply), and it immedi-
ately verified the original example correctly.

Runtime for our tool was less than a second for all runs (on an Intel
Pentium III at 733 MHz): finding the “bug”, verifying our fix, and verify-
ing the original code with the correct latency. Our tool easily handled both
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correct and incorrect versions of intricate, highly optimized code, and was
easily modified for different instruction latencies.

4.3. Fujitsu FR500 VLIW Processor

As a further test case, we applied our verification approach to build-
ing a tool for the Fujitsu FR500,(35) a high-performance VLIW proces-
sor for media-intensive, embedded applications.(29) The FR500 is a 4-wide
VLIW, with two instruction slots per cycle for two integer units, and two
instructions slots per cycle for floating-point or media instructions. The
two floating-point units are each 2-way SIMD 32-bit floating point units,
allowing a total of four floating-point operations per cycle. The two media
units are each able to execute two 2-way SIMD 16-bit operations, allowing
a total of eight operations per cycle.

Although the FR500 has many architecturally interesting features,
building a verification tool for it, based on our approach, proved to
be very straightforward. No further verification techniques were needed
beyond those already described.

As a challenge problem, we were given assembly code output10 from
two different optimizing compiler, which used different optimization levels.
The program computes a convolution, with 256 samples and 16 coeffi-
cients. The two assembly language programs contained 63 and 100 instruc-
tions. The runtime to verify equivalence was 2.6 s on an Intel Pentium III
at 733 MHz with 128 MB of memory. Total memory usage was approxi-
mately 12 MB. As in the preceding experiments, we see that our verifica-
tion approach is easily able to handle small segments of code, even with
lengthy loop unrolling.

5. RELATED WORK

We do not have space to survey the long research tradition of
non-automatic, formal verification of software. Recently, there has also
been considerable research on automatic formal verification of software,
with the emergence of systems such as Slam,(36) Java Pathfinder,(37)

CMC,(38) and CBMC.(39) These works focus on model checking proper-
ties of high-level language programs, whereas our focus is on the detailed
complexity of embedded software.

There has been some prior work on automatically verifying assembly
language programs for embedded systems. For example, Thiry and Clae-
sen(40) proposed a model-checking approach based on BDDs. Balakrishnan

10This example is also proprietary.



Embedded Software Verification 87

and Tahar(41) proposed a similar approach based on the more general
multiway decision graph to avoid some BDD-size blow-up. Both were able
to verify a mouse controller and find inconsistencies between the assembly
code and flow chart specifications.

Contemporaneously with us, and using a similar verification approach
to ours, Hamaguchi et al.(42) have verified the equivalence of higher-
level specifications against lower-level implementations. Furthermore, their
lower-level implementation included a VLIW processor with assemblylevel
instructions. Subsequent work(43) enhanced performance with better heu-
ristics. Their work addresses the harder problem of high-level-versus-low-
level verification, whereas we consider only the problem of comparing
two similar low-level programs. On the other hand, their VLIW proces-
sor was a simple, academic design (4-wide, 2-stage pipeline, no unusual
architectural features), whereas the strength of our work is on handling
the complexity of commercial processors and highly optimized code.

In the compiler-research community, Necula(44) has proposed a very
similar approach to ours, but targeting the verifier for use on the com-
piler’s intermediate code between optimization passes. His work uses hints
from the compiler and more sophisticated control-flow analysis, and was
demonstrated by verifying the compilation of the Gnu C compiler itself.
We believe that our methods for dealing with the complexity of real
assembly language could be augmented by Necula’s methods for handling
larger programs with more complex control flow.

6. CONCLUSION AND FUTURE WORK

We have reviewed our approach to the formal equivalence verifica-
tion of embedded software, based on symbolic execution and uninter-
preted functions. The approach is flexible and easily adapted to different,
even highly complex, instruction set architectures. To make the abstract
theory useful in practice requires the use of domain-specific rewriting
and other optimizations. In particular, we have found that performing
sound-but-incomplete rewriting using user-specified axioms is crucial to
being able to successfully verify correctness of real optimized code. Sim-
ple rewriting rules can also greatly improve the efficiency of the deci-
sion procedure, for example, allowing our functional translation to avoid
generating exponential-sized symbolic expressions. Overall, our approach
is very promising for the verification of small segments of complex, highly
optimized code.

Further research is needed to improve the efficiency, scalability, and
accuracy of the verification approach. An obvious way to improve effi-
ciency is to research more efficient decision procedures, since most of the



88 Currie et al.

runtime is spent in the decision procedure. Another important next-step is
to exploit better static analysis, especially to avoid loop unrolling.(45) For
scalability, research is needed to find ways to decompose a larger verifi-
cation problem into smaller, more tractable ones—for example, by find-
ing equivalent cut points between two programs, similar to what is done
in combinational hardware equivalence verification. For improved accu-
racy, the most important need is for more accurate bit-level reasoning.
Fully bit-accurate verification is likely computationally hopeless, but there
may be ways to improve accuracy by combining uninterpreted functions
with a bit of bit-level analysis. Another challenge for improving accu-
racy is to find additional, useful, but decidable theories, or to find more
powerful ways to handle user-specified axioms. In general, future research
must carefully tune the level of abstraction: too much abstraction yields
inaccurate results, but too little results in complexity blow-up.
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