International Journal of Parallel Programming, Vol. 34, No. 1, February 2006 (© 2006)
DOI: 10.1007/s10766-005-0002-x

Verification Approach of Metropolis
Design Framework for Embedded
Systems

Xi Chen,"?* Harry Hsieh,? and Felice Balarin®

In this paper, we focus on the verification approach of Metropolis, an
integrated design framework for heterogeneous embedded systems. The verifi-
cation approach is based on the formal properties specified in Linear Temporal
Logic (LTL) or Logic of Constraints (LOC). Designs may be refined due to syn-
thesis or be abstracted for verification. An automatic abstraction propagation
algorithm is used to simplify the design for specific properties. A user-defined
starting point may also be used with automatic propagation. Two main verifica-
tion techniques are implemented in Metropolis: the formal verification utilizing
the model checker Spin and the simulation trace checking with automatic gen-
erated checkers. Translation algorithms from specification models to verification
models, as well as algorithms of generated checkers are discussed. We use several
case studies to demonstrate our approach for verification of system level designs
at multiple levels of abstraction.

KEY WORDS: LTL; LOC; metropolis; meta-model; spin; property; simulation;
formal verification.

1. INTRODUCTION

As Moore’s Law continues its march through the millennium, design com-
plexity of modern systems increases exponentially. Design and verification
methodologies at higher levels of abstraction are required to fill the gap

University of California, Riverside, California, USA. E-mail: {xichen, harry}@cs.ucr.edu
2Present address: Novas Software, Inc., San Jose, CA, USA.

3Cadence Berkeley Laboratories, Berkeley, CA, USA. E-mail: felice@cadence.com

4To whom correspondence should be addressed.

3

0885-7458/06,/0200-0003/0 © 2006 Springer Science+Business Media, Inc.

4 Chen, Hsieh, and Balarin

System Architecture
(Platform)

\ /

v

Function on Architecture

v

Implementation

System Function

Fig. 1. System level design methodology.

between the increasing semiconductor manufacturing capabilities and the
lag-behind design productivity. System level design, based on orthogonal-
ization of design concerns, as well as pre-defined platforms, will become
ever more important.() The initial specification of the function and the
architecture of a system is done at a high abstraction level without par-
ticular lower level implementation details. The function is then mapped
onto the architecture after iterations of refinement procedures (see Fig. 1).
Significant advantages in design flexibility, as compared to the traditional
fixed architecture and a priori partitioning approach, can result in signifi-
cant advantages in the performance and design cost of the product.

Synthesis (i.e. steps taken toward implementation) is applied system-
atically to transform high level specifications into manufactured prod-
ucts. System level synthesis steps may include structural transformations,
where designs are partitioned, composed, or otherwise altered, and for-
mal refinements, where possible behaviors of the design, equivalently rep-
resented as non-deterministic traces, are formally refined through the use
of constraints or implementation annotations. There exist multiple levels
of abstraction in a design flow, which also indicate the requirement for
suitable verification techniques to be applied at each level. Furthermore,
abstraction is a basic operation to manage complexity during verification
procedures. The tendency is to simplify (or abstract) the design for verifi-
cation purposes and refine the design as more implementation details are
determined.

The Metropolis framework is developed as an integrated and unified
design environment for embedded systems.®) Metropolis allows designers to
represent and manipulate their designs at multiple levels of abstraction and
with multiple models of computation (MoC). Integrated into the Metropolis

Verification Approach of Metropolis Design Framework 5

design framework is a set of back-end tools, with which one can simulate,
synthesize, and verify a design at hand. Central to the framework is the
Metropolis Meta-Model (MMM) language. Different high level languages,
MoC, design constraints, as well as specifications of system functions, archi-
tecture platforms and function-architecture mappings, can be represented
in MMM while retaining their precise semantics. Constructs in MMM are
chosen to facilitate the transformations and refinements between different
abstraction levels. This paper focuses on the verification techniques inte-
grated in Metropolis for system level designs. They are based on the formal
specification of design properties and constraints in MMM. Designers are
able to specify both functional and performance properties of a design in
mathematical logics, Linear Temporal Logic (LTL)® and Logic of Con-
straints (LOC), with MMM language constructs, and use the integrated
verification tools to verify these properties in the design flow.

In property-based verification, only a portion of the design may be
relevant to the passing or failing of a given property. The rest of the
design may be simplified or removed, without changing the outcome of the
verification. Based on this observation, a technique of automatic design
abstraction and propagation is developed to abstract the original specifi-
cation of a design and to simplify the corresponding verification model.
Designers are also allowed to indicate what elements in the design are not
relevant to the properties being verified. They can apply these abstraction
operations, freeing in particular, to the variables, statements, and compo-
nents. If the properties are “safety” in nature (i.e. something bad will never
happen), the abstraction can only lead to the verification result that is
either exact or conservative (with possibly false negative result). There will
never be a false positive result. We propose an automatic algorithm to
propagate this abstraction to the rest of the design exactly (i.e. without
introducing more false negatives or any false positives).

For small but important designs or library modules that will be
instantiated many times across different designs, it is possible and use-
ful to exhaustively prove the desired properties at a high level of abstrac-
tion using formal verification techniques. In Metropolis, the model checker
Spin® is utilized as one of its back-end verification engines. A design
specification in MMM is automatically translated into a verification model
in Promela, the modeling language of Spin, and the properties of the
design can then be formally verified with Spin. We illustrate the usefulness
of the formal verification methodology with a case study of a task tran-
sition level (TTL) FIFO channel. We then apply the technique of design
abstraction and abstraction propagation to the same design example to
demonstrate that such a “pre-processing” at the system level indeed leads
to significantly shorter verification time.

6 Chen, Hsieh, and Balarin

Formally verifying practical implementations, not just their abstrac-
tions, is computationally difficult due to the “state explosion” problem.
Simulation remains a primary means of verification when designs are
refined with more implementation details. In Metropolis, a simulation veri-
fication methodology based on trace analysis of formal properties, is inte-
grated into the back-end SystemC simulator. From the formal properties
specified by designers, trace analysis tools or simulation monitors can be
automatically generated to check the properties off-line or concurrently
during the simulation. A complex design where the function is mapped to
an architecture is used to show the usefulness of the simulation verifica-
tion methodology.

The rest of this paper is organized as follows. In the next section, we
review the Metropolis design framework, its design methodology and the
MMM language. In Section 3, we introduce the technique of automatic
design abstraction and propagation that can be used to simplify the verifi-
cation problem. In Section 4, we present the formal verification methodol-
ogy in Metropolis utilizing the model checker Spin. The usefulness of the
formal verification methodology and effectiveness of the automatic design
abstraction technique are demonstrated through a real Metropolis design
in Section 5. In Section 6, we discuss the simulation verification meth-
odology incorporated in Metropolis. Section 7 summarizes the verification
approach of the Metropolis design framework and concludes the paper.

2. METROPOLIS

In this section, we introduce the Metropolis design framework, its
design methodology, and the syntactic and semantic features of MMM,
the design specification language of Metropolis.

2.1. The Metropolis Framework and Design Methodology

The integrated design environment consists of a meta-model descrip-
tion language, MMM, a front-end that constructs internal representa-
tions and analyzes static network structures, and a set of back-end tools
that are responsible for simulation, synthesis, verification, and other tasks.
Constructs in MMM are designed to facilitate the transformations and
refinements between different abstraction levels. Different high-level lan-
guages, MoC, design constraints, as well as specifications of system func-
tions, architecture platforms and function-architecture mappings can be
represented in MMM. Different design aspects are orthogonalized, such
as computation versus communication, function versus architecture, and
specification versus implementation. The design complexity can therefore

Verification Approach of Metropolis Design Framework 7

Architecture
Specification

Design
Constraints

Function
Specification

Metropolis Infrastructure

e Design methodology

® Base tools
- Design imports
- Simulation

® Meta-model of Computation

Metropolis Point tools: Metropolis Point tools:
Synthesis/Refinement Analysis/Verification

Fig. 2. Metropolis design framework.

be effectively reduced, and the design space can be efficiently explored.
Figure 2 shows a flow diagram for the Metropolis framework.

2.2. The MMM Language

MMM is a system specification formalism capable of representing
designs at different levels of abstraction. A description of a system (func-
tion and/or architecture) can be made in terms of computation, commu-
nication, and coordination.

2.2.1. Processes, Media, and Netlists

In MMM, systems are represented as networks of processes that com-
municate through media.® Processes and media are used to describe com-
putation and communication respectively. The syntax of MMM is similar
to Java but includes many system level extensions. A process defines an
active object, and always includes a function called thread as the top-level
function, where its behavior is specified. A communication medium imple-
ments a set of functions that are declared in interfaces. Processes connect
to media through ports. Each port has a type, which must be an inter-
face implemented by the medium to which the port is connected. Processes

Chen, Hsieh, and Balarin

process P{ FuncNet medium M{
port pX, pZ; int[] storage; int space;
thread(){ void write(int[] Z) {...}
//condition to read X pl P2 int[] read() {...} }
//an algorithm for f(X) @ @4@7® @
/lcondition to write Z pX 12 pX pZ netlist N {
} Ppl,p2; Mml;
} /lconnections
/lconstraints }
Computation Coordination Communication
. X> Z * constraints on * state
* firing rule concurrent actions * methods to
* algorithms to enforce — store data
the constraints — retrieve data
process constraints or await medium
Fig. 3. An example of MMM specification.

communicate to each other by invoking interface functions implemented in
the shared media through these ports.

In MMM, objects such as processes, media, and their connectivities
can be grouped in a netlist, which is used to model a complete network.
Figure 3 shows an example of a functional netlist FuncNet. The netlist
defines two processes, p/ and p2, communicating through a medium ml/.
A netlist can also contains other netlists to form a hierarchical network.
In addition, refinement constructs are available to specify that one netlist
is the formal refinement of another within a network.

2.2.2. Coordination

Processes run concurrently, each at its own pace. The relative speed
of processes may arbitrarily change at any time, unless they synchronize
with each other using the synchronization primitive called await, or if con-
straints are specified in the system. The await statement can be used to
make a process wait until some condition holds and to establish criti-
cal sections that guarantee mutual exclusion among different processes.
To limit the behavior of processes, a designer can also specify high-level
LTL® or LOC® constraints, and leave the implementation of these con-
straints to the detail design stage.

The await statement is used to establish mutually exclusive sections
and synchronize processes. It contains one or more statements called criti-
cal sections, each controlled by a triple (guard; testlist; setlist), where the
guard is a Boolean expression, and the testlist and setlist denote sets

Verification Approach of Metropolis Design Framework 9

of interface functions of other processes. A critical section is said to be
enabled if its guard is true, and none of the interface functions in the test-
list are being executed at that moment. A critical section may start exe-
cuting only if it is enabled. In addition, while the critical section is being
executed, no interface functions included in the setlist can begin their exe-
cutions. Whenever an await is encountered in the execution flow, one and
only one of the enabled critical sections is executed. If no critical sec-
tion is enabled, the execution blocks. If more than one critical sections are
enabled, the choice is non-deterministic.

2.2.3. Function, Architecture, and Mapping

The function-architecture separation and mapping is natively sup-
ported in the MMM language. System function and architecture are
defined independently at a high level of abstraction. The function is then
mapped to the architecture in order to arrive at a given implementation.

Both the function and the architecture of a system are modeled as
separate networks of processes communicating through media. In an archi-
tectural network, resources are typically modeled with media, services that
the architecture can provide are modeled with so called mapping processes,
and arbitrators among multiple architectural resources are modeled with
quantities. A third network can be defined to encapsulate the functional
and architectural networks, and to relate the two by synchronizing events
between them with synch constraints.

Figure 4 shows a mapping network MapNetlist that combines the
functional network FuncNetlist with the architectural network ArchNet-
list. The functional network includes two processes p/ and p2 commu-
nicating through media m/ and env. The architectural network contains
media CPU, BUS and MEM, and the corresponding mapping processes.
The synch constraints are used to synchronize the events of functional
processes and the mapping processes. Schedulers OsSched and BusArbiter,
which are modeled with quantities, coordinate the architectural resources
and provide performance models to the architectural network. During exe-
cution, architectural media and mapping processes can request the quan-
titative annotations from the quantities.

2.2.4. Functional and Performance Properties

Functional and performance design properties can be specified with
the MMM language constructs in the form of LTL or LOC. LTL and
LOC have different domains of expressiveness and indeed complement
each other quite well.(”? At the verification stage, both static and runtime

10 Chen, Hsieh, and Balarin

MapNetlist

FuncNetlist ArchNetlist
I

1
2") —
pX pZ

N

p2

P

synch(beg(pl, pl.write), beg(MapP1, MapP1.CPUwrite));
synch(beg(pl, pl.read), beg(MapP1, MapP1.CPUread));
synch(beg(p2, p2.write), beg(MapP2, MapP2.CPUwrite));
synch(beg(p2, p2.read), beg(MapP2, MapP2.CPUread));

Fig. 4. Function-architecture mapping.

verification techniques can be used to check the design properties and
report design errors if there is any property violation.

LTL is suitable for specification of functional properties, such as
mutual exclusion, liveness and safety, and can effectively describe the tem-
poral patterns for system state transitions. LTL formulas are constructed
using terms, classical Boolean operators such as — (not), Vv (or), A (and)
and — (imply), and the temporal operators G (globally), E (eventually)
and U (strong until). Terms are Boolean conditions on variables or pro-
cess states.

LOC is a formalism designed for specification of quantitative per-
formance properties such as rate, throughput and latency, and func-
tional properties such as I/O data consistency at the transaction level,
where system events and their annotations are considered. It is also very
well-suited for analyzing traces from execution of higher, transaction level
system models. LOC consists of all the terms and operators allowed in
sentential logic, with additions that make it possible to specify quantitative
properties without compromising the ease of analysis. The basic compo-
nents of an LOC formula include event names (e.g. pipeline and sram_enq),
instances of events (e.g. pipeline®), indices of event instances (e.g. O,
1, ..., etc), the index variable i, and annotations (e.g. cycle, pc and addr).
LOC can be used to specify many important system level performance
properties that are inconvenient, and sometimes impossible, to specify with
LTL. For example, the rate property:

Verification Approach of Metropolis Design Framework 1
cycle(pipeline[i + 1]) — cycle(pipeline[i]) = 10 (1)

requires that the difference between the values of annotation cycle for any
two consecutive instances of pipeline event should equal to 10.

3. AUTOMATIC ABSTRACTION AND PROPAGATION

Working from a higher abstraction level of a design, such as Metrop-
olis Meta-Model, provides two pivotal advantages. First, an abstraction
applied to the higher level specification will also make the lower level veri-
fication model more abstract as well. It is therefore advantageous to apply
abstraction operations directly on the higher level model and simplify
the higher level model as much as possible. Second, designers now have
the opportunities to specify abstraction operations on their own directly
at the specification model according to their knowledge about the design.

It is obvious that only a portion of the design may be relevant to
the passing or failing of a given property in property-based verification.
The rest of the design may be simplified or removed, without changing the
outcome of the verification. Unfortunately, identifying precisely what sim-
plification or removal can be made correctly is as complex as the verifica-
tion problem itself. Up until now, the process of design abstraction (i.e. the
simplification of the design) is usually done by hand or left to the verifica-
tion tools as they explore the reachable states and analyze the properties.
Based on these observations, we propose an technique of automatic design
abstraction and propagation to simplify specification models and to lead
to a simpler verification models.

The automatic abstraction propagation consists of two separate oper-
ations, designer-driven propagation and property-driven propagation.
Designers can specify free-able variables or statements according to their
in-mind knowledge about the design, and then use the automatic propaga-
tion to exactly propagate them and abstract the entire design. The proper-
ties being formally verified may themselves suggest an exact abstraction as
well. The property-driven propagation can automatically free the variables
and statements that are not relevant. No designer’s interaction is required.

The procedure of automatic abstraction propagation is illustrated in
Fig. 5. If a regular verification session cannot complete or takes too much
time to complete, a designer can turn on a compile-time flag to enable
the abstraction, which can recognize the abstraction keywords and per-
form the automatic abstraction propagation to simplify the system design
for verification. The abstraction propagation starts from the abstract syn-
tax trees (ASTs), the internal representation of the Meta-Model language,
uses on-demand traversal method to traverse the ASTs, and identifies the

12 Chen, Hsieh, and Balarin

Revise Abstraction MetaModel

Operations Abstraction System Design
Operations) | Specification Properties
I
s [N
. MetaMode 1
Frontend Compiler .
Compiler
Abstract Syntax Tree
(AST)
Abstraction
Propagation
Abstracted AST
1 ¥ ! ¥
MetaModel Simulation Formal Verification Other Backends
Backend Backend Backend
N I I I I J

Abstracted Simulation]
MetaModel Verification Tool Other Tools

Fig. 5. Metropolis compiler architecture with abstraction propagation.

variables and statements that are eligible for abstraction according to the
control and data dependencies in the design. Designers are allowed to
specify more abstractions and the tool will propagate them automatically
to abstract the design as much as possible to speed up verification. The
abstracted specification can then be verified by other verification tools
more efficiently.

3.1. Control and Data Dependency Graph

We use a control and data dependency graph (CDDG), built statically
from the language syntax information of the original design, to automate
abstraction propagation processes. The CDDG we use is a directed graph
that has three types of vertices, representing variables, expressions and
control statements respectively. More specifically, given an MMM specifi-
cation, a CDDG is built according to the following general rules:

(1) Each variable in the design corresponds to a vertex in the graph.
For each assignment expression, there is a expression vertex to represent
its right-hand side expression. For each variable in the right-side expres-
sion, there is an edge from the variable vertex to the expression ver-
tex. There is also an edge from the expression to the left-side variable.

Verification Approach of Metropolis Design Framework 13

O Variable Vertex |:| Expression Vertex <>Contro| Stmt Vertex

a=b+(c=x"y+2); (a) z=x+y;
else if (b) z=x"y;

while(i <10){ f1(int a) { f2(int x, inty) {
Z=X+Y; intb=a* a; intret =x*x +y;
i=i+1;} int c=f2(a,b)} returnret2;}

Fig. 6. CDDG examples.

Figure 6a shows an example of a complex assignment statement. Note
that the operations on the variables are skipped and only dependencies are
captured in a CDDG.

(2) Each control statement is represented as a vertex in the graph.
If a variable is in the decision part of a control statement, there is an
edge from the variable to the control statement; if a variable may change
its value in the execution part of a control statement, there is an edge
from the control statement to the variable. Control statements are further
divided into three categories, branching statements such as if’ and switch,

14 Chen, Hsieh, and Balarin

loop statements such as while and for, and synchronization statements
such as await and synch. Figure 6b and ¢ shows examples of if and while
statements respectively.

(3) Function calls are generally treated as operations and expressions.
The CDDG of a design specification is built as if all of its functions
are flattened. Functions are connected together through passing arguments
and returning values when they invoke each other. For a function, there is
an expression vertex for each of its formal parameters and an expression
vertex for the return value. There are edges between the variable vertices
(in both invoking and invoked functions) and these expression vertices as
variables are passed as arguments and return values are assigned to vari-
ables. As Fig. 6d shows, function fj calls function f, by passing a and
b as arguments and assigning the return value to c¢. So there are three
expression vertices connecting the variables in two functions.

Note that vertices representing expressions don’t contain any useful
syntax information themselves and are only used to connect multiple vari-
ables to a variable or an expression as intermediate vertices. Though they
are eventually removed to simplify the graph representation and traversal
in the implementation, for the convenience of presentation, we still keep
them in the illustrations. We define that a vertex v; depends on a vertex
v; if there exists a directed path from v; to v; in a CDDG, where v; and
v; represent either variables or control statements. In Fig. 6a, variable a
depends on variables b, ¢, x, y and z. In Fig. 6¢, variable i and the while
loop depend on each other.

The number of vertices in a CDDG is the total number of variables,
assignment expressions, formal parameters of functions and control state-
ments. So the size of a CDDG is linear to the size of the original source
code.

3.2. Abstraction Propagation Algorithms

Let G = {V, E} be a CDDG that is built from a design specifica-
tion, where V is the set of all the vertices and E is a set of dependency
edges. In the designer-driven abstraction propagation, a designer can spec-
ify free-able variables and statements including variables and control state-
ments, and automatically propagate them to the entire design. Assuming
a set of variables and statements D C V is chosen by the designer to
start from for the designer-driven abstraction propagation, the algorithm
is listed in Algorithm 1.

The algorithm searches for and then abstracts the variables and state-
ments that depend on the designer’s input in the entire specification. Using
the example shown in Fig. 6¢, if a designer specifies that the while loop

Verification Approach of Metropolis Design Framework 15

Algorithm 1 Designer-driven abstraction propagation.
1: D':=D

: for each v € D do

D’ := D'U {u; € V: there exists a path from v to u;}

: end for

: Remove all the variables (including their operations) and statements in D’
from the design.

T NV

Algorithm 2 Property-driven abstraction propagation.
:L:=P
: for each v € P do
L := L U {all the vertices that have a path to v}
end for
: for each synchronization statement s € V do
L :=LU{s}
L := L U {all the vertices that have a path to s}
end for
: Remove all the variables (including their operations) and statements in V—L
from the design.

O RXRDIN RN

is free-able, then the whole while loop including the variable i and the
assignment statement of z will be totally abstracted and the abstraction
can also be propagated to other variables and statements that depend on
them. In the designer-driven abstraction propagation, the amount of false
negative results due to the abstraction is decided solely by the designer’s
input. Its propagation is guaranteed to be exact and no false negative
result will present as a consequence of the propagation.

Assume a set of variables P C V is being checked in the properties. The
algorithm of the property-driven abstraction propagation is listed in Algo-
rithm 2. The algorithm keeps what the properties and synchronization state-
ments depend on, and abstracts the rest of the design. Using the example
shown in Fig. 6c, if P = {x,y}, V — L = {z}, the code fraction is then
abstracted to: while(i <10) i=i+1;

Note that the synchronization statements are not freed at this point
even if they don’t directly control the variables in the properties. This is
because a synchronization statement controls the execution of the pro-
cesses in a concurrent system, and the complex interaction between pro-
cesses make it difficult to free these synchronization statements exactly.
The automatic abstraction propagation does not intend to handle the syn-
chronization of concurrent systems and their abstractions are left to the

16 Chen, Hsieh, and Balarin

designer by the designer-driven propagation. The algorithm also assumes
that there are no non-terminating loops that may cause “dead” code.

Methodologically, the property-driven propagation should be applied
first in the process of abstraction verification since it doesn’t need any
interaction from the designer and will not introduce false negative results.
Then a designer can apply several iterations of designer-driven abstrac-
tions to further abstract the design specification and simplify the verifi-
cation problem as much as possible, even by introducing false negative
results. The worst case for both algorithms is to traverse the entire CDDG
|V| times, so their complexity is O(|V|?) and they will introduce little
overhead compared to the overall compilation time. The effectiveness of
the automatic abstraction propagation we have proposed will be studied
through a formal verification case study in Section 5.

4. FORMAL VERIFICATION FOR SYSTEM LEVEL DESIGNS

Metropolis allows designers to perform verification at different levels
of abstraction, through an automatic translation mechanism that generates
verification models from system specification models.

4.1. Formal Verification Methodology

The task of formal property verification is to exhaustively search the
state space of a system design and to check whether a particular design
property holds. After a system specification in MMM is translated to
Promela description, one can use Spin to do property checking. Spin pro-
vides two powerful ways to specify properties of a design: Assertion and
LTL properties.>® Assertion is an annotation construct in Promela used
to “assert” that a particular condition (e.g. space > 3) must hold. LTL is
strictly a superset of Assertion properties. Without loss of generality, we
only deal with the LTL formulas here.

The formal verification methodology of Metropolis is illustrated in
Fig. 7. The MMM description is automatically translated into Promela
description, and the LTL properties specified in MMM are checked using
the model checker Spin. It is known that only a subset of LOC can be
translated into equivalent LTL formulas and formally checked with Spin
directly.® For the rest of the LOC formulas, the formal verification results
may be inconclusive, i.e. the verification is only partial. The designer may
perform any synthesis step (e.g. composition, decomposition, constraint
addition, scheduler assignment) and a new Promela code can be automat-
ically generated to verify the property. If it does not pass, the error trace
may be used to help designers figure out whether the design needs to be

Verification Approach of Metropolis Design Framework 17

»| MMM Design w/
LTL/LOC Constraints
Synthesis
procedures
y Translation

Promela Description

¢ Feed to SPIN

Modify original Add constraints
design or schedulers
i

Property Checking

Fig. 7. Metropolis formal verification methodology.

(.
Environment

Fig. 8. Example of a bytelink meta-model.

altered. If the verification session runs too long, approximate verification
can be used to explore a subset of the state space and report the proba-
bility that the property will pass. Obviously, a partial exploration cannot
prove that a property holds. However, it is our experience that a lot of
“easy” bugs can be found within a relatively small amount of time and
memory usage. If a Spin verification session continues to run after a long
time, it is highly likely that the property will eventually pass.

Figure 8 shows a prototypical network of m producers and » consum-
ers communicating through a single medium. The producers receive inputs
from the environment, process the data in some way, and then output it
to a medium of a single space. The consumers read in information from

18 Chen, Hsieh, and Balarin

that medium, process it, and then output to the environment. It is possi-
ble for all producers and consumers to execute concurrently. If we want to
check the property, “whenever a producer writes an item into the medium,
there must be some space in the medium”, it can be specified as an LTL
formula:

G((Py-writeV ---V Py, _write) — Mj_not_full),)

and be verified with Spin after the specification model is automatically
translated into Promela.

The same methodology can also be used for a verification-driven syn-
thesis methodology. If the property does not pass the verification, an error
trace is generated and examined. Based on the error trace, the original
design may be incorrect, or refinement may be applied to the original spec-
ification for it to have the desired property. At a higher level of abstrac-
tion, constraints may be used to constrain the behavior so the property
may pass. At a lower level of abstraction, designers must ensure that these
constraints are implemented. This may be achieved, for example, with the
schedulers on a particular platform.

4.2. Implementation

To formally verify an MMM design with Spin, the MMM specifica-
tion needs to be translated to Promela description. The main constructs
of MMM are processes, media, netlists, interfaces, await statements and
synch constraints for function-architecture mapping. In MMM, computa-
tion is usually modeled as functions defined in processes, and communi-
cation between processes is made by calling functions defined in media.
We use a translation approach that translates each MMM process to a
Promela process, and in-lines all the functions into the process that calls
them directly or indirectly. The translator simply pastes its translated code
to the point of the invocation in the calling process. In the situation of
multiple level function calls, all the functions are in-lined recursively so
that one MMM process corresponds to only one Promela process. With
function in-lining, the verification becomes much more efficient regard-
ing both time and memory usage compared to the dynamic function
invocation.

In MMM, an interface is used to define the I/O data ports of the pro-
cess or medium and the I/O control points of the process or medium. To
implement the control point, the MMM interface is used as a semaphore
in the setlist and testlist of an await statement. We translate each interface
into a pair of integer variables used as semaphores in Promela. The first

Verification Approach of Metropolis Design Framework 19

variable, called ACTIVE is used to indicate whether the interface (and its
member functions) are in active state (whether they are being executed).
Another one called EXCLUSIVE indicates whether this interface sema-
phore is set (i.e. whether it is included in the setlist of some await state-
ment that is currently executing). We use these variables as semaphores
to signal that interface functions appearing in festlist’s are being executed
and to prevent, when appropriate, interface functions appearing in setlist’s
from being executed. Promela constructs such as atomic, repetition do-
od and case selection if-fi are utilized to guarantee the exact semantics
equivalence of await statements. Specially, if the await statement has more
than one critical sections that are enabled, one of them will be chosen
non-deterministically and executed. This non-determinism is directly sup-
ported in Promela in do-od and if-fi statements.

Another interesting aspect of MMM is the existence of dynamic
objects (i.e. references). For example, an array is represented by a reference
in MMM, and its memory space could be allocated and changed dynam-
ically at runtime. However, most model checkers (including SPIN) only
support static memory allocation, i.e. arrays have to be declared explic-
itly at design time. To solve the problem, we have to put some restrictions
on the MMM code. All the reference types have to be declared explic-
itly once and only once, so that they can be translated to Promela as
static objects. An array declaration in MMM, “int[]a = new int[12];” can
be translated to Promela as a static array “int a[12];”. After the array a
is declared in MMM, its reference cannot be changed any more. If the
dimension of the MMM array is dynamic, e.g. “int[] a = new int [n];”
where n is a variable, it is also translated to Promela as a static array
“int al] ARRAY MAX];”, where ARRAY _MAX 1is a constant set by the
designer at the compilation time. It is up to the designer to guarantee that
ARRAY MAX is always larger than or equal to the maximum value of n.
Other dynamic objects such as class types in MMM are similarly trans-
lated to static data objects of Promela.

In MMM, the function of a system is specified as processes commu-
nicating through media. The architecture is represented as a set of media
and mapping processes. Synchronization constraints are used to map the
function to the architecture. To translate the function-architecture map-
ping, we need to use Promela to implement the MMM synchronization
constraints that actually relate the function processes and the architectural
mapping processes together. In Promela, we use a rendezvous channel (or
synchronous channel) to synchronize two concurrent processes. Using an
example of a MMM synchronization constraint from Fig. 11:

“synch(beg(pl, pl.write), beg(MapP1, MapP1.CPUWrite));”,

20 Chen, Hsieh, and Balarin

the beginning of pI’s write and the beginning of MapPI’s CPUWrite are
synchronized (both write and CPUWrite are function calls). In Promela,
when either p/ or MapP! runs to a point that needs to be synchronized,
it sends a synchronization signal to a rendezvous channel, and waits for
the other process. In this way, the events of the functional processes and
their corresponding mapping processes are synchronized, and mapping is
realized in Promela.

5. A FORMAL VERIFICATION CASE STUDY

In this section, we use a realistic Metropolis design as an example to
illustrate the usage of the formal verification mechanism in Metropolis and
to demonstrate the effectiveness of the automatic abstraction propagation
we have proposed in Section 3.

Y-chart Application Programmer’s Interface (YAPI) is a popular
model of computation for designing signal processing systems.!9 It
is basically a Kahn process network(! extended with the ability to
non-deterministically select an input port to consume and an output port
to produce. Within Metropolis, a library environment is set up such that
any YAPI design can be written using constructs in the Metropolis library.
Central to YAPI is the definition of communication channel and its refine-
ment into TTL.('213 Figure 9 shows how a YAPI channel is refined to a
TTL channel in Metropolis. A YAPI channel models an unbounded First-
In-First-Out (FIFO) buffer, similar to Kahn process network. Asynchro-
nously, writer processes write data into one end of the channel and reader

Y API Channel
YapiChannel @
' Refine |
TTL Channel

yapi2TTL
RdWrThreshold

Fig. 9. YAPI and TTL channels.

Verification Approach of Metropolis Design Framework 21

processes read data from the other end of the channel. At the lower level
(TTL), the channel is modeled with a bounded FIFO buffer. A central
protocol is used to control the mutual exclusion and boundary checking
of the bounded FIFO buffer. As Figure 9 shows, the TTL channel has
a bounded FIFO (BoundedF'ifo) whose size is set at design time, and a
control medium (RdWrThreshold) which implements a protocol to guar-
antee correctly writing to and reading from the FIFO buffer. To test the
YAPI channel and its TTL refinement, we use a writer process (DataGen)
to write a series of data into the channel and a reader process (Sum) to
read the data from it.

Due to the boundedness of the TTL buffer, the writer process will
block when there is not enough free buffer slots to write data, and
the reader process will block when there is not enough data available
in the buffer. The protocol implemented in the TTL channel control-
ler(RdWrThreshold) uses a threshold value to indicate if the writer or the
reader can be unblocked. If there is a condition on which a process may
be unblocked, the controller uses events wakeup_reader or wakeup_writer to
signal unblocking. The detail of this algorithm can be found in Ref. 12.
The TTL channel model has 720 lines of code in MMM and about
2200 lines code in Promela after translation. The experiments presented in
this paper are all conducted with Spin 4.1.3 on our 3.0 GHz Pentium 4
machine with 4 GB of total memory.

One important property we want to check on the TTL channel is that
there should be no deadlock situation within the channel, i.e. once the
writer starts writing data into the channel, it will finish writing eventually.
This property can be specified as an LTL formula:

G(datagen_start — (E datagen_finish)), 3)

where G is the globally operator and E is the eventually operator in LTL.

First, we try to verify a preliminary version of the TTL channel that
contains a real bug causing a deadlock situation. Using Spin, the bug can
be easily caught within less than 1min.> Then, after fixing the bug, we
re-run the verification session and the revised TTL model can pass the
formal verification without any error. The total CPU time used for the
verification is a little less than 12h. Table I lists the details about the ver-
ification sessions for the non-deadlock property of the TTL model with
and without abstractions and propagations applied.

SAfter the abstractions and their propagations are applied later, the bug in the preliminary
TTL channel can also be caught within less than 1min. So the abstractions and their
propagation are considered safe.

22 Chen, Hsieh, and Balarin

Table . Summary of Formal Verification for TTL Channel

Designer- Property-
Verification driven driven
w/o Manual abstraction abstraction
abstraction abstraction prop. prop.
State vector 432 bytes 352 bytes 232 bytes 188 bytes
Depth reached 75607 74073 54359 33897

States generated 2.36686e+09 2.36607e+09 2.26572e+09 2.26481e+09
State transitions 3.65231e+09 3.60348e+09 3.42441e+09 3.54922e+09
Memory usage 1094.545MB 1091.66 MB 1086.046 MB 1081.028 MB
CPU time usage 11h:48m:51s 10h:26m:24s 6h:41m:03s S5h:37m:24s
Hash factor 3.62926 3.63046 3.79126 3.79278

*Optimization techniques, partial order reduction and bitstate, are applied.

Considering that the non-deadlock property only checks the control
part of the TTL channel, its data-path can be abstracted to reduce the ver-
ification complexity. So we first manually free the data storages in both the
writer process (DataGen) and the reader process (Sum) without using the
automatic abstraction propagation. This abstraction saves about 12% of ver-
ification time, and requires modifying more than 10 statements throughout
the original design. Then we use the designer-driven abstraction propaga-
tion to propagate these two abstractions to rest of the design. As a result,
the internal data-path in the TTL channel is also abstracted and 43% of the
verification time is saved.

To show the effectiveness of the property-driven automatic abstrac-
tion propagation, we also apply it on the original design. It automatically
frees not only the FIFO structure but also the buffers in other two con-
necting components (yapi2TTL and TTL2yapi), which are directly con-
nected to the FIFO, and their operations. From Table I, we can see the
property-driven abstraction propagation can save 52% of verification time
without any human interaction.

Practically, the designer-driven and property-driven abstraction prop-
agation complement each other and should be used together to simplify
the verification problem as much as possible.

6. SIMULATION VERIFICATION IN METROPOLIS

A simulation verification methodology based on trace analysis for
design properties is integrated in the Metropolis simulator.

Verification Approach of Metropolis Design Framework 23

6.1. Simulation Verification Methodology

Figure 10 illustrates the methodology of the simulation verification
based on trace analysis and automatic trace checker generation. The meth-
odology begins with the formal specification of LOC or LTL properties
in MMM, automatically generates runtime monitors or static checkers for
trace analysis, checks the simulation traces during or after the simulations,
and reports design errors if there is any property violation. According to
the error report, a designer can either correct the original design or revise
the property specifications until the trace analysis passes the verification.

LTL is defined over executions of a system, i.e. linear sequences of
state transitions. In the simulation based trace analysis for system level
models, the state transitions are modeled as event occurrences. This is
consistent with transaction abstraction since only the event orderings are
considered, not their tick by tick, cycle level behavior. We transform LTL
formulas specified in MMM into the standard property specification lan-
guage Sugar2.0,! leverage the existing tool, FoCs,> to generate the
checker core, and then use our tool to automatically generate wrappers
that are necessary for the simulation monitors and for static trace check-
ers. Since the simulation sessions are finite, we interpret the temporal oper-
ators over the finite traces by checking the conditions only up to the end
of the traces.

A stand-alone automatic tool has been developed to generate checker
cores for trace checkers or simulation monitors for given LOC formulas.
A checker or monitor evaluates the formula instance by instance, where a
formula instance is a formula with i evaluated to some fixed positive inte-
ger value. For example, cycle(pipeline[30]) — cycle(pipeline[29]) = 10 is the
29th instance of the formula (1). The details of the checking algorithms
and data structures for LOC can be found in Ref. 9.

6.2. A Case Study

We use a high level model of function-architecture mapping to dem-
onstrate the usage of the simulation verification methodology based on
trace analysis.

In the platform-based design, mapping is the key procedure that cor-
relates the function to the architecture. In this design example (as shown in
Fig. 11), two source processes (SI and S2) write the data into two indepen-
dent channels. A separate process (Join) then reads data items from both
channels, manipulates them, and then sends the result data to another pro-
cess (Sink) through another channel. In the abstract architecture model,
there are two CPU/RTOS units, a bus unit, a memory unit and a quantity

Chen, Hsieh, and Balarin

' '
System Model Df:sign Properties
in LTL/LOC

Automatic
Checker Generation

Trace Checker/
Runtime Monitor

Simulation Trace

Trace Analysis

Error Report

|

Fig. 10. Simulation verification methodology based on trace analysis.
Func

Ve
Fos]
7 channell
! channel2 4 —

\\ N\,
' Mapping /, P
- Arch

\
\

Sw:l\“askl Sw\TaskZ SWT;lSk3 SwTa:sk4
Ccrul > P2 D
b

<SS s>

A mapping model.

Fig. 11.

manager (i.e. scheduler) for each architectural unit.® A CPU unit can be
shared among several software tasks that may request services from it. When
more than one service request is issued to a CPU, arbitration is needed.

%An architectural unit is modeled as a medium in Metropolis.

Verification Approach of Metropolis Design Framework 25

The mapping procedure synchronizes the processes in the function model
and the mapping processes (representing software tasks) in the architecture
model. In this example, functional processes S1 and S2 are mapped to map-
ping processes SwTask1 and SwTask2, respectively, which are associated to
CPUI1 and the other two processes are mapped to CPU2. The CPU quan-
tity managers implement a non-preemptive static-priority dynamic sched-
uling policy. The two CPU units are connected to the bus and the bus is
connected to the memory unit. During simulation, the functional events are
time-stamped through the architecture model, and thus various performance
properties can be analyzed. With the sample input we used, the simulation
took 14 min and produced a 1.1 G trace file with 2.36 x 107 lines.

We analyze the throughput of the model by using the LOC formula:

time(Sink_read[i + 100]) — time(Sink_read[i]) < 5.0 x 107>, (4)

where event Sink_read represents the read operation by process Sink. The
formula passes the trace verification in less than 1min, which means pro-
cess Sink can perform at least 100 read operations in every time period of
5.0ns.

Similarly, we can check the latency between the source processes and
process Sink by checking their events representing write and read opera-
tions respectively:

time(Sink_read[i]) — time(S1_write[i]) < 1.5 x 1077, ®)
and
time (Sink_read[i]) — time(S2_write[i]) < 1.5 x 107, (6)

We can also analyze the processing delay of the Join process using the for-
mula:

time (Jion_write[i]) — time(Join_read[i]) < 5.0 x 1077, (7

It should be emphasized that timing is only one of the possible anno-
tations we can use to analyze quantitative properties of a design. Any
values associated with events can be used as annotations to check corre-
sponding properties (e.g. data value or power).

In addition, LTL formulas can be used to verify temporal properties
of the events generated by different processes (e.g. the event order). For
example, the property that process Join cannot read before both source

26 Chen, Hsieh, and Balarin

processes write and process Sink cannot read before process Join writes
can be verified with the formula:

G ((=Join_read U (S1_write A S2_write))
A(=Sink_read U Join_write)). 8)

Given the trace size, all these property formulas can be analyzed
within 1 min.

7. CONCLUSIONS

In this paper, we have presented the verification methodologies inte-
grated in the Metropolis design framework for system level designs. Based
on the formal specification of design properties in Metropolis, both formal
verification and simulation verification can be applied to verify designs at
multiple levels of abstraction. The technique of automatic design abstrac-
tion and propagation has been proposed to simplify property-based verifi-
cation problems. Case studies have been performed to show the power of
these verification techniques. Future work includes abstraction for simula-
tion verification. The goal of abstraction for simulation is to significantly
reduce simulation time for large designs.

ACKNOWLEDGMENTS

We acknowledge team members of the Metropolis project led by Prof.
Sangiovanni-Vincentelli from University of California, Berkeley. The work
presented here has been done within the framework of the Metropolis
project, and it has benefited greatly from many discussions with team
members.

REFERENCES

1. K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli, Sys-
tem Level Design: Orthogonalization of Concerns and Platform-based Design, /IEEE
Trans, Computer-Aided Design, 19(12):1523-1543 (December 2000).

2. F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-
Vincentelli, Metropolis: An Integrated Electronic System Design Environment, /EEE
Comput 36(4):45-52 (April 2003).

3. P. Godefroid and G. J. Holzmann, On the Verification of Temporal Properties, Pro-
ceedings of IFIPIWG6.1 Symposium on Protocols Specification, Testing, and Verification
(June 1993).

Verification Approach of Metropolis Design Framework 27

10.

13.

. F. Balarin, Y. Watanabe, J. Burch, L. Lavagno, R. Passerone, and A. Sangiovanni-

Vincentelli, Constraints Specification at Higher Levels of Abstraction, Proceedings of
International Workshop on High Level Design Validation and Test (November 2001).

. G. J. Holzmann, The Model Checker Spin, IEEE Trans. Software Eng., 23(5):279-258

(May 1997).

. E Balarin, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli M. Sgroi, and

Y. Watanabe, Modeling and Designing Heterogeneous Systems, Technical Report
2001/01 Cadence Berkeley Laboratories (November 2001).

. X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe, Verifying LOC Based Functional

and Performance Constraints, Proceedings of International Workshop on High Level
Design Validation and Test (November 2003).

. Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems:

Specification, Springer-Verlag (1992).

. X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe, Logic of Constraints: A Quantita-

tive Performance and Functional Constraint Formalism, IEEE Trans Computer-Aided
Design Integrated Circuits, 23(8):1243-1255 (August 2004).

E. d. Kock, G. Essink, W. Smits, P. v. d. Wolf, J. Brunel, W. Kruijtzer, P. Lieverse, and
K. Vissers, YAPI: Application Modeling for Signal Processing Systems, Proceedings of
the 37" Design Automation Conference, (June 2000).

. G. Kahn, The Semantics of a Simple Language for Parallel Programming, Proceedings

of IFIP Congress, North Holland Publishing Company pp. 471-475 (1974).

. J. Brunel, E. A. de Kock, W. M. Kruijtzer, H. J. H. N. Kenter, and W. J. M.

Smits, Communication Refinement In Video Systems on Chip, Proceedings of the 7th
International Workshop on HardwarelSoftware Codesign, pp. 142-146 (1999).

O. Gangwal, A. Nieuwland, and P. Lippens, A Scalable and Flexible Data
Synchronization Scheme for Embedded HW-SW Shared-Memory Systems, Proceedings
of International Symposium on System Synthesis (October 2001).

. C. Eisner and D. Fisman, Sugar 2.0 Proposal Presented to the Accellera Formal

Verification Technical Committee (March 2002).

. Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, and Y.Wolfsthal, FoCs-Automatic

Generation of Simulation Checkers from Formal Specifications, Technical Report, IBM
Haifa Research Laboratory, Israel (2003).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

