
DOI: 10.1007/s10766-004-1187-0
International Journal of Parallel Programming, Vol. 33, No. 4, August 2005 (© 2005)

An Experimental Evaluation of the HP
V-Class and SGI Origin 2000
Multiprocessors using
Microbenchmarks and Scientific
Applications∗

Ravi Iyer,1 Jack Perdue,2 Lawrence Rauchwerger,2,4

Nancy M. Amato,2 and Laxmi Bhuyan3

Received April 13, 2004; accepted October 29, 2004

As processor technology continues to advance at a rapid pace, the principal
performance bottleneck of shared memory systems has become the memory
access latency. In order to understand the effects of cache and memory hier-
archy on system latencies, performance analysts perform benchmark analysis
on existing multiprocessors. In this study, we present a detailed comparison
of two architectures, the HP V-Class and the SGI Origin 2000. Our goal is
to compare and contrast design techniques used in these multiprocessors. We

1Intel Corporation. E-mail: ravishankar.iyer@intel.com
2Parasol Laboratory, Department of Computer Science, Texas A&M University College

Station, TX 77843-3112, USA. E-mail: {jkp2866, amato, rwerger}@cs.tamu.edu
3Department of Computer Science and Engineering, University of California Riverside,

Riverside, CA 92521, USA. E-mail: bhuyan@cs.ucr.edu
4To whom correspondence should be addressed.
∗A preliminary version of this paper appeared in the 13th ACM International Conference

on Supercomputing (ICS’99).(13) This work was done while Iyer and Bhuyan were
at Texas A&M. It was supported in part by a Hewlett-Packard Equipment Grant.
Amato and Rauchwerger supported in part by NSF Grants ACI-9872126, EIA-9975018,
EIA-0103742, EIA-9805823, ACR-0081510, ACR-0113971, CCR-0113974, EIA-9810937,
EIA-0079874, by the DOE ASCI ASAP program, and by the Texas Higher Education
Coordinating Board grant ATP-000512-0261-2001. Perdue supported in part by a Dept.
of Education Graduate Fellowship (GAANN).

307

0885-7458/05/0800-0307/0 © 2005 Springer Science+Business Media, Inc.



308 Iyer et al.

present the impact of processor design, cache/memory hierarchies and coher-
ence protocol optimizations on the memory system performance of these
multiprocessors. We also study the effect of parallelism overheads such as
process creation and synchronization on the user-level performance of these
multiprocessors. Our experimental methodology uses microbenchmarks as well
as scientific applications to characterize the user-level performance. Our mi-
crobenchmark results show the impact of Ll/L2 cache size and TLB size on
uniprocessor load/store latencies, the effect of coherence protocol design/opti-
mizations and data sharing patterns on multiprocessor memory access laten-
cies and finally the overhead of parallelism. Our application-based evaluation
shows the impact of problem size, dominant sharing patterns and number of
processors used on speedup and raw execution time. Finally, we use hardware
counter measurements to study the correlation of system-level performance
metrics and the application’s execution time performance.

KEY WORDS: Parallel architectures; performance analysis; shared memory.

1. INTRODUCTION

Shared memory multiprocessors have gained widespread acceptance as a
means to provide powerful parallel computing. The design and evaluation
of shared memory multiprocessors has been the topic of much research.
To build scalable shared memory multiprocessors, the use of small nodes
connected through a powerful scalable interconnect has been shown to be
quite attractive. Shared memory systems such as the SGI Origin 2000,(18)

the HP V-Class(10) and the Sequent NUMA-Q,(20) multiprocessors are
excellent examples of this trend.

As processor technology continues to rapidly advance, the
comparatively slow improvement in memory speed is the main perfor-
mance bottleneck in current and future shared memory multiprocessors.
As a result, the use of larger caches and deeper cache hierarchies is
becoming increasingly common. However, the impact of cache hierar-
chy on the cache/memory system performance is largely dependent on
the application access pattern. The use of theoretical models such as the
BSP(28) and LogP(5) is getting more and more difficult without significant
extensions and extensive hardware performance measurements. Past per-
formance measurement and analysis research(1,2,11,12,16,17,22,23,25) either
used a microbenchmark-based or an application-based evaluation method-
ology. Furthermore, these studies focus on understanding the performance
of a single multiprocessor. In this paper, our aim is to provide an in-depth
understanding of the memory system performance of two multiprocessors,
the HP V-Class and the SGI Origin 2000, using both evaluation meth-
odologies. As a result, we compare and contrast design techniques used



Multiprocessors using Microbenchmarks and Scientific Applications 309

in these systems and also correlate observations between microbenchmark
studies and application-based evaluation.

Our microbenchmark study illustrates the impact of technological
advancements in processor design (such as multiple outstanding misses)
and system protocols (such as optimizations to cache coherence protocols)
on the latencies of uniprocessor access patterns and multiprocessor sharing
patterns found in large-scale applications. Our uniprocessor experiments
show that current processors supporting multiple outstanding cache misses
are capable of reducing the average access latency by a significant factor
over single outstanding cache miss execution. We compare the effect of
two layers of caching on the SGI Origin 2000 to a single level of cache on
the HP V-Class. We show how a small translation lookaside buffer (TLB)
on the SGI Origin 2000 can affect data access latency for a given config-
uration of page size. When comparing the two systems, we find that the
uniprocessor load and store latencies measured on the HP V-Class tend
to be 40–45% lower than those on the SGI Origin 2000. Using several
multiprocessor benchmarks, we study the impact of sharing degree on the
access latency of dominant sharing patterns. We observe that an increase
in the sharing degree has relatively no impact on the HP V-Class latency,
whereas it significantly increases the average latency experienced on the
SGI Origin 2000. We also study the parallelism overhead using micro-
benchmarks that measure the latency for process creation and synchroni-
zation. We show that the amount of overhead differs significantly in the
two systems and is heavily dependent on the mechanisms provided in the
operating system.

Unlike microbenchmarks(1,2) that are targeted at evaluating the
performance of particular access patterns, the use of several scientific
applications(16,17) helps us understand how these individual factors affect
overall user-level performance. In our application-based evaluation of the
HP V-Class and the SGI Origin 2000, we use five representative scien-
tific applications. We vary the degree of parallelism and the problem size
to analyze application speedup and system execution time. We observe
that the SGI Origin 2000 experiences lower execution time than the HP
V-Class. However, we also observe that the HP V-Class generally exhib-
its better speedups. We correlate these observations using the known dom-
inant sharing patterns of the applications to the performance of the
respective microbenchmarks. Using these correlations, we determine rela-
tive advantages and disadvantages of design techniques used in the two
systems and evaluate the effectiveness of their cache and memory systems
for various types of workloads. The two different methodologies used in
this paper provide an understanding regarding the performance of the two
systems.



310 Iyer et al.

The rest of the paper is organized as follows. Section 2 presents
an overview of the two systems used in this study. Section 3 presents
a detailed description of the uniprocessor microbenchmark suite and the
results obtained on each system. Section 4 presents the multiprocessor
benchmark suite and results for dominant multiprocessor sharing patterns
and parallelism overhead. Section 5 uses scientific applications for a user-
level performance comparison of these memory systems and presents some
insights to their performance using CPU hardware counts of instructions,
cache misses and TLB misses. Finally, Section 6 summarizes the paper and
presents a direction for future work.

2. SYSTEM OVERVIEW

In this paper, we study the performance of two commercial shared
memory multiprocessors, the HP V-2200(10) running HIP-UX 11.0 and the
SGI Origin 2000(18) running IRIX 6.5. While these systems scale up to or
beyond 512 processors, we chose a 16-processor configuration due to its
availability.(24,27)

2.1. System Architectures

A block diagram of the 16-processor HP server architecture is shown
in Fig. 1. The symmetric multiprocessor design utilizes Exemplar Proces-
sor Agent Controllers (EPAC), each with its own Exemplar PCI Inter-
face Controllers (EPIC - not shown) controlling an independent PCI bus
and eight Exemplar Memory Access Controllers (EMAC). These control-
lers are connected centrally by a HP Hyperplane crossbar comprised of
four Exemplar Routing Attachment Controllers (ERACs). The EPAC is
connected to two HP PA-8200 processors, that are based on the RISC
Precision Architecture (PA-2.0). The PA-8200 is a 4-way out-of-order
superscalar processor that runs at a speed of 200 MHz with 2 MB of
instruction cache and 2 MB of data cache. Each cache is direct mapped
and has dual ports. Each EMAC memory controller is connected to
a piece of the memory. The memory node is interleaved using four
banks, Cache lines are interleaved across the four banks within a mem-
ory node and across the eight memory units, resulting in an overall
32-way interleaving in the memory system. The 16-processor configura-
tion follows the uniform memory access (UMA) principle as shown in
Fig. 1.

A block diagram of a 16-processor SGI multiprocessor is shown
in Fig. 2. The SGI is a cache-coherent non-uniform memory access



Multiprocessors using Microbenchmarks and Scientific Applications 311

Fig. 1. 16-processor HP V-Class system.

Fig. 2. 16-processor SGI Origin 2000 system.

(CC-NUMA) multiprocessor based on dual-processor basic building blocks.
Each block contains two MIPS R10000 processors and 512 MB of
memory contained in 1–8 memory banks (DIMMs). The R10000 is a
4-way out-of-order superscalar processor running at a speed of 250 MHz
with 32 KB of L1 cache and 4 MB of unified L2 cache. The L1/L2 cache



312 Iyer et al.

line sizes are 32 and 128 bytes, respectively. Both caches are 2-way set
associative using an LRU replacement policy. Within each node, the pro-
cessors are connected to a Hub chip, an ASIC that provides connections
to the local memory, the I/O, and the hypercube interconnect, The hyper-
cube is made up of 6 × 6 bi-directional SGI Spider crossbar switches con-
nected using the Craylink interconnect. Each router connects two local
blocks (4 processors) and two other routers in a 16-processor config-
uration. Each DIMM memory bank provides 4-way memory interleav-
ing on a cache line basis, so a node board could support up to 32-way
interleaving.

2.2. Experimental Methodology

Several differences can be immediately observed when studying the
16-processor HP and the SGI architectures (Table I). A fundamental
architectural difference is memory organization: the HP 16-processor node
is a UMA multiprocessor with all the memories equidistant from the pro-
cessors, while the 16-processor SGI exhibits a non-uniform memory access
(NUMA) memory organization with a local memory and several remote
memories. In this work, we limit ourselves to the performance character-

Table I. High Level Comparison of 16 processor HP V-Class and SGI Origin 2000

HP V-Class SGI Origin

Processor
Speed 200 MHz 250 MHz
ILP Behavior 4-way 4-way
Cache Size 2 MB 32 KB/4 MB
Cache Speed 3 cycles 3/10 cycles
Cache Line 32 bytes 32/128 bytes

Memory
Organization UMA NUMA
Interleaving 32-way 4-way
Management round-robin round-robin
TLB Issues 120 entries 64∗2 entries
Coherence MES-like MESI-like
(optimization) (migratory) (speculative)

Scalability
Node 16-way 2-way
Topology crossbar hypercube



Multiprocessors using Microbenchmarks and Scientific Applications 313

ization of the cache/memory system and the parallelism overhead using
microbenchmarks and scientific applications.

Our microbenchmark suite can be classified into three main catego-
ries and various sub-categories as listed below. Each microbenchmark was
written in C, optimized by the compiler at level O2, and run over 100
times to determine the average latency per access. We verified many of our
results using hardware counters on the machine and qualitative compari-
sons with existing results such as those of Abandah and Davidson.(2)

• Uniprocessor Data Access: We use load and store traversals through
an array of length N . Furthermore, we also impose dependencies on
the consecutive accesses to study the effectiveness of latency hiding
through multiple outstanding cache transactions.

• Multiprocessor Data Access: We use microbenchmarks designed for
producer–consumer data sharing patterns such as read-after-write
and write-after-read to study the impact of sharing degree (number
of consumers) on the coherence overhead of invalidation for pro-
ducers and reading dirty data for consumers.

• Parallelism Overhead: We use microbenchmarks designed to study
the overhead of process creation and synchronization using system
calls provided in the operating system.

Our application-based evaluation is based on experimental runs of
five scientific applications on the two multiprocessors. These applications
were developed at Texas A&M University by the Parasol Laboratory.(24)

The applications are Gaussian Elimination (GE), transitive closure of a
matrix (TC), matrix multiplication (MM), Fast Fourier Transform (FFT)
and Floyd Warshall’s all pair shortest-path algorithm (FWA). We analyze
results in terms of speedup and execution time by varying the problem size
and the number of processors. In addition, we performed a detailed case
study of two of the applications (FFT and FWA). We instrumented them
to collect performance counter measurements such as cycles per instruc-
tion (CPI), cache performance and TLB statistics, Based on these hard-
ware counter measurements and the microbenchmark data, we attempt to
explain the different speedup characteristics of these applications.

3. UNIPROCESSOR PERFORMANCE

In this section, we begin our uniprocessor characterization using
cache/memory access latency as our metric. We use several uni-processor
load and store microbenchmarks based on Ref. 1 to compare the perfor-
mance of the HP and the SGI multiprocessors.



314 Iyer et al.

Array : A[0:i:N] : initialized to i-stride

tmp = A[N-1];

for (; tmp > = 0;)

tmp = A[tmp];
Fig. 3. The load-use benchmark.

Array : A[0:i:N] : initialized to i-stride

A[N-2] = 0; tmp = A[N-1];

for (; tmp > = 1;)

A[tmp-1]=0;

tmp = A[tmp];
Fig. 4. The store-use benchmark.

3.1. Description of the Microbenchmarks

We characterize the latency of uniprocessor loads and stores using
the Load-Use (Fig. 3) and Store-Use (Fig. 4) benchmarks adapted from
Abandah and Davidson.(1) The benchmarks traverse an array of N 8-byte
elements using different stride lengths specified in the number of ele-
ments. Current superscalar processors, including the R10000(29) and the
PA-8200,(9) allow multiple outstanding loads and stores to take advan-
tage of latency hiding. To identify the performance of a single outstand-
ing processor load or store, the microbenchmarks use the value read from
the array to index the next location in the array. This ensures a depen-
dency between consecutive loads/stores and thus both requests cannot be
issued simultaneously. In order to study the impact of multiple outstand-
ing misses, we modified the Load-Use and Store-Use benchmark. These
modified benchmarks, Load-All and Store-All, are shown in Figs. 7 and 8,
respectively. Unlike the Load-Use and Store-Use benchmarks, these bench-
marks traverse an 8-byte element array of size N with no restriction on
the ordering of the requests.

3.2. Single Outstanding Load/Store Performance

Figure 5 presents the data gathered on the HP (Fig. 5(a)) and the SGI
(Fig. 5(b)) using the Load-Use benchmark. On the HP multiprocessor, we
find that the length of the stride does not impact the latency when the



Multiprocessors using Microbenchmarks and Scientific Applications 315

Fig. 5. Uniprocessor performance: single outstanding loads (note scale). Latencies on the
HP for strides = 4/8/16 are roughly equivalent (a) HP V-Class (b) SGI Origin 2000.

data size is below 2 MB. This is directly attributable to the 2 MB cache
size, so that all load accesses result in cache hits (approximately three pro-
cessor cycles). The average latency was found to be approximately 20 ns.
As the data size grows beyond the cache size, the chosen stride length has
a growing impact on the latency. Consider a single cache line of 32 bytes.
A stride of length 1 accesses four elements residing within the same cache
line. Thus one outstanding cache miss brings four data elements (32 bytes)



316 Iyer et al.

into the cache and serves three subsequent processor requests as cache
hits. This results in the lowest average processor load latency. As the stride
grows from 1 to 4, the number of requests served as cache hits decreases,
thus causing the processor load latency to increase significantly. When the
stride increases beyond 4, there is no degradation in access latency since
all accesses are cache misses.

On the SGI, we find that length of the stride has little impact on
the access latency when the data size is below 1 MB. The minor increase
in access latency is attributed to the L1 cache of 32 KB with a line size
of 32 bytes. When the stride grows, the number of misses served in the
L1 cache (2–3 processor cycles) decreases and requests are satisfied in
the L2 cache (within 8–10 processor cycles). This shows the impact of
a multilevel cache hierarchy. Finally, note the L2 cache size for R10000
is 4 MB. However we find that the access latency does not remain con-
stant between 1 and 4 MB. This is attributed to the fact that the R10000
TLB can serve up to 64 data page translations at an instance of time.
With a 16 KB page size, the size of the contiguous memory (our array)
addressable by the TLB is 1 MB. Thus the access latency remains con-
stant until 1 MB and increases beyond this array size. As the stride length
increases, the access latency increases and stabilizes at a stride length of
16, owing to the fact that the cache line size is 128 bytes. From the fig-
ure, we observe that the increase in access latency is not smooth when the
array size increases beyond the cache size. For example, we find that the
access latency increases at a rapid pace as the array size increases from 4
to 5 MB, while it remains relatively constant between 5 and 6 MB. In order
to investigate this behavior, we used the hardware counters(14,15) on the
system. We found that the number of additional L2 misses were roughly
17000 when the array size increased from 4 to 5 MB and roughly 7500
for an increase from 5 to 6 MB. This causes the unexpected behavior in
the graphs obtained for the SGI and depends on several factors includ-
ing associativity, organization, replacement policy and mapping conflicts
between code and data blocks.

Finally, a comparison across multiprocessors leads to several obser-
vations. First, the latency of all accesses that result in a cache miss for
an array size of 8 MB is roughly 500 ns for the HP whereas the SGI has
an average latency of 350 ns. Second, when the strides are low, indicat-
ing high spatial locality, the larger L2 cache line size of the R10000 L2
cache helps by providing several cache hits. For linear array traversals,
the performance of the R10000 processor is hindered by the number of
TLB entries and not by the cache size for our experiments. This can be
remedied by using a larger page size (� 32 KB), supported by the IRIX
operating system.



Multiprocessors using Microbenchmarks and Scientific Applications 317

Fig. 6. Uniprocessor performance: single outstanding stores (note scale). Latencies on the
HP for strides = 4/8/16 are roughly equivalent. (a) HP V-Class (b) SGI Origin 2000.

Figure 6 presents the data gathered on the HP (Fig. 6(a)) and the SGI
(Fig. 6(b)) using the Store-Use microbenchmark. Note that results with a
stride of one are not shown for the stores, because the Store-Use bench-
mark requires a minimum stride of 2. The analysis of the obtained results
is identical to the load results presented above. A minor increase in access
latency is observed as compared to the load performance because each



318 Iyer et al.

store requires a following load (resulting in a cache hit always) to main-
tain the dependency for the single outstanding criterion.

3.3. Multiple Outstanding Load/Store Performance

In this section, we identify the effects of multiple outstanding requests
on the average access latency of processor loads and stores by using the
Load-All and Store-All benchmarks shown in Figs. 7 and 8,
respectively.

The results obtained from our Load-All and Store-All experiments
are shown in Figs. 9 and 10, respectively. The access latency follows the
same behavioral trend as seen earlier for Load-Use (Fig. 5) and Store-Use
(Fig. 6). However, the measured average access latency is lower than that
for the single outstanding load/store execution since much of the overall
cache/memory access latency gets overlapped. A comparison across these
results will yield the amount of latency overlap that occurs. Consider the
Load-Use and the Load-All results (a similar analysis of the store exper-
iments can be derived). When the loads and stores result in cache hits
(array size < 2 MB), the ratio between the average access latency for sin-
gle outstanding execution and that for the multiple outstanding execution
is approximately two for both the HP and the SGI This ratio depicts the
amount of communication overlap experienced during the execution, with
a higher ratio resulting in lower execution time and lower average access
latency. For example, the measured ratio of 2 shows that the processors are
capable of performing two loads resulting in cache hits simultaneously. On
the other extreme, when all loads and stores result in cache misses, we find
that the ratios become 4.5 and 1.4 for the HP and the SGI, respectively.
The low communication overlap obtained for the SGI may be attributed
to the small page size, causing several TLB misses to form a part of the
average cache miss latency.

for (i = N-1; i > = 0; i-=stride)

tmp = tmp + A[i];

Fig. 7. The load-all benchmark.

for (i = N-1; i > = 0; i-=stride)

A[i] = 0;

Fig. 8. The store-all benchmark.



Multiprocessors using Microbenchmarks and Scientific Applications 319

Fig. 9. Uniprocessor performance: multiple outstanding stores (note scale). Latencies on
the HP for strides = 4/8/16 are roughly equivalent as are those for strides 1 and 2. (a) HP
V-Class (b) SGI Origin 2000.

4. MULTIPROCESSOR PERFORMANCE

In this section, our goal is to evaluate the multiprocessor performance
of the two shared memory systems. Apart from the raw access latency
analyzed in the previous sections, memory system performance in a mul-
tiprocessor system also depends highly on the hardware techniques used
to maintain cache coherence. In Section 4.1, we present an overview of



320 Iyer et al.

Fig. 10. Uniprocessor performance: multiple outstanding stores (note scale). Latencies on
the HP for strides 8 and 16 are roughly equivalent. (a) HP V-class (b) SGI Origin 2000.

coherence protocols used in the HP and the SGI. Subsequently we present
a detailed description of the microbenchmarks and finally the performance
analysis based on each of the microbenchmark experiments.

4.1. Overview of Coherence Protocols

Both the HP(26) and the SGI(18) use a variation of the invalidate-
based full-map directory protocol(4) and the well-known MESI cache



Multiprocessors using Microbenchmarks and Scientific Applications 321

protocol.(19) However, each multiprocessor has its own enhancement to
the protocol. An overview of the protocols is as follows. The MESI pro-
tocol uses four states, modified, exclusive, shared, and invalid, to identify
the state of the line in the cache. The full-map directory protocol main-
tains a bit per processor per block to keep track of all the sharers of a
block. The directory also maintains the state of each block, namely pri-
vate, shared, and not-present. In an invalidation based protocol, when own-
ership is requested for a block in shared state, invalidation signals are used
to purge the existing copies in each of the sharer’s caches.

In the HP protocol,(2) the enhancement to the protocol is targeted
towards migratory sharing patterns. When a processor (requester) issues
a read to a block that is currently dirty in another processor’s (owner’s)
cache, the block is invalidated from the owner’s cache and supplied to the
requester in exclusive state. Such a transfer does not update memory with
the data. To convert from exclusive to shared state later, in the case of
multiple consumers, the data is sent back to memory from the first con-
sumer and then sent to subsequent consumers.

In the SGI protocol,(18) the enhancement to the protocol is for mem-
ory requests that find data in the private state in the directory. The data
either exists in an exclusive state or modified state in the owner’s cache.
Since transferring data from the owner to the requester takes longer than
transferring control information, speculative data is supplied from the
memory node (by assuming that the block is in exclusive state) and an
intervention request is sent to the owner. When the owner receives the
intervention request, if the block is indeed in exclusive state, it sends only
control information regarding this to the home node and the requester.
However, if the owner holds the block in modified state, the owner sends
dirty data to the requester as well as to the memory for updating the
block. Unlike the HP protocol, in both cases, the owner retains the block
in shared state in the cache.

4.2. Description of the Microbenchmarks

For our multiprocessor memory system evaluation, we use the com-
monly known sharing patterns, read-after-write (RAW) and write-
after-read (WAR) to quantify multiprocessor performance because they are
indicative of coherence protocol performance. Typically, a WAR access
(store to a block present in several caches) takes longer to complete
than a store to an unread block since the former requires invalidations.
Similarly, a RAW access may take longer than a load to a unmodified
block since the former requires a data transfer from the owner’s cache to
the requester. We use the Producer–Consumer benchmark (PC) shown in



322 Iyer et al.

Iteratively perform

One processor writes array A using

either StoreUse or StoreAll

Barrier Wait

All other processors read array A using

either LoadUse or LoadAll

Barrier Wait

Fig. 11. The producer-consumer (PC) benchmark.

Fig. 11 to study RAW and WAR latencies. In each iteration of this bench-
mark, the first phase involves the modification (store access) to a block
while the second phase involves all other processors reading the modified
block. Finally, we also analyze the overhead of parallelism, namely process
creation and synchronization, in Section 4.5.

Results shown in Figs. 12–15 are obtained for a 1 MB array tra-
versed using strides of different lengths. A 1 MB array was chosen since
it fits into the cache, keeping the latencies devoid of replacement effects.
The first two figures are for RAW performance, while the latter two fig-
ures depict the results for WAR performance. The number of processors
involved in the experiment was also varied for RAW/WAR sharing to
identify the effect of different degrees of sharing. The results are analyzed
in the following sections.

4.3. Read-After-Write Performance

We start with the results obtained for the HP. Figures 12(a) and 13(a)
show the number of processors involved in the experiment on the x-axis and
the average access latency in the y-axis. For example, when two processors
are used in the experiment, we have one producer and one consumer, and
the average read latency is approximately 1000 ns for a stride length of four
elements. When we vary the stride length from 2 to 4, we find that the aver-
age access latency increases by a factor of two. When the stride is increased
beyond 4, we see no impact on the average access latency since all loads
result in cache misses. When there is only a single consumer, we find that
the average load latency is roughly 1000 ns for reading the block from the
producer’s cache. Comparing this value with the max load access latency
(from Fig. 5) of 500 ns, we find that the overhead of transferring data from
the producer to the consumer is twice the latency of reading the block from



Multiprocessors using Microbenchmarks and Scientific Applications 323

Fig. 12. Multiprocessor performance: single outstanding read-after-write (note scale). Laten-
cies on the HP for strides 4 and 8 are roughly equivalent. (a) HP V-class (b) SGI Origin
2000.

the memory. As the number of consumers increases from 1 to 3, the latency
increases significantly. Beyond three consumers, the latency remains con-
stant. The reason for this behavior is the longer handshake required by the
HP protocol to convert from exclusive to shared state. The first consumer
obtains the block from the owner in exclusive state. When a subsequent pro-
cessor requests this block, control information flows back to the memory
from the first consumer and the memory sends the data to the second con-
sumer to convert the block to shared state. This results in a longer latency
for the second consumer.



324 Iyer et al.

Fig. 13. Multiprocessor performance: multiple outstanding read-after-write (note scale).
(a) HP V-class (b) SGI Origin 2000.

The SGI RAW results are shown in Figs. 12(b) and 13(b); note that a
regression analysis has been used to fit a curve to these data points. Sim-
ilar to the HP the average access latency increases as the stride increases
from 2 to 16, since 16*8 (128 bytes) is the size of the cache line. However,
unlike the HP, as the number of processors involved in the experiment
increases, the RAW latency increases. The queuing of memory requests or
responses at the memory module as well as the network topology may be
the reason for this increase in latency with an increased number of con-
sumers.



Multiprocessors using Microbenchmarks and Scientific Applications 325

4.4. Write-After-Read Performance

In this section, we start by analyzing the results for the HP. From
Figs. 14(a) and 15(a), we observe that the impact of stride length remains
similar to the earlier results, We observe that when only one consumer
participates in the experiment, the average latency is higher than that
for multiple consumers. When only one consumer participates in the
experiment, it invalidates the owner’s copy of the block and obtains an
exclusive copy of the block. When the previous owner subsequently mod-
ifies the block, it has to regain ownership from this consumer. Since the
consumer only holds exclusive access, the data transfer has to be done

Fig. 14. Multiprocessor performance: single outstanding write-after-read (note scale). Laten-
cies on the HP for strides 4 and 8 are roughly equivalent. (a) HP V-class (b) SGI Origin
2000.



326 Iyer et al.

Fig. 15. Multiprocessor performance: multiple outstanding write-after-read (note scale).
(a) HP V-class (b) SGI Origin 2000.

by reading memory after it invalidates the exclusive copy of the block.
When more than one consumer is involved, the state of the block at
the end of the consumer phase is shared. Since the state of the block
is shared, only invalidations need to be sent to the consumers. With the
non-blocking crossbar, the time taken to send invalidations seems to remain
independent of the number of processors involved in the experiment.

Figures 14(b) and 15(b) show the results of the WAR experiments on the
SGI. For the SGI, we note that the overhead of invalidation increases as the
number of consumers involved in the computation increases. Unlike the HP,
there are no peculiarities in the average access latency for any single case.



Multiprocessors using Microbenchmarks and Scientific Applications 327

Finally, a comparison across multiprocessors shows that if the stride
is closer to 1, then the latencies are more similar. For example, when
the stride is equal to 2, the access latency for the HP is approximately
300 ns when the number of consumers is more than 1. Similarly the aver-
age access latency for the SGI ranges between 200 and 250 ns. When the
stride increases higher than 8, however, the SGI pays a higher penalty for
communication. This communication overhead is hidden by the 128-byte
cache line fetch when the stride is low, and exposed when all accesses end
up as cache misses.

4.5. The Overhead of Parallelism

The two major types of overhead immediately noticeable in a paral-
lel program are process creation and synchronization. The overhead due
to process creation can be substantial and affect application performance
considerably. In order to minimize the impact of process creation on appli-
cation performance, most recent multiprocessors, including the HP and the
SGI, provide mechanisms to keep all created processes alive to be re-used
through the execution of the application. For example, the m fork rou-
tine on the SGI incurs the process creation overhead only the first time
it is called. After each phase of execution, the process is put to sleep and
thus subsequent m fork calls re-use the sleeping threads. However, note
that processes can be freed at any stage using the m kill procs call on the
SGI routine for applications that require this feature.

In this section, we analyze measured results to quantify the overhead
of process creation and barrier synchronization. The obtained results are
shown in Figs. 16 and 17, respectively. Our intent is to study the impact of
scalability on parallelism overhead and not to present concrete figures since
these depend heavily on the mechanism employed on the multiprocessor.
For example, we employ the pthreads package on the HP and use a user-
level barrier synchronization mechanism that is based on the use of an array
data structure. On the other hand, applications ported to the SGI employ
the m sync system call for batter synchronization.

From the figures, we find that both forking processes, as well as syn-
chronization, are two magnitudes more expensive on the SGI than on
the HP. However, note that the Origin 2000 suffers significantly when
the number of processors employed increases beyond 4 (beyond a single
router). We can expect a similar phenomenon when employing more than
16 processors (a NUMA configuration) on the HP. We also note that on
both systems, the overhead of parallelism depends linearly on the number
of threads/processes employed.



328 Iyer et al.

Fig. 16. Multiprocessor fork performance (note scale). (a) HP V-class (b) SGI Origin 2000.

5. USER-LEVEL PERFORMANCE

In the previous sections, we used microbenchmarks to study the impact
of uniprocessor and multiprocessor access patterns. In this section, we use
five scientific applications to study their user level performance. As men-
tioned in section 2.2, the chosen applications are Guassian Elimination
(GE), matrix multiplication (MM), transitive closure of a matrix (TC),
Fast Fourier Transform (FFT), and Floyd-Warshall’s all pair shortest-path
algorithm (FWA). These applications were developed in house at Texas
A&M.(24)



Multiprocessors using Microbenchmarks and Scientific Applications 329

Fig. 17. Multiprocessor barrier performance (note scale). (a) HP V-class (b) SGI Origin
2000.

5.1. Overview of the Applications and Results

The GE application implements Gaussian Elimination with partial
pivoting on a system of linear equations stored in a two-dimensional
shared array. The computation on the rows is distributed across the pro-
cessors in a round-robin fashion in order to maintain a good load balance
as elimination proceeds. The access pattern of this application is single-
write multiple-reader with an algorithm that is triangular in nature. The
MM application performs the multiplication of two shared matrices. The
result matrix is also shared. The result matrix is distributed into blocks
depending on the number of processors available. The access pattern is
mainly read-shared. The TC application uses iterations of MM to com-
pute the transitive closure of a matrix. The current limitation of this



330 Iyer et al.

Fig. 18. GE Execution time results. (a) HP V-class (b) SGI Origin 2000.

algorithm is that it requires a square number of processors for parallel exe-
cution. The FFT application implements the Cooley–Tukey 1D FFT algo-
rithm based on the several (logN ) stages of butterfly computation. The
FWA application implements an all-pairs shortest path algorithm to com-
pute the shortest path between two nodes in a graph.

The speedup and execution time results measured by running these
applications under different data sizes and applications sizes are shown



Multiprocessors using Microbenchmarks and Scientific Applications 331

Fig. 19. GE Speedup results. (a) HP V-class (b) SGI Origin 2000.

in Figs. 18–25, 29 and 30. In general, we notice that as more processors
are employed, the HP provides better speedup ratios than the SGI. The
speedup is better on the HP because the communication to computation
ratio on the SGI is much lower than on the HP. However, in most cases,
the uniprocessor execution time on the SGI is much lower than the HP.
This effect can be attributed to larger caches and more spatial locality
within a larger L2 cache line on the SGI as compared to the HP. Below,
we present a detailed analysis of performance using two of the five scien-
tific applications, FFT and FWA.



332 Iyer et al.

Fig. 20. MM Execution time results. (a) HP V-class (b) SGI Origin 2000.

5.2. Case Study of the FFT Application

The FFT application implements the Cooley–Tukey 1D FFT algo-
rithm based on the several (logN ) stages of butterfly computation. The
input to the application is the number of points and the number of pro-
cessors to be used for this computation, The execution flows as follows.
The first log(N/P) stages are performed locally at each processor, each with
a data set of size N/P. The remaining logP stages require processors to



Multiprocessors using Microbenchmarks and Scientific Applications 333

Fig. 21. MM Speedup results. (a) HP V-class (b) SGI Origin 2000.

exchange data in pairs. In each stage, one processor reads the data com-
puted in the previous stage by a different processor.

Figures 24 and 25 present the execution time and observed speedup,
respectively, of the FFT application under varied input data sizes and
varied number of processors on the HP and the SGI. The application
size is varied from 512 K points to 8 M points, with 32 bytes of data
maintained per point. Hence, the total memory requirements varied from
16 MB (512 K ∗ 32 bytes) to 256 MB (8 M ∗ 32 bytes). The number of pro-
cessors is varied from 1 to 16. The y-axis shows the obtained speedup and
execution time. The results on the HP show good speedup improvements



334 Iyer et al.

Fig. 22. TC Execution time results. (a) HP V-class (b) SGI Origin 2000.

from a 2-processor execution (a speedup of 2) to a 16-processor execu-
tion (a speedup of approximately 10). A value of 10 for speedup with
16 processors leads us to believe that the communication cost to com-
putation cost ratio in the HP is relatively low. We observe that the HP
speedup obtained does not depend on the size of data input. However,
when we measured the speedup obtained from the SGI, we found that
the relative speedup. over sequential execution is much lower. For exam-
ple, the maximum speedup is roughly 5.5 with 16 processors for a data
size of 64 MB. This suggests that communication to computation ratio



Multiprocessors using Microbenchmarks and Scientific Applications 335

Fig. 23. TC Speedup results. (a) HP V-class (b) SGI Origin 2000.

is much higher than that for the HP. Finally, for 512 K and 1 M points,
the speedup decreases beyond 8 processors, implying that communication
overhead negates the gain from parallel computation.

We next look at the execution time results obtained in Fig. 24. While
the SGI had poor speedup ratios, it should be noted that the raw exe-
cution time is lower than on the HP. The execution time for 2 M points
ranges from 66 to 6 seconds for the HP multiprocessor, and from 17 to
3 seconds for the SGI multiprocessor. Much of this difference in execu-
tion time is due to optimized uniprocessor access patterns on the SGI.
As we have seen in Section 3, the SGI load/store latencies were much



336 Iyer et al.

Fig. 24. FFT Execution time results. (a) HP V-class (b) SGI Origin 2000.

lower than the HP load/store latencies due to a larger cache size and line
size. From a qualitative perspective, the migratory optimization to the HP
coherence protocol affects the performance of this benchmark negatively
since it involves mostly two-processor sharing. The SGI protocol optimi-
zation has no performance impact since speculative sharing can rarely be
used during FFT execution.

In order to get a better understanding of what is going on, we used
hardware counters on the respective systems to collect information about
events that might be contributing to run times. On the HP, we used HP’s
CXperf,(6) which allows us to collect the hardware counters in a single
shot. On the SGI, we used SGI’s perfex(14) command to capture the appli-
cation-wide counts for each of the events available. In order to get the
most accurate counts on the SGI, we ran three iterations for each of the
16 pairs of counters(15) available instead of multiplexing all counters on a



Multiprocessors using Microbenchmarks and Scientific Applications 337

Fig. 25. FFT Speedup results. (a) HP V-class (b) SGI Origin 2000.

single run. Larger data sizes were excluded in our counter data due to the
computational cost of this approach. Note that there is no one-to-one cor-
respondence between counters on both architectures (e.g. the HP only has
a single level of cache), but the results are revealing nonetheless.

The first note of interest is the instruction counts (average per proces-
sor per second) in Fig. 26. Given the above rates of instruction process-
ing, it is clear why the HP took significantly longer than the SGI despite
only a 20% difference in clock speed. Although it isn’t apparent from this
graph, the HP actually executed more than twice as many instructions
than the SGI. Comparing pthreads and m fork based implementations on
the SGI indicates no substantial difference in instruction counts. In this
case, the higher instruction count on the HP is indicative of the intrusive-
ness of HP’s hardware counters—they require object code modification.
For the applications studied, the intrumented object code is more than
triple the size of the non-instrumented code on the HP.



338 Iyer et al.

Fig. 26. FFT-Instructions retired graduated per second per processor. (a) HP V-class (b)
SGI Origin 2000.



Multiprocessors using Microbenchmarks and Scientific Applications 339

For the SGI graph, since there are counters for loads and stores
issued, we’ve broken down the graph into loads, stores, floating point and
other. It is apparent that loads are a significant percentage of the instruc-
tion count. On both systems, the cost of interprocessor communication is
apparent—as more CPUs are utilized, the effectiveness of each CPU is
diminished. Also note that due to this communication, both systems fall
well short of executing one instruction per cycle. On the HP, at least one
out of every two cycles is wasted. We will see in Section 5.3 that this isn’t
so with FWA where there is less interprocessor communication.

The interaction of the memory hierarchy while maintaining cache
coherency is a useful indicator of performance since it gives an idea of
how often the CPUs were waiting idle for data. Figure 27 shows the cache
misses experienced on the HP and SGI. For the SGI, we’ve combined the
data for L1 and L2 misses since that data was possible, so the total cache
misses represented there are a bit misleading since sometimes an L1 miss
will also trigger an L2 miss (i.e., there is some duplication represented in
the graph). Also recall from Section 3.2 that we found a cache miss takes
about 500 ns on the HP while an L2 miss on the SGI on takes about
350 ns to service.

For FFT, the system-wide TLB misses shown in Fig. 28 seem to be
consistent among the experiments. Although the HP suffers fewer misses
for the smallest data set, as the data sets grow, the HP and SGI TLB
misses seem to equalize (despite the differing instruction counts and run
times). More observations on the TLB behavior of the two systems will
be made in Section 5.3 on FWA.

Although there are a considerable number of other counters available
on the MIPS R10000, we haven’t included them here due to a lack of
complementary counters on the PA-8200. Given their usefulness(30) and
potential ability to help predict performance,(3) this is unfortunate. Fortu-
nately, HP’s move towards Intels IA-64 adn AMD’s opteron should help
alleviate this shortcoming in the future.

5.3. Case Study of the FWA Application

The FWA implements an all-pairs shortest path algorithm to compute
the shortest path between all pairs of vertices in a graph. The input to
this algorithm is the number of vertices (or nodes) in the graph and the
weights on the edges (specified in a input file “weight.mat”). The execu-
tion requires N (number of vertices) iterations. In our case, each vertex
had a direct path (weighted edge) to approximately 70% of the other ver-
tices. Within each iteration, every processor reads a single row of an adja-
cency matrix and updates a distance matrix to keep track of the distance



340 Iyer et al.

Fig. 27. FFT-Data cache misses. (a) HP V-class (b) SGI Origin 2000.



Multiprocessors using Microbenchmarks and Scientific Applications 341

Fig. 28. FFT—TLB misses. (a) HP V-class (b) SGI Origin 2000.



342 Iyer et al.

between pairs of vertices on the graph. Thus, in each iteration, the princi-
ple access pattern is a multiple processor RAW access pattern. The num-
ber of processors involved in the RAW access pattern heavily depends on
the input graph.

Figures 29 and 30 present the execution time and observed speedup,
respectively, of the FWA application for various input data sizes and
using a varied number of processors on the HP and the SGI, respec-
tively. The size of the application is varied on the x-axis from 256 vertices
to 1024 vertices. The storage requirements for the FWA data structures
are 768 KB, 3 MB, and 12 MB for the predecessor (4 byte ints) and dis-
tance (8 byte doubles) matrices (size N × N ) for N equal to 256, 512,
and 1024, respectively. The number of processors (shown in the legend) are
varied from 1 to 16. The y-axis shows the execution time and the obtained
speedup, respectively.

Like the FFT application results, the uniprocessor execution time is
much higher on the HP than on the SGI Origin. However, as more pro-
cessors are used, the HP execution time improves superlinearly beyond the
SGI execution time. For example, with 1024 vertices and 16 processors, the
execution time of the HP is approximately 13% lower than the SGI Ori-
gin execution time. On the SGI, we had seen in Section 4 that the over-
head of invalidation and multiple consumer RAW increased linearly, and
that as more processors are used the RAW and WAR latency of the SGI
tends to be much higher than the HP. This reduces the effect of all unipro-
cessor access pattern benefits on the SGI. From this result, we may infer
that the HP offers better performance than the Origin 2000 for applica-
tions with high read sharing degrees.

From Fig. 30(a), we find that the speedup gained on the HP multipro-
cessor ranges from roughly nine (for 256 vertices) to approximately 35 (for
1024 vertices) using 16 processors. One of the main causes for the super-
linear speedup on the HP is the larger data size. When the data fits into
the cache (768 KB for example), the uniprocessor performance is good due
to a higher cache hit ratio. On the other hand, with a data size of 12 MB,
the working set overcomes the cache size, causing cache and TLB misses.
In such cases, using multiple processors increases the overall cache space
available and thus improves the access latency by over a magnitude. We
also observe that speedups on the SGI are lower than on the HP, similar
to the FFT execution. For a 256-vertex graph, four processors seem to be
the optimal number, with performance deteriorating beyond this threshold.
On the other hand, with 1024 vertices, the speedup increases at a steady
pace.

As Fig. 31 verifies, there are significant cache effects in play here—
the HP incurs fewer cache misses than the SGI, despite the smaller



Multiprocessors using Microbenchmarks and Scientific Applications 343

Fig. 29. FWA Execution time results. (a) HP V-class (b) SGI Origin 2000.

cache and smaller cache line (the larger numbers at the low-end will be
partly explained by the TLB discussion below). In this particular case, the
single-level cache appears to be doing better than a smaller first level cache
coupled with a larger second level cache. Also note that while L1 misses
on the SGI increase for FFT as we spread the problem across more pro-
cessors, FWA misses L1 cache a consistent number of times regardless of
how many processors are utilized. In the case of 1024 vertices on four pro-
cessors for the HP, realize that although each processor will process 2 MB
of the distance matrix, it may not necessarily make updates to the 1 MB
predecessor matrix which help explains how most of the problem stays in
the 2 MB cache.

Figure 32 shows the instructions performed per second by each pro-
cessor in the two systems. Here, unlike FFT, we see signs of instruction-



344 Iyer et al.

Fig. 30. FWA speedup results. (a) HP V-class (b) SGI Origin 2000.

level parallelism since in some cases the instruction rate exceeds the clock
frequency. Although not shown here, it is interesting to note that unlike
FFT, the instruction count between the two systems is very similar. In
fact, on the high-end the HP accomplishes the same amount of work as
the SGI by processing significantly fewer instructions which explains why
the HP has better performance on the larger data sets.

Finally, we look at TLB misses on the two architectures in Fig. 33.
Here, as opposed to the FFT, there are some some significant activities
indicated as the problem is spread out among more processors. These are
also reflected in the previous cache miss graphs.

Under HP-UX 11.0, physical to virtual memory page mappings
can be made using differing page sizes—i.e., “By default, the system
heuristically determines whether Large Pages are suitable for a given mem-
ory object and sets the page size hint accordingly.” “So by default, most



Multiprocessors using Microbenchmarks and Scientific Applications 345

Fig. 31. FWA—Data cache misses. (a) HP V-class (b) SGI Origin 2000.



346 Iyer et al.

Fig. 32. FWA—Instructions retired/graduated per second per processor. (a) HP V-class
(b) SGI Origin 2000.



Multiprocessors using Microbenchmarks and Scientific Applications 347

Fig. 33. FWA—TLB misses. (a) HP V-class (b) SGI Origin 2000.



348 Iyer et al.

memory objects will use 4 K pages as in previous releases of HP-UX, but
the system may flag an object for 16 K pages if conditions warrant.”(21)

Using the HP chatr(7) command on the executable indicates that no page
size was forced upon the program and so the OS was left to decide what
size pages to use. Further investigation using HP-UX’s pstat getprocvm(8)

function revealed that regardless of the data size, FWA allocate two pages
of 4 KB and three pages of size 16 KB. Depending upon the size of the
data set, it allocated an additional 13, 49 and 193 size 64 KB pages for
the matrices for N equal to 256, 512 and 1024, respectively.

So, for 1024 vertices on a single processor, we’ve exceeded the 112
entries available in the TLB (actually 120 but shared between instruction
and data) and will have to spend time on virtual to physical address trans-
lations. Also, recall the cache miss graph which complements Fig. 33.

The SGI also offers variable page sizes, but lacking programmer/user
participation will use the default page size (in this case, 16 KB on Texas
A&M University’s SGI Origin 2000) determined by the system operator.
Since the TLB only has 64 entries (as opposed to the HP’s 120), then the
total amount of memory that is accessible without incurring a TLB miss
is 1 MB.

These differences in approaches to the default handling of page sizes
makes for vastly different performance when doing virtual to physical
address translations on the two systems, as Fig. 33 indicates.

6. CONCLUSIONS

In this paper, we employed microbenchmarks and scientific applica-
tions to study the impact of several architectural, technological and proto-
col choices used in the HP V-Class and SGI Origin 2000 multiprocessors.

In our suite of microbenchmarks, we used uniprocessor load/store
benchmarks to identify the impact of cache size, cache line size, out-
standing misses, TLB size and page size. We found that in the pres-
ence of only single outstanding load/store requests, the SGI Origin 2000
experienced average latencies that were approximately 25–50% lower than
the HP V-Class. However, when multiple requests are active in the system,
the HP V-Class’s performance surpasses the SGI Origin performance with
average latencies about 55–60% lower than the SGI Origin 2000. We stud-
ied the impact of coherence protocol optimizations on access latencies of
dominant multiprocessor access patterns like RAW and WAR. As a result,
we learned that the HP V-Class’s latencies remain relatively constant as
more processors become active, whereas the SGI Origin 2000’s latencies
grow in a somewhat linear fashion.



Multiprocessors using Microbenchmarks and Scientific Applications 349

Five different scientific applications were employed to study the user-
level performance of these multiprocessors. Using applications, we took
into account issues such as synchronization and process/thread creation
that affect speedup and execution time considerably. Although the execu-
tion times of the SGI Origin 2000 were superior in most cases, we did find
that the HP V-Class obtains better speedups than the SGI Origin 2000.
The SGI Origin’s poor speedups can be attributed to better optimized uni-
processor execution. A detailed study of two of the five applications, each
with a different dominant multiprocessor sharing pattern, was also pre-
sented to investigate several of these observations and analyze system per-
formance.

REFERENCES

1. G. Abandah and E. Davidson, Characterizing Distributed Shared Memory Perfor-
mance: Case Study of the Convex SPP1000, IEEE Transactions on Parallel and Dis-
tributed Systems, 9(2)(1998).

2. G. Abandah and E. Davidson, Effects of Architectural Trends and Technological
Advances on the HP/Convex Exemplar’s Memory and Communication Performance,
25th Annual International Symposium on Computer Architecture, pp. 318–329 (1998).

3. N. M. Amato, J. Perdue, A. Pietracaprina, G. Pucci, and M. Mathis, Predicting Per-
formance on SMPs. A Case Study: The SGI Power Challenge, International Parallel
and Distributed Processing Symposium (IPDPS), Cancun, Mexico, (2000).

4. L. M. Censier and P. Feautrier, A New Solution to Coherence Problems in Multicache
Systems, IEEE Transactions on Computers, C-27(12):1112–1118(1978).

5. D. Culler, R. Karp, D. Patterson, A. Sahay, and E. Santos et al, Log P: a Practical
Model for Computation, Communications of the ACM, 39(11):78–85, (1996).

6. CXperf User’s Guide. Hewlett-Packard Corp. http://docs.hp.com/hpux/onlinedocs/
B6323-96001/B6323-96001.html

7. HP-UX man page for chatr. HP.
8. HP-UX man page for pstat getprocvm (). HP.
9. HP RISC Precision Architecture 2.0 (PA-RISC 2.0) Document, Hewlett-Packard Cor-

poration, http://wwwhp.com/ahp/framed/technology/micropro/
10. HP 9000 V-Class Server Architecture Document, 2nd Edition, Hewlett-Packard Cor-

poration, http://docs.hp.com:80/hpux/systems/#vclass.
11. C. Hristea and D. Lenoski, Measuring Memory Hierarchy Performance of Cache-

Coherent Multiprocessors Using Micro Benchmarks, Proceeding of Supercomputing:
High Performance Networking and Computing (1997).

12. R. Iyer, G. Janakiraman, R. Kumar, and L. Bhuyan, A Trace-Driven Analysis of Shar-
ing Behavior in TPC-C, 2nd workshop on Computer Architecture Evaluation using Com-
mercial Workloads (1999).

13. R. Iyer, N. M. Amato, L. Rauchwerger, and L. Bhuyan, Comparing the Memory
System Performance of the HP V-Class and SGI Origin 2000 Multiprocessors using
Microbenchmarks and Scientific Applications, Proceedings of the 13th ACM Interna-
tional Conference on Supercomputing (ICS’ 99), pp. 339–347 (June, 1999).

14. IRIX man page for perfex. SGI.
15. IRIX man page for r10k counters. SGI.



350 Iyer et al.

16. D. Jiang and J.P. Singh, Scaling Application Performance on a Cache-coherent Multi-
processors, Proceedings of the 26th International Symposium on Computer Architecture
(ISCA), Atlanta, (May, 1999).

17. D. Jiang, and J. P. Singh, A Scaling Study of the SGI Origin2000: A Hardware
Cachecoherent Multiprocessor, 9th SIAM Conference on Parallel Processing for Scien-
tific Computing, San Antonio, (1999).

18. J. Laudon and D. Lenoski, The SGI Origin: A ccNUMA Highly Scalable Server, Pro-
ceedings of the 24th International Symposium on Computer Architecture, pp. 241–251,
(May, 1996).

19. D. Lenoski et al., The Stanford DASH Multiprocessor, IEEE Computer, 25(3): 63–79
(1992).

20. T. Lovett and R. Clapp, STiNG: A CC-NUMA Computer System for the Commer-
cial Marketplace, 23rd Annual International Symposium on Computer Architecture, pp.
308–317 (1996).

21. C. Mather, K. Peterson, B. Raghunath, J. Reddy, I. Subramanian, B. Taylor, and
E. Wong (all from Hewlett Packard), Performance Optimized Page Sizing in HP-UX
11.0, IWorks 1998 Presentation.

22. J. D. McCalpin, Memory Bandwidth and Machine Balance in Current High Per-
formance Computers, IEEE Technical Committee on Computer Architecture newsletter
(1995).

23. L. McVoy and C. Staelin, lmbench: Portable Tools for Performance Analysis, Proceed-
ings of USENIX, San Diego (1996).

24. Parasol - HP V-Class Multiprocessor, Parasol Lab, Department of Computer Science,
Texas A&M University, http://www.cs.tamu.edu/research/parasol.

25. R. Saavedra, R. Gaines, and M. Carlton, Characterizing the Performance Space of
Shared Memory Computers Using Micro-Benchmarks, Technical Report # USC-CS-
92-547, Department of Computer Science, University of Southern California (1993).

26. K. Shaw and G. Astfalk, Four State Cache Coherence Protocol in the Convex Exem-
plar System, http://www.hp.com/wsg/tech/technical.html.

27. Titan - SGI Origin 2000, Supercomputing Center, Texas A&M University, http://
anakin.tamu.edu/titan/

28. L. Valiant, A Bridging Model for Parallel Computation, Communications of the ACM,
33(8):103–111(1990).

29. K. Yeager, The MIPS R10000 Superscalar Microprocessor, IEEE Micro, 16(2):28–40
(1996).

30. M. Zagha, B. Larson, S. Turner, and M. Itzkowits, Performance Analysis Using MIPS
R10000 Performance Counters, Proceedings of Supercomputing’96, November 17–22,
1996 Pittsburgh, PA, ACM Press and IEEE Computer Society Press, 1996.


