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Abstract
The theory and application of the Taylor Dispersion technique for measuring diffu-
sion coefficients in binary systems is reviewed. The theory discussed in this paper 
includes both the ideal Taylor–Aris model and the estimation of corrections required 
to account for small deviations from this ideal associated with a practical appara-
tus. Based on the theoretical treatment, recommendations are given for the design of 
practical instruments together with suggestions for calibration, data acquisition and 
reduction, and the rigorous estimation of uncertainties. The analysis indicates that 
relative uncertainties on the order of 1% are achievable in practice.

Keywords Binary mixtures · Mutual diffusion · Taylor Dispersion apparatus · Tracer 
diffusion

1 Introduction

The Taylor Dispersion or chromatographic broadening technique is a well-estab-
lished means of measuring mutual diffusion coefficients in binary mixtures. In this 
method, a homogeneous mixture or solution passes through a long tube in steady 
laminar flow. Into this flow is injected a small aliquot of the mixture or solution 
having a slightly different composition to that of the mobile phase, thereby creating 
a region of inhomogeneous concentration that propagates downstream. As a result 
of advection and diffusion, this concentration distribution develops into a Gaussian 
function of the distance from the point of injection, the dispersion of which is pre-
cisely related to the mutual diffusion coefficient. In a practical experiment, a chroma-
tographic injection valve is used to inject the aliquot, the amount being determined 
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by the volume of the installed sample loop. A diffusion tube of circular cross-section 
is installed in a thermostat and the concentration of the exiting fluid is measured as a 
function of time with a suitable chromatographic detector. The method is rigorously 
described by a mathematical model which may be used to obtain the mutual diffu-
sion coefficient from the experimental concentration–time data.

The Taylor Dispersion method is versatile in relation to the types of binary mix-
tures or solutions that can be studied. The mobile phase can be a liquid [1–3] or a 
supercritical fluid [4–6]; it can be a solution or a mixture provided that it is homoge-
neous under the conditions of the experiment. Often, the mobile phase is a pure fluid 
and the injected phase is a dilute solution of a single solute [7–9]. In this case, the 
quantity measured is the tracer diffusion coefficient of the solute. For binary systems 
that are homogeneous over the entire composition range, the composition of the 
mobile phase is unrestricted and one can measure the mutual diffusion coefficient 
over the full composition range. The method may also be applied to low-pressure 
gases (for example, see reference [10]), although such applications are not consid-
ered explicitly in this article.

2  The Taylor–Aris Theory

2.1  Fast, Slow, and Intermediate Diffusion

Before introducing any detailed mathematical models, it is useful to consider the 
expected behavior in limiting cases and for a typical scenario. Consider the mobile 
phase to be a pure solvent passing through a tube of length L0 and radius R0 at a 
volumetric flow rate V̇ .1 In this case, the superficial fluid velocity u0 (the velocity 
averaged over the cross-section) is

and solute that passes through the tube at this superficial velocity would elute at time

where V0 = �R2
0
L0 is the internal volume of the tube. In laminar flow, the velocity 

profile over the cross-section of the tube is

where r is the radial co-ordinate. It is also convenient to define the mean concentra-
tion of solute over a cross-section c(z, t) as a function of the distance z downstream 
of the injector and the time t since injection of the solute. It is assumed that the 
detector measures this mean concentration at z = L0, designated cL(t).

(1)u0 = V̇∕(𝜋R2
0
)

(2)t0 = L0∕u0 = V0

/

V̇ ,

(3)u(r) = 2u0(1 − r2∕R2
0
),

1 Subscript 0 is used to denote quantities associated with the diffusion tube or the flow within it.
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In the slow-diffusion limit, the tracer diffusion coefficient of the solute tends to 
zero and transport along the tube is by advection parallel to the tube axis only. In 
that case, it is easy to show that cL(t) is zero until time t∕2 , at which point it abruptly 
acquires a finite value that subsequently decays in proportion to 1/t. The abrupt rise 
is of course associated with the flat velocity profile near the center of the tube.

A fast-diffusion limit can also be identified in which radial diffusion is suf-
ficiently to homogenize the composition rapid over the small cross-section of the 
tube, but diffusion in the longitudinal direction is negligible. In that case, the sol-
ute pulse does not disperse and simply passes through the tube at the superficial 
velocity, eluting as a delta function at time t.

In between these limiting cases, we have a competition between advection 
which, in the parabolic flow field, acts to disperse the solute axially and diffusion 
which, in the same flow field, acts to homogenize it radially. The result of this 
competition is a concentration profile c(z, t) that is a near Gaussian function of 
(z − u0t) propagating along the tube at velocity u0.

Figure 1 illustrates the concentration cL measured at the detector as a function 
of dimensionless time t

/

t for these three scenarios. Obviously, the interesting one 
is the intermediate case in which the concentration profile is sensitive to both dif-
fusion and advection.

2.2  Taylor’s Solution

The evolution of an axisymmetric concentration distribution c(r,z,t) under steady 
laminar flow through a circular tube is governed by the advection–diffusion 
equation:

Fig. 1  Relative solute concentration c
L

/

c
L,max as a function of relative time t

/

t , where c
L
 is the mean 

solute concentration over the cross-section of the tube measured at the z = L0, cL,max is the maximum 
value of c

L
 , t = V0

/

V̇  , where V0 is the volume of the tube and V̇  is the volumetric flow rate of the mobile 
phase. Curves represent: (a) red, slow-diffusion limit; (b) blue, fast-diffusion limit; and (c) green, typical 
intermediate case (Color figure online)
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Here, z is the longitudinal co-ordinate, r is the radial co-ordinate, D12 is the 
mutual diffusion coefficient, and u = u(r) is the steady flow velocity parallel to the 
axis, given by Eq. 3. The concentration is that of one of the two components of the 
binary mixture or solution and is expressed in molar units. For an impermeable and 
non-adsorbing wall, the radial boundary condition is

In a Taylor dispersion measurement, the initial condition is idealized as follows:

where c0 is the constant concentration of the specified components in the mobile 
phase entering the tube, n is the excess amount of the specified component present 
in the injected aliquot, and δ(z) is the Dirac delta function.

In order to obtain an analytical solution of Eq.  4 subject to the 
specified boundary and initial conditions, Taylor [11] argued that 
(𝜕2c

/

𝜕z2)r,t ≪ [(𝜕2c
/

𝜕r2)z,t + r−1(𝜕c∕𝜕r)z,t] . Neglecting the former, which effec-
tively discounts axial diffusion, the solution is

where K is a dispersion coefficient which Taylor found to be

2.3  The Aris Solution

Aris revisited the problem, presenting an essentially-exact analysis based on the 
evolution of the spatial moments of the distribution about an origin z0 = u0t mov-
ing along the tube at the superficial velocity [12]. Importantly, this analysis does 
not depend upon the approximations made by Taylor. It yields a spatial distribution 
about z0 = u0t that (a) approaches normality asymptotically and (b) is character-
ized by a variance (second spatial moment) that increases almost linearly with time. 
These statements can be qualified by considering the exact solutions for the second 
moment and the general behavior of the higher-order moments.

The exact second moment of the distribution averaged over the cross-section of 
the tube is

(4)
(

�c

�t

)

r,z
+ u

(

�c

�z

)

r,t

= D12

[(

�2c

�r2

)

z,t

+
1

r

(

�c

�r

)

z,t
+

(

�2c

�z2

)

r,t

]

.

(5)
(

�c

�r

)

t,z
= 0 on r = R0.

(6)c(r, z, t = 0) = c0 +

(

n

�R2
0

)

δ(z),

(7)cL(t) =

�

n

�R2
0

√

4�Kt

�

exp

�

−(L0 − u0t)
2

4Kt

�

,

(8)K =
u
2

0
R2
0

48D12

.
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where �0n is the nth turning point of the zeroth-order Bessel function of the first kind 
[13]. Thus, ν2 comprises three parts: a leading term proportional to time, a constant 
term, and a transient term which decays exponentially with time. Alizadeh et al. [13] 
show that the transient term is smaller than 0.01% of the leading term for dimen-
sionless time 𝜏 > 0.6 , where τ is defined by

a condition that is readily achieved in practice. Therefore, enumerating 
∑∞

n=1
�−8
0n

 , the 
second moment reduces to

which is indeed a linear function of time.2 Typically, u2
0
R2
0

/

48D12 ≫ D12 in which 
case the ratio of the constant term to the term proportional to time is simply 
−1∕15 � . Therefore, by a suitable choice of experimental parameters, the variance 
can be rendered essentially proportional to time.

The higher moments of the spatial distribution decay with time such that the dis-
tribution progressively approaches normality. The rate at which this occurs can be 
quantified by considering the time evolution of the absolute skewness β, defined as

where ν3 is the third moment of the distribution about z0 averaged over the cross-
section. This has been studied in detail by Chatwin [14], leading to the following 
asymptotic expression for the absolute skewness:

This is typically small but not necessarily negligible; for example, when τ = 5, 
β =  10–2. Chatwin’s series expansion of the exact solution [14] is very useful for 
gauging the approach to normality. This will be discussed further below when cor-
rections to the zeroth-order theory are considered. Unfortunately, there is some con-
fusion in the literature concerning the skewness, with Alizadeh et  al. [13] stating 
that β is < 5 ×  10–8 under practical conditions, which appears to be incorrect. Aris 
[12] also gives an expression for β which differs from Eq. 13.

(9)�2 = 2

(

u
2

0
R2
0

48D12

+ D12

)

t − 128

(

u
2

0
R4
0

D2
12

)

∞
∑

n=1

�−8
0n

[

1 − exp

(

−�2
0n
D12t

R2
0

)]

,

(10)� = D12t∕R
2
0

(11)�2 = 2

(

u
2

0
R2
0

48D12

+ D12

)

t −

(

u
2
R4
0

360D2
12

)

(12)� = �2
3

/

�3
2
,

(13)� = 3∕(50�).

2 In the original publication of Aris [12], the sign of the second term was positive. This error is cor-
rected in Alizadeh et al. [13].
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2.4  The Temporal Distribution

Under the conditions in which both the constant term in Eq. 11 and the third and 
higher moments of the distribution are negligible, the concentration averaged over 
the cross-section at z = L0 is given by the following modified Gaussian function:

This is characterized to within a constant scaling factor by two parameters:

and

where the dispersion coefficient K is

Since, u0 = L0
/

t0 , the diffusion coefficient may be determined from �2
0
 and t0 plus 

the length and volume of the diffusion column according to the quadratic relation:

Here, the second term on the right is the small axial dispersion term neglected by 
Taylor; neglecting that term, D12 ≈ V0t0

/(

24�L0�
2
0

)

 . Note that elimination of u0 in 
favor of L0

/

t0 eliminated V̇  from the working equation.
Equations 14 and 18 comprise the working equations of the idealized Taylor–Aris 

model.

3  Corrections to the Idealized Taylor–Aris Model

The idealized model defined above provides a very convenient starting point. Of 
course, a practical instrument will differ (usually slightly) from this idealized model 
in several respects. When, as should be the case in a well-designed instrument, 
departures from the idealized Taylor–Aris model are slight, a first-order perturba-
tion treatment as outlined here will be sufficient. The perturbations to be considered 

(14)cL(t) =

⎡

⎢

⎢

⎢

⎢

⎣

(n
�

V0)
�

2�(�2
0

�

t
2

0
)(t
�

t0)

⎤

⎥

⎥

⎥

⎥

⎦

exp

�

−(t − t0)
2

2�2
0
(t
�

t0)

�

.

(15)t0 = V0

/

V̇

(16)�2
0
=

2Kt0

u
2

0

,

(17)K =
u
2

0
R2
0

48D12

+ D12.

(18)�2
0
=

V0t0

24�L0D12

+
2D12t

3

0

L2
0

.
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include the finite volumes of the injection loop and detector, the finite concentra-
tion perturbation, the finite length of the diffusion column, non-uniform and/or non-
circular cross-section of the column, any abrupt changes in diameter where tubing 
runs join, coiling of the diffusion column, and the presence of additional inlet and 
outlet tubing runs. Some of these factors can be modeled sufficiently well to permit 
the calculation of corrections; others are difficult to quantify precisely and should be 
rendered negligible by design.

Corrections and potential systematic errors are most easily analyzed as first-order 
perturbations to the temporal mean and variance of the distribution. Since Eq. 14 
is not purely Gaussian, the parameters t0 and �2

0
 defined above differ from the true 

temporal mean and variance of the distribution in the idealized Taylor–Aris model. 
However, as shown by Alizadeh et al. [13], in leading order they differ from those 
quantities by factors of (1 + m�0) , with m = 2 for the mean and m = 4 for the vari-
ance, where �0 is a dimensionless quantity given by

Typically, �0 is of order  10–3 or less. Therefore, for the purposes of estimat-
ing small corrections to the zeroth-order theory, one can treat perturbation to the 
temporal mean and variance of the distribution as the perturbations to t0 and �2

0
 , 

respectively. In the following, we evaluate or estimate the perturbations �t and ��2 
that must be added to the zeroth-order expressions for the temporal mean and vari-
ance to obtain values correct to first-order. Therefore, these perturbations should be 
subtracted from the experimentally determined temporal mean and variance before 
evaluation of the diffusion coefficient via Eq. 18. Expressions for the perturbations 
that can be calculated in practize are collected in Table 1 for ease of reference. Other 
perturbations considered can only be estimated roughly and should be rendered neg-
ligible. In these cases, equations mentioned in the text provide a basis for ensuring 
this.

3.1  Finite Injector Volume and Finite Concentration Difference

The injection system is typically a tubular sample loop of volume Vinj connected to 
(or a part of) a chromatographic injection valve. Without loss of generality, the 
internal diameter of the sample loop may be taken as the same as that of the diffu-
sion tube, so that Vinj = �R2Linj , where Linj is the length of the sample loop. Just 
after actuation of injection valve, the concentration will display a rectangular distri-
bution with a uniformly elevated concentration of one component between z = -Linj 
and z = 0. The second spatial moment of such a distribution is L2

inj

/

12 and the 
center of the distribution moves with velocity u0 ; therefore, the corresponding per-
turbation are as given in Table  1. These results remain valid for sample injection 
loops that have an inner diameter different to that of the diffusion column provided 
that the influence of the diameter change is negligible, a criterion that is discussed 
further below.

(19)𝜁0 =
V̇

48𝜋LD12

.
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In principle there is another effect associated with the finite concentration dif-
ference between the injected aliquot and the mobile phase. In a non-ideal mixture, 
there is a significant volume change upon mixing which, in principle, could give rise 
to a flow rate perturbation. This can be quantified if the loop volume, concentration 
difference, and volume change on mixing are known and can easily be rendered neg-
ligible by making the concentration difference small.

3.2  Finite Detector Volume

Typically, the chromatographic detector is a small prismatic or cylindrical chamber 
through which the column effluent passes. The entrance to this chamber is taken to 
be at z = L0 and the detector is assumed to measure the instantaneous mean concen-
tration throughout the chamber. The finite residence time within the detector gives 
rise to additional contributions to the elution time and the temporal moments which 
can be modeled under different assumptions. The limits of plug flow and perfect 
mixing within the detector have been studied by Alizadeh et al. [13] and, neglecting 
terms of O(�2

0
) , the results are as given in Table 1. The parameters mi that appear 

here depend upon the assume flow pattern and values for the two limiting cases 
mentioned above are given in Table 2.

Unfortunately, the exact flow conditions in the detector may not be known. Most 
commonly, the contribution of the detector volume to the variance has been ana-
lyzed with m4 = 0, under which assumption 1/m3 is reported to be in the range 5 to 
6 [15]. Dasgupta et al. [16] studied the detector-induced dispersion experimentally 

Table 1  First-order perturbations to the time and temporal variance parameters t  and �2.a

a Symbols: Vinj = injector volume, V̇  = volumetric flow rate, Vdet = injector volume, R0 = diffusion column 
radius, L0 = diffusion column length, A0 = cross-sectional area of diffusion column, V0 = volume of diffu-
sion column, Rk = radius of additional tube k, Lk = length of additional tube k, Vk = volume of additional 
tube k, D12 = diffusion coefficient at column conditions, D(k)

12
 = diffusion coefficient at conditions in tube k, 

De = Dean number at column conditions, Sc = Schmidt number at column conditions
b See Table 2 for coefficient m1 to m4

Factor Time perturbation Variance perturbation

Injector 𝛿tinj =
1

2

(

Vinj

V̇

)

𝛿𝜎2
inj

=
1

12

(

Vinj

V̇

)2

Detector b 𝛿tdet = m1

(

Vdet

V̇

)

− m2

(

R
2

48D12

)

𝛿𝜎2
det

= m3

(

Vdet

V̇

)2

+ m4

(

R
2

48D12

)(

Vdet

V̇

)

Intercept �tint = 0 ��2
int

=
−R2�2

0

15D12 t

Skewness �tskew =
R
2

84D12
��2

skew
=

2R2�2
0

103D12 t

Coiling �tcoil = 0
𝛿𝜎2

coil
=
(

−V̇

24𝜋L0D12

)(

De
2
Sc

653

)2

Additional tubing
𝛿ttube =

n
∑

i=1

�

V
i

V̇

�

𝛿𝜎2
tube

=
�

𝜋R4
0
L
i

24D12V̇

� n
∑

i=1

�

D12

D
(i)

12

�

�

R
i

R0

�4
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using a variable path cylindrical diode array detector cell. Under variation of both 
Vdet and V̇  , the additional dispersion in the detector was found to conform to the 
tabulated expressions and it was reported that, for Vdet ≥ 4 μL, m3 ≈ 1/9 [16]. Further 
analysis of the data for biphenyl solute in acetonitrile indicates that m4 ≈ 1 so that, 
overall, the flow regime appears to be closer to the plug flow limit than to the per-
fectly mixed scenario, leading to the recommended coefficients provided in the last 
row of Table 2.

3.3  Non‑infinite Length of the Diffusion Column

As discussed in Sect. 2.2, the zeroth-order working equations emerge as the limit-
ing case for a very long diffusion column. The transient terms in the second spatial 
moment decay extremely rapidly and, by adopting Eq. 17 for the dispersion coeffi-
cient, the small contribution of longitudinal diffusion is captured in the zeroth-order 
model. This leaves the neglected constant term in Eq. 11 and the influence of higher 
moments of the distribution. The former leads to a slight underestimate of the sec-
ond moment and the first-order ‘intercept’ correction is included in Table  1. The 
effect of the higher moments of the distribution is considered numerically in the 
Supplementary Information. It is shown there, using Chatwin’s series expansion of 
the exact solution [14] that the relative error incurred in the second moment by fit-
ting the concentration–time distribution with Eq. 14 is 2/(103τ), leading to the skew-
ness correction given in Table 1.

3.4  Non‑circular Cross‑Section

The case of an elliptical cross-section has been considered by Aris [12] who showed 
that the dispersion coefficient (ignoring axial diffusion) is given by

where A is the cross-sectional area of the tube and κ is a factor determined by the 
eccentricity of the tube, defined by e2 = 1 − b2

/

a2 where b is the minor diameter 
and a is the major diameter. The factor κ is given by

(20)K =

(

V̇2L0

48𝜋V0D12

)

𝜅,

(21)� =
(1 − e2 +

5

24
e4)

(1 −
1

2
e2)

Table 2  Parameters determining 
the detector perturbation

Flow condition m1 m2 m3 m4

Plug flow 1/2 0 1/12 1
Perfect mixing 1  − 3 1 2
Recommended 1/2 0 1/9 1
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so that, when the effective value of R2
0
 is eliminated in favor of V0

/

(�L0) , one 
obtains

Therefore, the effects of small smooth departures from circular cross-section are 
expected to be  negligible provided that the tube dimensions are characterized by 
length and internal volume.

3.5  Variation of the Tube Radius

Neglecting longitudinal diffusion, initial transient terms and the small constant term 
in Eq.  11, the second spatial moment at time t is �2 = u

2

0
R2t

/

(24D12) . With 
u0 = V̇

/

A
0
 and t = V0

/

V̇  , where A0 is the cross-section of the column, one finds 
that the second volumetric moment �2 = �2A

2
0
 is given by

which is independent of the tube radius. Therefore, if the tube dimensions are char-
acterized by length and volume, small variations of radius (such that smooth laminar 
flow is maintained) do not influence the dispersion and can be considered negligible.

The influence of a step change in radius may not be negligible because of phe-
nomena such as poorly swept portions of the tube, for example, at the interior corner 
formed upon a reduction of radius. This problem is not amenable to an analytical 
treatment but it has been studied by computational fluid dynamics (CFD) for the 
case of abrupt 1:2 radius changes [17]. The results show local effects on the solute 
dispersion which diminish rapidly downstream toward a small and constant asymp-
totic increment to the second moment. This effect was shown to depend primarily 
upon the Peclet number, Pe = 2Ru

/

D12 such that a 2:1 or 1:2 step change in radius 
at the entrance of the diffusion tube results in an increment to the second temporal 
moment at the detector given by

where R is the downstream radius. The parameter a is 7.22 ×  10–6 for a divergent 
step and 4.18 ×  10–5 for a convergent step. Although these results were obtained for 
tubes of radii about one order of magnitude smaller than those typically used in dif-
fusion measurements, they should apply to the latter case because the Reynolds 

(22)
K =

�

V̇2L0

48𝜋V0D12

�

⎛

⎜

⎜

⎝

1 − e2 +
5

24
e4

(1 −
1

2
e2)

√

1 − e2

⎞

⎟

⎟

⎠

=

�

V̇2L0

48𝜋V0D12

��

1 +
e4

12
+⋯

�

.

(23)𝜒2 =

(

V̇V0

24𝜋D12

)

,

(24)�2
step

= a

(

R

u

)2

Pe
2 =

4aR4

D
2
12

,
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numbers are similar, corresponding to a creeping flow regime. The result is that the 
contribution of such step changes is remarkably small. For example, with R = 0.3 mm 
and D12 = 3 ×  10–9  m2  s−1, �2

step
 = 1  s2 for a convergent step. Diameter ratios closer to 

unity will give rise to even smaller effects. The CFD calculations show that the local 
disturbances decay within a distance of a few hundred tube diameters downstream of 
the step change, so that the asymptotic limit expressed in Eq. 24 is typically achieved 
in practice. Therefore, it is recommended to restrict diameter ratios to the range of 
0.5 to 2 and to ensure that �2

step
 as given by Eq. 24 is negligible.

3.6  Coiled Diffusion Tube

The diffusion column is typically many meters long and, to facilitate temperature 
regulation, it is invariably coiled. Coiling the tube can give rise to secondary flow 
effects that influence the dispersion. This effect has been studied by Nunge et al. [18] 
who obtained a series expansion in even inverse powers of λ = Rc/R0, where Rc is the 
coil radius. Their result for the dimensionless dispersion coefficient KD12

/

(2u0R0)
2 

yields

Here, Pe = Re ⋅ Sc is the Peclet number as before, Re = 2R0u0�
/

� is the Reyn-
olds number, Sc = �∕(�D12) is the Schmidt number, ρ is the density, and η is the 
dynamic viscosity. Under typical conditions, Sc >  > 1,  100 ≤ Re ≤  102, Pe >  > 1, and 
K >  > D in which case Eq. 27 simplifies to

where De = Re
√

� is the Dean number. The corresponding contribution to the sec-
ond temporal moment is given in Table 1. Assuming that the tube dimensions are 
characterized by length and volume, the corresponding time perturbation is zero.

3.7  Inlet and Outlet Tubing Runs

Often, there will be a length of tubing between the end of the diffusion column and 
the inlet of the detector module. Typically, there also will be a tubing run, possibly 
of a different internal diameter, within the detector module before the flow reaches 
the detector chamber. In some circumstances, it is necessary also to have an addi-
tional tubing run between the injector and the diffusion column, for example, when 
the latter is in a thermostat bath and the former is not. The results already assembled 
can be combined to estimate the effects of such tubing runs. Provided that abrupt 
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diameter changes have a negligible influence on dispersion, as indicated by the anal-
ysis above, the volumetric dispersion χ2 is conserved across a junction. In a system 
comprising a diffusion column, designated by subscript i = 0, and additional tubing 
sections, designated by subscript i > 0, the total accumulated volumetric dispersion 
is

where Li is the length and Ai is the cross-sectional area of each tune section. Here, 
the diffusion coefficient may take different values in each section of tubing, corre-
sponding to different (mean) temperatures. When the contribution of the terms i > 0 
is small, Eq. 27 may be approximated by

where axial dispersion in the additional tube sections has been ignored and 
D12 = D

(0)

12
 is the diffusion coefficient at the column temperature. This shows that the 

combined volumetric dispersion is equivalent to extending the length of the disper-
sion tube by δL where [19]

Therefore, the influence of additional tubing sections will be small when they are 
short and have radii significantly less than that of the diffusion tube itself. The cor-
responding perturbations to the temporal mean and dispersion are given in Table 1.

3.8  Numerical Example

A complete Taylor Dispersion experiment is described by several geometric and 
flow parameters. Considering only the diffusion column itself, the primary variables 
are the internal volume V0 and length L0 of the column and the volumetric flow rate 
V̇  of the mobile phase. Two useful constraints are a target value for the temporal 
mean t0 (e.g., t0 = 30 min) and a minimum value for the corresponding dimension-
less temporal mean �0 (e.g., �0 ≤ 20). Taking into account the largest diffusion coef-
ficient values to be measured, these two criteria serve to constrain L0 and V0 (and 
hence R0) for given V̇  . Next, one can consider the largest practical coiling radius 
that can be accommodated and adopting a constraint for De2Sc (e.g., De2Sc ≤ 100) 
and considering also the density and viscosity of the mobile phase, one can choose 
a flow rate. Connecting tubes before and after the diffusion column should be as 
short as possible and their radii should be smaller than R0 but not less than R0/2. 
The geometry of the detector is typically fixed and it is then useful to evaluate all 
the perturbations listed in Table 1. The primary variables V0, L0, and V̇  might then 
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be revised with the objective of limiting the perturbations to the temporal mean and 
variance to a few percent. Pressure drop across the flow path might be an additional 
factor to control in some situations, providing a constraint on the maximum flow 
rate.

For purposes of illustration, the perturbations detailed in Table 1 are enumerated 
in Table 3 for a particular set of apparatus parameters (defined in Table 4) with sev-
eral diffusivities covering a wide range. These examples are representative of tracer 
diffusion measurements for different solutes in a solvent having the same density and 
viscosity as water at a temperature of 298.15 K and a pressure of 0.1 MPa. For sim-
plicity, the injector, diffusion column, external tubing, and detector are all assumed 
to be at the same temperature so that only a single value of D12 appears. The geome-
try within the detector module (internal tubing and chamber) reflects the dimensions 
of a commercially available refractive index detector (RID) (Agilent, 1200 series). 
In fact, the influence of the tubing run within this module gives rise to the larg-
est perturbations to the temporal mean and variance. The flow rate is kept constant 
in these examples at 0.15 mL·min−1 but could be adjusted to reduce the temporal 
variance perturbation. For example, for the highest diffusion coefficient considered, 
at which the relative temporal mean perturbation exceeds 3%, tripling the flow rate 
would have the effect of reducing the total relative temporal variance perturbation to 
2% while keeping De2Sc < 35.

4  Practical Implementation

For most purposes, commercially available HPLC or supercritical fluid chromatog-
raphy equipment can be adapted to create a Taylor Dispersion Apparatus (TDA). 
On the other hand, commercial chromatography software is not usually suitable and 
bespoke control, data acquisition, and data analysis code are normally required.

4.1  Columns

Diffusion columns are usually fabricated from metals such as stainless steel or Has-
telloy but might also be made in silica or from polymeric materials, such as PEEK 
or PTFE. The criteria are that the internal bore should be reasonably circular and 
uniform in radius and that neither of the fluid components should adsorb on, absorb 
into, permeate through  or react with the tube material. Ideally, the diffusion col-
umn should be obtained as a single length of seamless tubing, although it may be 
acceptable to join sections if this is not possible. Here and elsewhere, zero dead vol-
ume chromatographic unions are recommended and sharp bends or kinks in the tube 
must be avoided.

Adsorption or absorption within the diffusion column may be difficult to detect 
in a TDA experiment. The theory of solute dispersion under steady laminar flow 
with adsorption, absorption, and/or chemical reactions has been examined in the lit-
erature [20, 21]. Golay considered rapid reversible adsorption [20], as in open-tube 
chromatography, and showed that peaks remain asymptotically Gaussian but exhibit 
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Table 3  Example calculations for the Taylor Dispersion apparatus detailed in Table 4

Flow and diffusion parameters

Flow rate V̇/(m3·s−1) = 1.67 ×  10–9 1.67 ×  10–9 1.67 ×  10–9 1.67 ×  10–9 1.67 ×  10–9

Density ρ/(kg·m−3) = 997 997 997 997 997
Viscosity η/(Pa·s) = 0.89 ×  10–4 0.89 ×  10–4 0.89 ×  10–4 0.89 ×  10–4 0.89 ×  10–4

Diffusivity D/(m2·s−1) = 1 ×  10–9 2 ×  10–9 5 ×  10–9 1 ×  10–8 2 ×  10–8

Reynolds number Re = 4.8 4.8 4.8 4.8 4.8
Dean number De = 0.2 0.2 0.2 0.2 0.2
Schmidt number Sc = 892.7 446.3 178.5 89.3 44.6
Peclet number Pe = 4244 2122 849 424 212

De2Sc = 33.6 16.8 6.7 3.4 1.7
Mean velocity u̅/(m·s−1) = 8.5 ×  10–3 8.5 ×  10–3 8.5 ×  10–3 8.5 ×  10–3 8.5 ×  10–3

Dispersion coefficient K/(m2·s−1) = 9.4 ×  10–5 4.7 ×  10–5 1.9 ×  10–5 9.4 ×  10–6 4.7 ×  10–6

Dimensionless variable ζ0 = 7.4 ×  10–4 3.7 ×  10–4 1.5 ×  10–4 7.4 ×  10–5 3.7 ×  10–5

Temporal variance �2
0

/

s2 = 4602 2301 921 461 231
Temporal mean t̅0/s = 1767 1767 1767 1767 1767
Dimensionless mean 

time
τ̅0 = 28.3 56.5 141 283 566

Peak skewness β = 0.021 0.011 0.004 0.002 0.001

Temporal mean perturbations

Injector �tinj = 1.5 1.5 1.5 1.5 1.5
Detector �tdet = 2.4 2.4 2.4 2.4 2.4
Intercept �tint = 0 0 0 0 0
Skewness �tskew = 0.7 0.4 0.1 0.1 0.0
Coiling �tcoil = 0 0 0 0 0
Inlet tubing �t1 = 8.8 8.8 8.8 8.8 8.8
Outlet tubing �t2 = 8.8 8.8 8.8 8.8 8.8
Detector tubing �t3 = 36.5 36.5 36.5 36.5 36.5
Total time perturbation �ttotal = 58.8 58.4 58.2 58.1 58.1

�ttotal
/

�t0 = 3.3% 3.3% 3.3% 3.3% 3.3%

Temporal variance perturbations

Injector ��2
inj

 = 0.8 0.8 0.8 0.8 0.8
Detector ��2

det
 = 8.8 5.7 3.8 3.2 2.9

Intercept ��2
int

 = − 10.9 − 2.7 − 0.4 − 0.1 0.0
Skewness ��2

skew
 = 4.7 1.2 0.2 0.0 0.0

Coiling ��2
coil

 = − 12.2 − 1.5 − 0.1 0.0 0.0
Inlet tubing ��2

1
 = 5.8 2.9 1.2 0.6 0.3

Outlet tubing ��2
2
 = 5.8 2.9 1.2 0.6 0.3

Detector tubing ��2
3
 = 73.6 36.8 14.7 7.4 3.7

Total variance perturba-
tion

��2
total

 = 76.3 45.9 21.2 12.4 7.9

��2
total

/

��2
0
 = 1.7% 2.0% 2.3% 2.7% 3.4%
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a modified dispersion coefficient. This indicates that adsorption may be a cause of 
undetected  systematic error. Boddington and Clifford considered also absorption 
into the wall and reactions within the flowing medium [21], obtaining expressions 
for the modified dispersion coefficient and the mean retention time. Importantly, the 
latter generally differs from V0∕V̇  and so, from a practical point of view, measure-
ment of the temporal mean is an important check. Adsorption or absorption phe-
nomena may also cause skewness of the distribution and this is an important point 
to consider in the validation of a TDA for a particular task. Obviously, if there is 
evidence of adsorption on, absorption into, or reaction with the tube material then 
an alternative material must be sought.

Both the length and volume of the tube must be known precisely, as they appear 
in Eq. 18 from which the diffusion coefficient is obtained. The tube volume can be 
determined gravimetrically by weighing it empty and then again when filled with, 
e.g., water. For the diffusion column specified in Table 4, the volume is almost 3 mL 
and this could be determined with a relative uncertainty below 0.1% by this method. 
In some cases, the length of the column may be measured directly with a tape meas-
ure. However, it must be stretched out in a perfectly straight line and this can be 
difficult for tubes longer than a few meters and for any malleable tube that has been 
tightly coiled. If the tube can be stretched out in this way then a relative uncertainty 
on the order of 0.1% should be achievable. If not, an alternative approach is to meas-
ure the retention time of an analyte in the assembled TDA under steady solvent flow. 
For this purpose, any common liquid solvent will suffice and a suitable analyte is 
one having a high diffusivity in the chosen solvent so that a sharp peak is obtained at 
the detector.

The diffusion column must be maintained at a constant temperature and this can 
be achieved with a suitable thermostatic fluid bath, a metal block thermostat or with 
a chromatographic oven. The former may be preferable at moderate temperatures 
as it should ensure the most uniform and stable temperature. A metal block (e.g., 
aluminum) can serve for both temperature regulation and as a former for coiling the 
tube. The diffusion column should always be wound on a former so that it follows 
a smooth helical path of a defined radius, without sharp bends or kinks that might 
disturb the flow pattern. Bruno reports achieving temperature stability and uniform-
ity of ± 0.015 K using a cylindrical aluminum former inside a modified chromato-
graphic oven [22].

Table 4  Dimensional details of 
the example Taylor Dispersion 
apparatus, where R is the radius, 
L is the length, V is the volume 
and Rcoil is he coil radius

Element R/m L/m V/m3 Rcoil/m

Injection loop 1.25 ×  10–4 0.102 5.01 ×  10–9

Inlet tube 1.25 ×  10–4 0.3 1.47 ×  10–8

Diffusion column 2.50 ×  10–4 15 2.95 ×  10–6 0.15
Outlet tube 1.25 ×  10–4 0.3 1.47 ×  10–8

Detector internal tube 2.20 ×  10–4 0.4 6.08 ×  10–8

Detector chamber – 0.01 8.00 ×  10–9
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Temperature fluctuations are linked to flow rate perturbations through the ther-
mal expansivity α of the mobile phase such that the volumetric flow rate is per-
turbed by (�T∕�t)�V0 when the mean temperature T of the column is chang-
ing at a rate (�T∕�t) . Therefore, a criterion for thermal stability can be written 
as (𝜕T∕𝜕t)𝛼V0

/

V̇ ≪ 1 . As an example, consider a typical organic liquid with 
α = 1.2 ×  10–3   K−1 so that in the scenarios detailed in Tables 3 and 4 one requires 
(𝜕T∕𝜕t) < 0.5 × 10−3K ⋅ s−1 or about 1.7  K·h−1, for a relative flow rate perturba-
tion <  10–3. Another factor arises when the injection loop is outside the thermostat 
that encloses the diffusion column. In that case, the temperature of the mobile phase 
flowing into the diffusion column should equilibrate with the thermostat as rapidly 
as possible and this calls for good thermal anchoring between the tube and the ther-
mostat medium.

Pressure drops across the flow system may be significant and some basic calcula-
tions are recommended to ensure that the mean column pressure is sufficiently well 
known, for example from an upstream measurement. When the mobile phase is a 
liquid, the influence of pressure drops is most likely negligible, although the situa-
tion may be different for a compressible supercritical fluid.

4.2  Injection System

Chromatographic injection valves offer the best method of injecting the sample. One 
may use either a four-port valve with an internal sample loop or a six-port valve with 
an external sample loop. The sample loop must be filled with a mixture or solution 
having a composition that differs slightly from that of the mobile phase. With mix-
tures or solutions that are liquid at atmospheric pressure and the filling temperature, 
the sample loop may be flushed and filled using a simple syringe, possibly auto-
mated with a computer-controlled syringe driver. If the mixture or solution is not a 
homogeneous fluid at atmospheric pressure and the filling temperature, but is so at 
higher pressure,  then a pressurized reservoir is required and the waste port of the 
injection valve should be fitted with a back-pressure device to allow flushing without 
flashing [23]. In this situation, the pressure of the mobile phase should be greater 
than or equal to the loop filling pressure to avoid phase separation after injection. 
Loop volumes should be as small as possible, usually a few μL. When working with 
sparingly soluble gases or other solutes that will be present only at high dilution, 
larger loops may be needed to obtain a usable signal at the detector. Obviously, the 
relative magnitude of ��2

inj
 as well as the signal-to-noise ratio must be considered 

when sizing the injection loop.
The injection valve may be located in the same thermostatic enclosure as the col-

umn, in which case the two can be directly connected. On the other hand, if the 
valve is not compatible with the column temperature then it must be sited outside 
of the thermostatic enclosure and a connecting tube used. Such a connecting tube 
should be as short as possible and be of smaller diameter than the diffusion column: 
half is recommended.
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With a rotary chromatographic valve, sample injection is associated with a start 
time, at which the valve moves to the inject position, and a stop time, at which it 
returns to the fill position. The duration of the injection has in principle an influence 
on the initial conditions and, for the injector correction given in Table 1 to be valid, 
the duration should be a sufficient multiple of Vdet

/

V̇  to ensure that the sample is 
largely swept onto the column. A multiple of 5 can be recommended.

4.3  Pumping System

When the mobile phase is liquid under ambient conditions, a normal HPLC pump 
is suitable for generating the required steady flow. A pulse dampener may be 
needed to help ensure smooth flow, although modern dual-piston pumps already 
produce a nearly pulseless flow. As a check, it is recommended to monitor the 
pressure at the outlet of the pump. In most cases, an in-line degasser is recom-
mended to eliminate unwanted dissolved gases. A motorized syringe pump may 
be a suitable alternative, provided that it has sufficient capacity to support steady 
flow for the desired experimental duration. If the mobile phase is not homoge-
neous at ambient pressure than a pressurized delivery system is required. Some 
HPLC pumps can accept a pressurized inlet, as can certain syringe pumps. Bruno 
reports using a chilled dual-piston chromatographic pump fitted with a pulsation 
dampener to deliver liquid carbon dioxide at high pressures [24].

Depending upon the chosen pump, the volumetric flow rate at pump conditions 
will have an uncertainty of probably a fraction of a percent. This uncertainty 
might be reduced somewhat by calibration, for example, by collecting and weigh-
ing the amount of water pumped in a specified period of time. One should meas-
ure the temperature and the pressure at the pump conditions so that, knowing the 
volumetric flow rate there and the thermal expansivity of the mobile phase, one 
can determine the volumetric flow rate at column conditions. A large capacity 
syringe pump must be thermostatted precisely otherwise even quite small temper-
ature fluctuations will create significant errors in flow rate. The criterion for tem-
perature stability in this case is (𝜕T∕𝜕t)𝛼Vpump

/

V̇ ≪ 1 , where Vpump is the volume 
within the pump. If Vpump were 100 mL then, for the scenario detailed in Tables 3 
and 4, one needs (�T∕�t) < 0.05 K·h−1 for a relative flow rate perturbation <  10–3. 
This analysis can be extended to incorporate any other volumes in the flow path, 
such as pressure sensors.

4.4  Detector Systems

Commercial chromatographic detectors are the norm. The most common for 
use in a TDA is the refractive index detector (RID) because of its near universal 
applicability; one only needs the refractive index to vary adequately with compo-
sition. Other composition monitors, such as ultraviolet–visible absorption detec-
tor (UV–VIS), diode array detector (DAD), fluorescence detector (FLD), electri-
cal conductivity detector (ECD), or even a flame ionization detector (FID), may 
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be suitable for certain specific systems. These detectors can have much greater 
sensitivity to specific dilute analytes than does the more general RID.

RIDs and some other detectors have an internal thermostat to regulate the tem-
perature of the detector cell and to pre-equilibrate the flow at that temperature. 
There is typically a length of tubing within the detector module through which the 
flow passes before entering the detector chamber itself. It is necessary to know 
the length and volume of this tubing and also the volume of the detector chamber, 
so that corrections can be applied. Approximate knowledge of the diffusion coef-
ficient at the detector temperature is needed to estimate the tube correction.

In most cases, the detector must operate at or near to ambient pressure. A back-
pressure device may be used to regulate the outlet pressure in cases where flashing 
would otherwise be a problem. If the diffusion column is to be operated at high pres-
sure then a pressure reduction device is needed between the end of the column and 
the inlet to the detector module. Options for this include a back-pressure device and 
a small-bore restriction capillary. If the former is used then it should be of minimal 
dead volume. The latter is simple and effective but the column pressure depends 
upon flow rate. An interchangeable set of restrictor tubes can be used to cover a 
range of pressures [9]. When studying the tracer diffusion coefficients of organic 
components in a non-flammable supercritical fluid (e.g.,  CO2), a restrictor tube and 
FID can be combined to good effect. In this case, the outlet from the restrictor tube 
flows directly into the FID [22, 25]. In the special case of tracer diffusion coefficient 
measurements of solutes in supercritical carbon dioxide, an entire supercritical fluid 
chromatograph may be adapted.

The detector is normally assumed to provide a linear response to composition 
changes, although this might not always be the case. While, for example, FIDs 
are linear over a wide range, RIDs are not. In order to check for linearity, experi-
ments with differing concentration perturbations can be carried out. This can be 
achieved either by changing sample loop or by adjusting the composition of the 
injected aliquot. Non-linearity would be manifested by increasing relative deviations 
of the measured data from the working equation as the concentration perturbation 
increases.

4.5  Data Reduction and Analysis

Using a typical commercial chromatographic equipment, sample injection and sig-
nal collection may be automated fairly easily. It may be necessary to obtain propri-
etary information from the manufacturer to enable control of the pump and detector 
from a custom computer program; use of a custom control code will generally be 
more convenient than using software designed for chromatography. Typically, the 
detector signal is digitized every second and the data set for a single injection com-
prises S(t), where t is the time measured from actuation of the sample injection valve 
and S is the signal returned by the detector, starting at injection and continuing until 
the signal has returned to baseline after elution of the sample.

Assuming a linear detector response factor α such that cL(t) = S(t)∕� , the meas-
ured data should conform to the equation
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where S0 is constant for a given injection. The parameters S0, t and �2 may be 
obtained by a non-linear least-square fit to the S(t) data. Typically, there is a non-
zero baseline which exhibits some drift during the course of the measurement. 
Therefore, it is usual to include two additional parameters to describe the baseline 
as a linear function of time. The portion of the data set to be analyzed in this way 
should extend to both sides of the elution peak, sufficient to establish the baseline 
precisely.

Having obtained t and �2 , the quantities t0 and �2
0
 are determined as follows:

where 
∑

i �ti is the sum of the temporal mean perturbations and 
∑

i ��
2
i
 is the sum 

of the temporal variance perturbations based on the contributions listed in Table 1.
Finally, the diffusion coefficient D12 may be determined from Eq. 18. The time 

parameter t0 should accord with that calculated from Eq. 15 and this provides a 
check on the pump flow rate and the volume of the elements in the flow path from 
injector to detector. The residual deviations of the data from the fit also provide a 
check on the conformance of the experiment to the theory.

Traditionally, the data have been analyzed by computing directly the tempo-
ral moments. This remains an option, although the second-order expressions dis-
cussed by Alizadeh et al. [13] may need to be considered as the parameters t0 and 
�2
0
 in Eq. 15 are not the exact temporal mean and variance. Evaluating also the 

third and fourth temporal moments can be recommended as a means of checking 
that the experimental data conform to the working equations.

4.6  Uncertainty

For purposes of evaluating the uncertainty (only), an approximate solution for 
D12 may be written:

The standard relative uncertainty of D12 is therefore obtained from the follow-
ing relation
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where u(X) is the standard uncertainty and ur(X) is the standard relative uncertainty 
of quantity X. The standard relative uncertainties of t and �2 may be obtained in the 
non-linear regression from which these parameters are obtained; the standard rela-
tive uncertainties of V0 and Lo are calculated based on the chosen methods of deter-
mination; finally, the standard uncertainties of the correction terms �t0 and ��2

0
 must 

be estimated by considering the constituent parts, term by term.
The combined standard relative uncertainty of D12 is obtained finally by consid-

ering also the standard uncertainties of temperature T, pressure p, and mole fraction 
x for a binary mixture as follows:

The term in mole fraction may be dropped in a tracer diffusion coefficient meas-
urement. The partial derivatives that appear here must be estimated in some way 
appropriate to the system under investigation. The pressure uncertainty should take 
account of the pressure drop along the length of the diffusion column.

5  Conclusion

The Taylor Dispersion method is one of the most reliable means of measuring dif-
fusion coefficients in binary mixtures or solutions in the liquid or supercritical fluid 
regions. The theory, developed mainly by Taylor and Aris, is essentially complete 
and provides a sound basis for connecting raw experimental data with the desired 
diffusion coefficient and for estimating the uncertainty of the result. Commercial 
HPLC equipment can be adapted for the diffusion measurements in most cases, 
and this provides the simplest route to a working apparatus. Based on the analysis, 
one can conclude that a standard relative uncertainty of a mutual or tracer diffu-
sion coefficient on the order of 1% is achievable, whereas 0.1% would be extremely 
challenging.
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